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5 CHAPTER 5: TORSION 

5.1 Introduction 

If external loads act far away from the vertical plane of bending, the beam is subjected to 
twisting about its longitudinal axis, known as torsion, in addition to the shearing force and 
bending moment.  

Torsion on structural elements may be classified into two types; statically determinate, and 
statically indeterminate.  

In Figures 5.1.a through 5.1.e several examples of beams subjected to torsion are shown. In 
these figures, torsion results from either supporting a slab or a beam on one side only, or 
supporting loads that act far away transverse to the longitudinal axis of the beam. 

Shear stresses due to torsion create diagonal tension stresses that produce diagonal 
cracking. If the member is not adequately reinforced for torsion, a sudden brittle failure can 
occur.  

Since shear and moment usually develop simultaneously with torsion, a reasonable design 
should logically account for the interaction of these forces. However, variable cracking, the 
inelastic behavior of concrete, and the intricate state of stress created by the interaction of 
shear, moment, and torsion make an exact analysis unfeasible. The current torsion design 
approach assumes no interaction between flexure, shear and torsion. Reinforcement for 
each of these forces is designed separately and then combined. 
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Figure 5.1: Reinforced concrete members subjected to torsion: (a) 
spandrel beam; (b)&(c) loads act away from the vertical plane of 

bending; (d) curved beam; (e) circular beam 

5.2 Shear Stresses Due to Torsion 

In a rectangular solid section, assuming elastic behavior, the shearing stresses vary in 
magnitude from zero at the centroid to a maximum at midpoints of the long sides as shown 
in Figure 5.2. The maximum shear stress maxτ  is given as 

yx
T

2max α
τ =   (5.1) 
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where x  is the shorter side of the section, y is the longer side of the section, and α  is a 

constant in terms of  
x
y

 .  A close approximation to α   is 

x
y8.13

1

+
=α

  

(5.2) 

Uncracked concrete members behavior is neither perfectly 
elastic nor perfectly plastic. However, elastic-based 
formulas have been satisfactorily used to predict torsional 
behavior. 

Both solid and hollow members are considered as tubes. 
Experimental test results for solid and hollow beams with 
the same outside dimensions and identical areas of torsion 
reinforcement, shown in Figure 5.3, suggest that once 
torsional cracking has occurred, the concrete in the center 
of the member has a limited effect on the torsional strength 
of the cross section and thus can be ignored. In 1995, the 
ACI Code analyzed solid beams as hollow beams for which 
equations for evaluating shear stresses are easier to 
develop. 

 

 

 

 

 

 

Figure 5.2: Shear stresses 
in a rectangular section 
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Figure 5.3: Ultimate torsional strength of solid and hollow sections of 
the same size 

5.2.1 Principal Stresses Due to Pure Torsion 

When the beam shown in Figure 5.4.a is subjected to pure torsion, shearing stresses develop 
in the four faces as shown by the elements. The principal stresses on these elements are 
shown in Figure 5.4.b.  

The principal tensile strength is equal to the principal compressive stress and both are equal 
to the shearing stressτ . Ultimately, when the principal tensile strength exceeds the 
maximum tensile strength of the beam, cracking will occur spiraling around the outside 
surface of the beam as shown in Figure 5.4.c. 

In a reinforced concrete member, such a crack would cause brittle failure unless torsional 
reinforcement is provided to limit the growth of this crack. Closed stirrups and longitudinal 
bars in the corners of the section are usually used as torsional reinforcement. 
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(c) 

Figure 5.4: Principal stresses and cracking due to pure torsion: (a) shear 
stresses; (b) principal stresses; (c) crack 

5.2.2 Principal Stresses Due to Torsion, Shear, and Moment 

If a beam is subjected to torsion, shear, and bending, the two shearing stresses add on one 
side face and counteract each other on the opposite face, as shown in  Figure 5.5. Therefore, 
inclined cracks start at the face where the shear stresses add (crack AB) and extend across 
the extreme tension fiber. If the bending moment is large, the crack will extend almost 
vertically across the back face (crack CD). The compressive stresses at the bottom of the 
cantilever beam prevent the cracks from extending all the way down the full height of the 
front and back faces. 

