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5. Advection and Diffusion of an Instantaneous, Point Source
In this chapter consider the combined transport by advection and diffusion for an
instantaneous point release.   We neglect source and sink terms.  For isotropic and
homogeneous diffusion the transport equation reduces to,

(1) ∂C
∂t

+ u ∂C
∂x

+ v ∂C
∂y

+ w ∂C
∂z

= D ∂
2C
∂x2 +

∂2C
∂y2 +

∂2C
∂z2

 

  
 

  
.

For simplicity we begin with a one-dimensional system in x, i.e. all flow parameters are
uniform in y and z, such that ∂/∂y = 0 and ∂/∂z = 0.  The transport equation reduces to,

(2) ∂C
∂t

+ u ∂C
∂x

= D ∂
2C
∂x2

This equation describes transport in the model system below.  Into this system we release
an instantaneous, point mass, shown as a gray slab, at x = 0 and t = 0.  The mass is
distributed uniformly in the y-z plane and with negligible dimension in x, such that the
initial concentration is C(x) = M δ(x), where δ() is the Dirac delta function.

To solve (2) for C(x) = M δ(x), it is useful to change the frame of reference from the
stationary coordinates (x, t) to the moving coordinates (θ, t).  The longitudinal coordinate
θ = x – ut, shown in the top view, moves with the mean flow, u, and θ = 0 remains at the
center of mass for all time.  We convert (2) from (x, t) to (θ, t) using the chain rule of
differentiation and by noting that ∂θ/∂t = -u.
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(3) 

∂C(θ,t)
∂t
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∂C
∂θ

∂θ

∂t
+
∂C
∂t

∂t
∂t
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+
∂C
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=
∂C
∂θ

∂θ

∂x
+
∂C
∂t

∂t
∂x

=
∂C
∂θ

∂ 2C(θ, t)
∂x2

=
∂2C
∂θ2

Substituting from (3) for ∂C/∂t, ∂C/∂x, and ∂2C/∂x2, (2) becomes,

(4) ∂C
∂t

= D ∂
2C
∂θ2 .

With the initial condition C (θ = 0, t = 0) = M δ(θ), the solution to (4) is (eq. 10, ch. 3),

(5) C(θ,t) = M
Ayz 4πDt

exp(-θ2 4Dt) .

Converting back to the stationary frame of reference, we arrive at

(6)  C(x, t) = M
Ayz 4πDt

exp(-(x - ut)2 4Dt)

Instantaneous, Point Release in One Dimension

Transport equation: ∂C
∂t

+ u ∂C
∂x

= D ∂
2C
∂x2

Initial Condition: C = M δ(x) at t = 0.

C(x, t) = M
Ayz 4πDt

exp(-(x - ut)2 4Dt) .

The concentration field described by (6) is depicted in the Figure 1.  An important feature
of this solution is that the argument of the exponential is zero at the center of mass, i.e. at
x = ut, and the maximum concentration, Cmax = M/ 4πDt , always occurs at the center of
the mass.  As seen previously, the length-scale of the diffusing cloud is set by σ = 2Dt .
Since the spatial position of the cloud, x, is coupled to its temporal evolution through the
steady advection, i.e. t = x/u, both Cmax and σ grow predictably downstream.  Specifically,
σ = 2Dx/u  and Cmax ~ x-1/2.
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Figure 1.  Evolution of concentration field after an instantaneous release of point-mass in a one-
dimensional system with steady advection, u, and diffusion, D.  Profiles in red, blue, and green
represent C(x,t), at t = t1, t2, and t3, respectively.  The peak concentration decays at t-1/2 and x-1/2, as
indicated by the dashed line.

Instantaneous, Point Release in Two and Three Dimensions:
That the argument of the exponential term is zero at the center of mass can be used to
quickly devise a solution for any system with multiple components of velocity,
anisotropic diffusion, and mass released at an arbitrary position (x0, y0, z0).  In this
system, the center of mass traces the trajectory (x = xo+ ut, y = y0 +vt, z = z0+wt).  The
concentration field follows from the solution for an instantaneous, point-mass release in a
stagnant system, derived in chapter 3, with the arguments of the exponential term
adjusted to zero along the above trajectory.

