Chapter 4 Genetics and Cellular Function

- Nucleus and nucleic acids
- Protein synthesis and secretion
- DNA replication and the cell cycle
- · Chromosomes and heredity

The Nucleic Acids (medical history)

Organization of the Chromatin

- · Threadlike chromatin
- Chromosomes compacted DNA
- How many human chromosomes?
 - Fruitflies?
 - Fruitfles?Butterflies?

Complementary Base Pairing Nitrogenous bases form hydrogen bonds Base pairs A-T and C-G Law of complementary base pairing one strand determines base sequence of other Complementary base pairing Gomplementary base pairing Hydrogen Hydrogen Segment of DNA

Chaperones and Protein Structure

- Newly forming protein molecules must coil, fold or join with another protein or nonprotein moiety
- · Chaperone proteins
 - prevent premature folding of molecule
 - assists in proper folding of new protein
 - may escort protein to destination in cell
- · Stress or heat-shock proteins
 - chaperones produced in response to heat or stress
 - help protein fold back into correct functional shapes

DNA Replication: Errors and Mutations

- · Error rates of DNA polymerase
 - in bacteria, 3 errors per 100,000 bases copied
 - every generation of cells would have 1,000 faulty proteins
- · Proofreading and error correction
 - a small polymerase proofreads each new DNA strand and makes corrections
 - results in only 1 error per 1,000,000,000 bases copied
- Mutations changes in DNA structure due to replication errors or environmental factors
 - some cause no effect, some kill cell, turn it cancerous or cause genetic defects in future generations

Mitosis: Prophase

- · Chromatin supercoils into chromosomes
 - each chromosome = 2 genetically identical sister chromatids joined at the centromere
 - each chromosomes contains a DNA molecule
- Nuclear envelope disintegrates
- Centrioles sprout microtubules pushing them apart towards each pole of the cell

· Chromosomes line up on equator

Centrioles

- Spindle fibers (microtubules) from centrioles attach to centromere
- Asters (microtubules) anchor centrioles to plasma membrane

Mitosis: Anaphase

- · Centromeres split in 2 and chromatids separate
- Daughter chromosomes move towards opposite poles of cells
- Centromeres move down spindle fibers by kinetochore protein (dynein)

Mitosis: Telophase

- Chromosomes uncoil forming chromatin
- Nuclear envelopes form
- · Mitotic spindle breaks down

Cytokinesis

- Division of cytoplasm / overlaps telophase
- Myosin pulls on microfilaments of actin in the membrane skeleton
- Causes crease around cell equator called cleavage furrow
- Cell pinches in two
- · Interphase has begun

Timing of Cell Division

Cells divide when:

- Have enough cytoplasm for 2 daughter cells
- DNA replicated
- Adequate supply of nutrients
- · Growth factor stimulation
- Open space in tissue due to neighboring cell death

Cells stop dividing when:

- · Loss of growth factors or nutrients
- · Contact inhibition

Chromosomes and Heredity

Multiple Alleles, Codominance, Incomplete Dominance

Alleles at the Population Level

- Dominance and recessiveness of allele do not determine frequency in a population
- Some recessive alleles, blood type O, are the most common
- Some dominant alleles, polydactyly and blood type AB, are rare

Cancer

- Tumors (neoplasms)
 - abnormal growth, when cells multiply faster than they die
 - oncology is the study of tumors
- Benign
 - connective tissue capsule, grow slowly, stays local
 - potentially lethal by compression of vital tissues
- Malignant
 - unencapsulated, fast growing, metastatic (causes 90% of cancer deaths)

Causes of Cancer

- Carcinogens estimates of 60 70% of cancers from environmental agents
 - chemical
 - cigarette tar, food preservatives
 - radiation
 - UV radiation, α particles, γ rays, β particles
 - viruses
 - type 2 herpes simplex uterus, hepatitis C liver

Mutagens

- · Trigger gene mutations
 - cell may die, be destroyed by immune system or produce a tumor

Defenses against mutagens

- · Scavenger cells
 - remove them before they cause genetic damage
- · Peroxisomes
 - neutralize nitrites, free radicals and oxidizing agents
- Nuclear enzymes
 - repair DNA
- Tumor necrosis factor (TNF) from macrophages and certain WBCs destroys tumors

Malignant Tumor (Cancer) Genes

- Oncogenes
 - mutated form of normal growth factor genes called proto-oncogenes
 - sis oncogene causes excessive production of growth factors
 - · stimulate neovascularization of tumor
 - ras oncogene codes for abnormal growth factor receptors
 - sends constant divide signal to cell
- Tumor suppressor genes
 - inhibit development of cancer
 - damage to one or both removes control of cell division

Effects of Malignancies

- Displaces normal tissue, organ function deteriorates
 - rapid cell growth of immature nonfunctional cells
 - metastatic cells have different tissue origin
- Block vital passageways
 - block air flow and compress or rupture blood vessels
- Diverts nutrients from healthy tissues
 - tumors have high metabolic rates
 - causes weakness, fatigue, emaciation, susceptibility to infection
 - cachexia is extreme wasting away of muscle and adipose tissue