(b) 

(a) 
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(c) 

Figure 5.5: Combined shear, torsion and moment: (a) shear stresses due 
to pure torsion; (b) shear stresses due to direct shear; (c) crack 

5.2.4 Torsion in Thin-walled Tubes 

Thin-walled tubes of any shape can be quite simply analyzed for the shear stresses caused 
by a torque applied to the tube. We will consider here an arbitrary cross-sectional shape 
subjected to pure torsion by torques T applied at the ends. Furthermore, all cross sections of 
the tube are assumed to be closed and have similar dimensions and the longitudinal axis is a 
straight line. 

The shear stresses τ  acting on the cross section are shown in Figure 5.6, which shows an 
element of the tube cut out between two cross sections at distance dx . The intensity of the 
shear stresses varies across the thickness of the tube. Since the tube is thin, we may assume 
τ  to be constant across the thickness of the tube. 

From equilibrium of forces in the x-direction, 

(b) 

(a) 



 7 

cFbF =   (5.3) 

Where  

dxbtbbF τ=   (5.4) 

and 

dxctccF τ=   (5.5) 

Where bt  and ct  is tube thickness at points b and c, respectively. 

Equating Eq. (5.4) and (5.5) gives 

dxctcdxbtb ττ =  or, 

ctcbtb ττ =   (5.6) 

Therefore, the product of the shear stress τ  and the thickness of the tube t  is constant at 
every point in the cross section. This product is known as the shear flow and denoted by the 
letter q , and Eq. (5.6) can be written as 

constant== tq τ   (5.7) 

The largest shear stress occurs where the thickness of the tube is smallest, and vice versa. 
When the thickness is constant, the shear stress is also constant. 

To relate the shear flow q  to the torque T , consider an element of area of length ds , where 

ds  is measured along the centerline of the cross section. The total shear force acting on this 
element of is dsq , and the moment of this force about any point “O” is  dsqrdT = , 

where r  is the perpendicular distance from point “O” to the line of action of  the force. 

The torque produced by shear is obtained by integrating along the entire length of centerline 
of the cross section, given by 

∫= dsrqT   (5.8) 
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Figure 5.6: Shear stresses in a thin-walled tube 

The quantity dsr  represents twice the area of the shade triangle shown in Figure 5.6.e. 

Therefore, the integral ∫ dsr  represents double the area oA  enclosed by the centerline of 

the cross section, or 

oAdsr 2=∫   (5.9) 

Substituting Eq. (5.9) into Eq. (5.8) gives 

oAqT 2=   (5.10) 

Using Eq. (5.7) and (5.10), one gets 

(a) 

(c) (b) 

(e) (d) 
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t
A

Tq τ==
o2

  (5.11) 

From Eq. (5.11) the shear stress τ  is given by 

tA
T

o2
=τ   (5.12) 

Eq. (5.11) and (5.12) apply to any shape in the elastic range. In the inelastic range Eq. 
(5.12) applies only if the thickness  t  is constant. 

5.3 Current ACI Code Design Philosophy 

The current design procedure for torsion is based on the following assumptions: 

§ Concrete strength in torsion is neglected. 

§ Torsion has no effect on shear strength of concrete. 

§ Torsion stress determination is based on thin-walled tube, space truss analogy. Both 
solid and hollow members are considered as tubes before and after cracking, and 
resistance is assumed to be provided by the outer part of the cross section centered 
around the stirrups. 

§ No interaction exists between moment, shear, and torsion. Reinforcement for each of 
the three forces is calculated separately and then combined. 

The basic design equation for torsion is 

nu TT Φ=   (5.13) 

Where uT  is the factored torque, nT  is the nominal torsional capacity, and Φ  is the strength 

reduction factor for torsion, taken as 0.75. 

5.4 Limit on Consideration of Torsion 

In pure torsion, the principal tensile stress 1σ , shown in Figure 5.7, is equal to the shear 

stress τ  at a given location. From Eq. (5.12) for a thin-walled tube, 

tA
T

o21 == τσ   (5.14) 
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Where t is the wall thickness at a point where the shear stress τ  is being computed and oA  

is the area enclosed by the centerlines of the wall thicknesses. 