Instantaneous, Point Release in Two Dimensions
Lz = length-scale of neglected dimension

Transport Equation: ∂C
∂t
+ u ∂C

∂x
+ v ∂C

∂y
=Dx

∂2C
∂x2

+Dy
∂2C
∂y2

Initial Condition: C = M δ(x-x0) δ(y-y0) at t = 0.

C(x,y, t) = M
Lz  4πt DxDy

exp - (x - x0 - ut)2

4D xt
 -  (y -  y0 - vt)2

4D yt
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Instantaneous, Point Release in Three Dimensions

Transport equation: ∂C
∂t

+ u ∂C
∂x

+ v ∂C
∂y

+ w ∂C
∂z

= Dx
∂2C
∂x2  +Dy

∂ 2C
∂y2 +Dz

∂2C
∂z2

Initial Condition: C = M δ(x-x0) δ(y-y0) δ(z-z0) at t = 0.

C(x,y,z, t) = M
( 4π t )3/2 D xDyDz

exp - (x − x0 − ut)2

4Dx t
- (y − y0 − vt)2

4D yt
- (z − z0 −wt)2

4Dzt
 

 
 

 

 
 

Example Problem:  Mass, M, is injected at x = 0 cm, y = 50 cm, and t = 0 s into a two-
dimensional system with constant, uniform velocity, u = 1cms-1 and isotropic diffusivity,
D = 2 cm2s-1.  The center of mass follows the trajectory (x = ut, y = 50 cm).  The resulting
concentration field follows from the two-dimensional solution given above,

Concentration field: C(x,y, t) = M
Lz 4π Dt

exp - (x - ut)2 + (y − 50)2

4Dt
 

 
  

 
.

Here z is the neglected dimension with length-scale, LZ.  Concentration is measured at
three points in the system.  Probe A is located at xA = 100 cm, yA = 50 cm. Probe B is
located at xB = 250 cm, yB = 50 cm.  Probe C is located at xC = 250 cm, yC = 0 cm.

1. Estimate the time at which the peak concentration will be observed at each probe.
2. Estimate the physical length of the cloud at the time the peak arrives at each probe.
3. Estimate the duration of time that the cloud is observed at station.
4. Compare the maximum concentration observed at each probe by estimating the ratios

CAmax/CBmax and CBmax/CCmax.

Answer.
1. The peak concentration will be observed when the center of mass passes each probe.

The center of mass advects at u = 1 cms-1.  Thus, for Probe A, located at xA = 100 cm,
the peak concentration will arrive at tA = xA/u = 100cm/1cms-1 = 100 s.  The peak
concentration arrives at probes B (xB = 250 cm) and C (xC = 250 cm ) at tB = tC = 250 s.

2. The length-scale of the cloud is estimated as L ≈ 4σ (Ch. 3, eq. 14).   At probe A the
cloud will be LA ≈4σA = 4 2DtA = 4 2 × 2cm2s−1 ×100s =  80 cm.   At probes B and
C the cloud will be LB = LC ≈ 4σB = 4 2DtB = 4 2 × 2m2s−1 × 250s =126 cm

3. Assuming that the cloud does not grow in the time that it takes to pass the probe, we
estimate the duration the cloud is observed, ∆t, using the cloud length and the velocity.
At Probe A, ∆t = LA/u = 80 s.  At B and C, ∆t = LB/u = 126 s.   Remember that these
estimates define the cloud by a fixed fraction of total initial mass.  The actual duration
that the cloud is observed will also depend on the detection limit of the probe.
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4. The peak concentration at each probe location is readily found by evaluating the full
solution above at the position of each probe and the time of peak arrival.
Probe A: CA(x = 100 cm, y = 50cm, t = tA= 100s) = M/(LZ4πDtA)

 Probe B: CB(x = 250 cm, y = 50cm, t = tB= 250s) = M/(LZ4πDtB)
Probe C: CC(x = 250 cm, y = 0 cm, t = tB= 250s) = [M/(LZ4πDtC)] exp(-502/4Dt)
Thus, CAmax/CBmax = tB/tA=xB/xA= 2.5; and CCmax/CBmax = exp (-502/4DtC) = 0.29

Now view the animation on the chapter 5 homepage and confirm that the time- and
length-scales derived above are consistent with the full spatial evolution of the cloud, as
described by the above equation and depicted in the animation.  Note that each probe
records a Gaussian-shaped profile, including the probe positioned off-center, i.e. Probe C.
The peak concentration decays at Cmax ~ x-1 ~ t-1.

Spatial and Temporal Records of Concentration:
In practice there are two ways to observe a distribution of concentration.  First, one can
measure the concentration everywhere in the flow at the same time.  From this type of
observation one can recreate the full spatial concentration field.  While this is feasible in
a laboratory where spatial scales are small, it is nearly impossible in the field.  In the field
it is more common to sample at a single or limited number of fixed positions and record
the concentration at each position over time.  For the purpose of interpreting field data, it
is necessary to relate spatial and temporal observations.  Consider an instantaneous,
point-mass released in a one-dimensional system, for which the concentration field is
described by (6).  Figure 2a depicts the spatial distribution, C(x), at two points in time.
To directly measure C(x) requires many simultaneous measurements along the x-axis.
For comparison, consider observations made by two probes located at fixed positions, x1
and x2, which record continuously over time.  These records are shown in Figure 2b.

The curves in 2a and 2b represent the same cloud at different times and spatial
positions. First, note that on each set of curves (red and blue) B marks an identical
measurement at (x1, t1) and (x2, t2), respectively.  Second, the spatial distribution, C(x),
visually preserves the orientation of leading (C) and trailing (A) edge of the cloud.  In the
temporal distribution these are visually reversed, such that the leading edge (C) appears
to the left of the trailing edge (A), as the leading edge is encountered first.  Third, the
temporal record C(t) appears skewed to the right (positive time), but the spatial
distribution, C(x), is symmetric.  Specifically, in Figure 2a the length scale of the cloud
downstream of the peak, σ − , is identical to its length scale upstream of the peak, σ + .
In C(x), σ −  and σ +  have  dimensions of length.  In C(t), σ −  and σ +  have dimensions
of time, and σ +  is distinctly less than σ −  (Fig. 2b).  The skew in C(t) arises because the
cloud continues to grow, σ ~ t1/2,  even as it passes position x2, such that the trailing edge
of the cloud is longer as it passes x2 at t > t2 than the leading edge of the same cloud was
as it passed x2 at t < t2.  The distinction between an apparent skew, as seen here in C(t),
and a real skew in mass distribution recorded in C(x) is important because skewness in
C(x) indicates a non-Fickian diffusion processes.  If the spread of mass follows Fick’s
Law, the mass distribution will be symmetric.  Chapter 8 will introduce several
mechanisms that contribute to the spread of mass but which can be non-Fickian and can
produce skew in the mass distribution.
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Peclet Number
The Peclet Number is a dimensionless parameter that indicates the relative importance of
advection and diffusion to the transport of scalars in a given system.  If we describe the
advection and diffusion in terms of characteristic time scales, the Peclet number is the
ratio of these time scales.  The time scales are defined by dimensional constraints, i.e. the
only combination of length scale, L, and flow speed, U, that yields a unit of time is

Advection Time Scale = TU ~ L/U.

The only combination of length, L, and diffusion rate, D, that yields a unit of time is

Diffusion Time Scale = TD ~ L2/D.

The Peclet Number is then the ratio of these two scales.

Peclet Number, Pe = TD
TU

=
UL
D

.

When TU << TD transport by advection is faster than transport by diffusion, and we say
that the system is advection dominated.  This corresponds to Pe >> 1.  If Pe << 1,
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diffusion dominates.  The advection time scale TU is, in fact, more than just a dimensional
construction.  Physically, it is exactly the time required to travel distance L at speed U.
This is not true of the diffusion time scale TD.  To define a more exact diffusion time
scale, we must consider a specific model for the diffusion process.  If we assume Fickian
diffusion, then we can define the edge of the cloud as being 2σ from the center of mass.
Mass originating at x = 0 is estimated to reach x = L by diffusion when 2σ = 2 2Dt = L.
This occurs at T2σ = L2/8D.  Using this revised time scale, we estimate that transport by
diffusion will be faster than advection when T2σ << TU , or Pe = UL/D << 8.  Thus, we
refine the scaling estimate by applying a physical model for diffusion.  The refinement
indicates that for Pe >> 8 advection dominates and for Pe << 8 diffusion dominates.