 

Figure 5.7: Principal stresses due to pure torsion 

It is noteworthy that Eq. (5.14) is derived exclusively for hollow sections. To apply this to 
solid uncracked sections, the actual section is replaced by an equivalent thin-walled tube 
with a wall thickness t  prior to cracking of cpcp pA 4/3 , and an area enclosed by the wall 

centerline oA  equals 3/2 cpA , where cpp  is the perimeter of the concrete section and cpA  

is the area enclosed by this perimeter. Substituting these into Eq. (5.14) gives 



















==

cp

cpcp

p
AA

T

4
3

3
2

2
1 τσ  

and  

( ) 21
cp

cp

A

pT
== τσ   (5.15) 

Torsional cracking is assumed to occur when the principal tensile stress 1σ  reaches the 

tensile strength of concrete in biaxial tension-compression, taken as cf ′06.1 , since the 

tensile strength under biaxial tension is less than that under uniaxial tension. Substituting 
this in Eq. (5.15), gives the cracking torque crT  as  

( )
cp

cp
2

ccr p
A

'f06.1T =   (5.16) 

The ACI Code requires that torsion be considered in design if uT  exceeds crT25.0  given by 
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( )
cp

cp
2

cu p
A

'f27.0T λφ≥   (5.17) 

Torques that do not exceed approximately one-quarter of the cracking torque crT  will not 

cause a structurally significant reduction in either flexural or shear strength and can be 
ignored. 

For an isolated member with or without flanges, cpA  is the area of the entire cross section 

including the area of voids in hollow cross sections, and cpp  is the perimeter of the entire 

cross section as shown in Figure 5.8. For a T-beam cast monolithically with a slab, cpA  and 

cpp  can include portions of the adjacent slab conforming to the following: 

For monolithic construction, a beam includes that portion of slab on each side of the beam 
extending a distance equal to the projection of the beam above or below the slab, whichever 
is greater, but not greater than four times the slab thickness. (See Figure 5.9) 

 
                              (a)                                              (b) 

Figure 5.8: Definition of  Acp : (a) thin walled tube; 
(b) area enclosed by shear flow path 

 
Figure 5.9: L and T beams in monolithic construction 
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5.5 Ensuring Ductile Mode of Failure 

The size of the cross section is limited for two reasons, first, to reduce unpleasant cracking 
and second to prevent crushing of the concrete due to principal compressive stresses 
resulting out of shear and torsion. 

For solid sections, ACI Code 11.5.3.1 requires that the following equation be satisfied 
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'f2

db
V

A7.1
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V

c
w
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2

oh
2
hu

2

w

u φ   (5.18) 

For hollow sections, ACI Code 11.5.3.1 requires that 
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A7.1
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oh
2
hu

w

u φ   (5.19) 

where:  

uT  = factored torsional moment at section 

uV  = factored shear force at section 

wb  = web width 

d  = effective depth 

hp  = perimeter of centerline of outermost closed transverse torsional reinforcement 

hoA  = area enclosed by centerline of outermost closed transverse torsional reinforcement 

ACI 11.5.3.2 requires that if the wall thickness varies around the perimeter of a hollow 
section, Eq. (5.19) be evaluated at the location where the left-hand side of this equation is a 
maximum. 

Furthermore, if the wall thickness is less than 
h

oh
p
A , ACI Code 11.5.3.3 requires that the 

second term in Eq. (5.19) be taken as 







tA70.1

T

oh

u , where t  is the thickness of the wall of 

the hollow section at the location where the stresses are being checked. 
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5.6 Critical Section for Torsion 

According to ACI Code 11.5.2.4, sections located less than a distance d from the face of a 
support are designed for not less than the factored torque computed at a distance d. If a 
concentrated torque occurs within this distance, the critical section for design must be taken 
at the face of the support. A concentrated torque occurs when a cross beam frames into one 
side of a girder near the support of the girder. 

5.7 Torsional Reinforcement 

Both longitudinal and transverse reinforcement are required to resist diagonal tension 
stresses due to torsion. The stirrups must be closed, since torsion cracks can spiral around 
the beam. ACI Code 11.5.4.1 requires the use of longitudinal reinforcing bars in addition to 
closed stirrups, perpendicular to the axis of the member or spiral reinforcement. 