Figure 3 compares the concentration records observed in three different systems with
Pe = 8000, 8, and 0.08.  The upper graph shows the spatial distribution of concentration
80 seconds after an instantaneous injection of mass at x = 0.  The lower graph shows the
temporal observation of concentration at the fixed point x = 80-cm.

Concentration at 80 seconds
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0 20 40 60 80 100
x [m]

Pe = 8000 Pe = 0.08 Pe = 8

     

Concentration at 80 cm

0.00
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1.00

0 40 80 120 160 200
t [sec]

Pe = 8000 Pe = 0.08 Pe = 8

U [cm s-1] D [cm2s-1] L [cm] TU = L/U [s] T2σ = L2/8D [s]
Pe = 8000 1 0.01 80 80 80,000
Pe = 8 0.5 5 80 160 160
Pe = 0.08 0.01 10 80 8000 80

Figure 3.  Concentration observed for Pe = 0.8, 8, 8000, normalized by the peak concentration in
each system at t = 80 seconds.  System characteristics are summarized in the table above.

Consider C(t) shown in the lower graph of Figure 3.  These curves show the arrival of
mass at x = L = 80 cm from the point of release.  When Pe = 8000, advection controls
transport, and mass arrives at the advection time scale, TU = 80 s.   When Pe = 0.08,
diffusion controls transport, and the mass arrives at the measurement station in the
diffusion time scale, T2σ = 80 s, rather than the advection time scale, TU = 8000 s.
Finally, for Pe = 8, the diffusion and advection time scales are identical, TU = T2σ = 160 s,
but neither is a good estimator of the arrival of mass.
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Scaling the Transport Equation
The Peclet number also emerges through scaling the governing equation.  For simplicity,
consider a one-dimensional system in x with mean velocity, U, and a constant diffusion
coefficient, D.  We consider the concentration observed over a test section of length L
observed for time scale to.  The governing transport equation for this system is

(7) ∂C
∂t

+ u ∂C
∂x

= D ∂
2C
∂x2

To determine what processes are most important, we compare the magnitudes of each
term.  To do this we must recast each variable into a dimensionless form of O(1).   For
example, we use the test section length, L, to scale the distance x, such that the
dimensionless distance x* = x/L will be O(1) within the test section.  Similarly we define
C* = C / Cmax; u* = u/U;  t*=t/tO.  We use the new variables to replace C, u, x, and t in
(7), and note that ∂x2 = ∂x∂x to find

(8) C
t o

∂C*

∂t* + UC
L

u* ∂C*

∂x* = DC
L2  ∂

2C*

∂x*2 .

We then divide each term by DC/L2 to arrive at the dimensionless equation

(9)  
L2 / D

t o

 ∂C*

∂t*
   + UL

D
 u* ∂C*

∂x*
=

∂2C*

∂x*2

     O(1) Pe     O(1) O(1)
.

unsteadiness             advection       diffusion

Since each starred variable is O(1) by construction, we can compare the unsteadiness, the
advection, and the diffusion terms simply by comparing the dimensionless prefactor of
each term.   For example, the diffusion term has no pre-factor, and so the magnitude of
this term is simply O(1).  The advection term has the pre-factor UL/D, which defines the
Peclet number.  If Pe >> 1, then the advection term is larger than the diffusion term,
which is O(1).  To first order then, the diffusion term can be neglected.  Similarly, if Pe
<< 1, the advection term can be neglected.   One can determine the scale of the unsteady
term by the magnitude of the prefactor, L2/Dto.  For example, if Pe << 1 [diffusion
dominates] and L2/Dto >> 1, then unsteadiness in concentration will be observed over the
time-scale of interest, tO.  If, L2/Dto << 1, then no unsteadiness in concentration will be
observed (to first order) over time to.