5.7.4 Transverse Reinforcement 

A beam subjected to pure torsion can be modeled as a hollow-tube space truss consisting of 
closed stirrups, longitudinal bars in the corners, and diagonal concrete compression 
members which spiral around the beam between cracks. The height and width of the truss 

are oy  and ox , measured between the centers of the corner bars. The angle of the crack is 

θ  , generally taken as °45  for reinforced concrete. 

The shear flow q , is given by 

t
A

Tq τ==
o2

  (5.11) 

The total shear force due to torsion along each of the two vertical sides of the truss shown 

in Figure 5.10.a is equal to the product of the shear flow q  and the distance oy  between the 

centerlines of these two sides 
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Figure 5.10: Torsional reinforcement: (a) Space truss analogy; (b) forces 
in stirrups; (c) resolution of shear force V2 

 

oyqVV == 42   (5.20) 

Substituting Eq. (5.11) into Eq. (5.20) gives 

o

o

A
yTVV

242 ==   (5.21) 

Similarly, the shear force due to torsion along each of the two horizontal sides is given as  

o

o

A
xTVV

231 ==   (5.22) 

 

(a) 

(b) 

(c) 
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The top crack in Figure 5.10.b intersects a number of stirrups n, where 

S
y

n
θcoto=   (5.23) 

where S  is the spacing of the stirrups. 

The force in each stirrup at ultimate torque, assuming yielding of all stirrups is equal to 

ytt fA , where tA  is the area of one leg of a closed stirrup resisting torsion within a distance 

S , and ytf  is the yield stress of the transverse reinforcement. 

From equilibrium of forces in the vertical direction 

ytt2 fAnV =   (5.24) 

Substituting Eq. (5.23) into Eq. (4.24) gives 

S
fAcoty

V ytt
2

θo=   (5.25) 

Equating Eq. (5.25) and (5.21) results in  

S
fAcoty

A2
yT ytt

o

n θoo =  

where nT  is the nominal torsion capacity, or 

θcotfA2
T

S
A

yto

nt =   (5.26) 

Where θ  may be taken any angle between o30  and o60 . ACI Code 11.5.3.6 permits θ  to 

be taken as o45  and the area oA  to be taken as ohA85.0 , where ohA  is the area enclosed 

by the centerline of outermost closed stirrups. 

5.7.5 Longitudinal Reinforcement 

The force 2V  in Figure 5.10.c can be resolved into a diagonal compression force, 2D , 

parallel to the concrete struts and an axial tension force, 2N , where 2D  and 2N  are given 

by 

θcot22 VN =   (5.27) 
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Similarly, on the top and bottom faces 

θcot11 VN =   (5.28) 

The total longitudinal force is 

( )212 NNN +=   (5.29) 

Substituting Eq. (5.27) and (5.28) into Eq. (5.29) gives 

( )θθ cotcot2 12 VVN +=   (5.30) 

Substituting Eq. (5.21) and (5.22) into Eq. (5.30) gives 

θcot
22

2 







+=

o

o

o

o

A
xT

A
yT

N  

or, 

( )[ ] θcot2
2 oo

o

yx
A

T
N n +=   (5.31) 

The force in the corner bars at ultimate strength is given as 

yl fAN =   (5.32) 

where lA  is total area of longitudinal torsion reinforcement, and yf  is yield stress of 

longitudinal torsion reinforcement. 

But ( )oo yx +2 = hp  ≅  perimeter of the closed stirrup. Using this and equating Eq. (5.31) 

and (5.32) gives 

yo

hn
l fA2

cotpTA θ
=   (5.33) 

Substituting Eq. (5.26) into Eq. (5.33) gives 

θ2

y

yt
h

t
l cot

f
f

p
S
AA 
















=   (5.34) 
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5.7.6 Minimum Amount of Torsion Reinforcement 

5.7.6.1 Longitudinal Reinforcement 
To ensure that concrete beams will fail in a ductile manner, ACI Code 11.5.5.3 requires that 
the minimum area of longitudinal steel should not be less than  

y

yt
h

t

y

cpc
min,l f

f
p

S
A

f
A'f33.1

A 





−=   (5.35) 

where 
yt

wt
f
b175.0

S
A

≥  

5.7.6.2 Transverse Reinforcement 
ACI Code 11.5.5.2 specifies that where torsion reinforcement is required, the minimum area 
of transverse closed stirrups for combined action of shear and torsion is computed by:  

( )
yt

w

yt

wc
tv f

Sb5.3
f

Sb'f2.0
A2A ≥=+   (5.36) 

where vA  is the area of two legs of a closed stirrup while tA  is the area of one leg of a 

closed stirrup. 

5.7.7 Details of Torsion Reinforcement 

5.7.7.1 Transverse Reinforcement 
When a rectangular beam fails in torsion, the corners of the beam tend to spall off due to 
the compressive stresses in the concrete diagonals of the space truss. In tests, closed stirrups 
anchored by 90-degree hooks failed when this occurred. For this reason, 135-degree hooks 
are preferable for torsional stirrups in all cases. In regions where this spalling is prevented 
by an adjacent slab or flange, ACI Code 11.5.4.2 relaxes this and allows 90 degree hooks, 
as shown in Figure 5.11. 
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Figure 5.11: Spalling of corners of beams loaded in torsion 

ACI Code 11.5.4.4 requires that for hollow sections in torsion, the distance between the 
centerline of the closed stirrups to the inside face of the wall of the hollow section should not 

be less than 
h

h

p
A
2

o . 

5.7.7.2 Longitudinal Reinforcement 
ACI Code 11.5.4.3 requires that longitudinal torsion reinforcement be developed at both 
ends. If high torsion acts near the end of a beam, the longitudinal torsion reinforcement 
should be adequately anchored. Sufficient development length should be provided outside 
the inner face of the support to develop the needed tension force in the bars. This may 
require hooks or horizontal U-shaped bars lapped with the longitudinal torsion 
reinforcement. 

ACI Code 11.5.6.3 requires that torsion reinforcement be provided for a distance of at least 

( )dbt +  beyond the point theoretically required for torsional reinforcement, where tb  is 

width of that part of cross section containing the closed stirrups, and d is the effective depth 
of section. This requirement is dictated because torsional cracks develop in a spiral form.  

5.7.8 Spacing of Torsion Reinforcement 

5.7.8.1 Transverse Reinforcement 
According to ACI Code 11.5.6.1, the spacing of transverse torsion reinforcement center-to-

center is not to exceed the smaller of  
8

hp
 or 30 cm. The spacing of the stirrup is limited to 

ensure the development of the ultimate torsional strength of the beam and to control crack 
widths.  

(b) (a) 
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5.7.8.2 Longitudinal Reinforcement 
ACI Code 11.5.6.2 requires that longitudinal torsion reinforcement be distributed around the 
perimeter of closed stirrups with a maximum spacing of 30 cm. One bar must be positioned 
in each corner of the stirrups to provide anchorage for the legs of the stirrups. The least 
longitudinal bar diameter to be used is the larger of 0.042 times the stirrup spacing, or 10 
mm. See Figure 5.12 for reinforcement detail. 

 
Figure 5.12: Longitudinal reinforcement for flexure and torsion 

5.8 Equilibrium and Compatibility Torsion 

In designing for torsion in reinforced concrete structures, two cases may be identified: 

5.8.1 Equilibrium Torsion 

The torsional moment cannot be reduced by redistribution of internal forces. This is 
referred to as equilibrium torsion since the torsional moment is required to keep the 
structure in equilibrium. 

According to ACI Code 11.5.2.1, if the factored torsional moment uT  in a member is 

required to maintain equilibrium and exceed the minimum value given by Eq. (5.16), the 
member is to be designed to carry that torsional moment. An example for equilibrium 
torsion is shown in Figure 5.13.a. 

5.8.2 Compatibility Torsion 

The torsional moment can be reduced by redistribution of internal forces after cracking if 
the torsion arises from the member twisting to maintain compatibility of deformations. This 
type of torsion is referred to as compatibility torsion, an example of which is shown in 
Figure 5.13.b. 
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According to ACI Code 11.5.2.2, for statically indeterminate structures where reduction of 
the torsional moment in a member can occur due to redistribution of internal forces upon 
cracking, the maximum factored torsional moment uT  is permitted to be reduced to 

( )
cp

cp
2

c
p

A'fλφ
. 

 
(b) 

Figure 5.13: Equilibrium vs. compatibility torsion: (a) design torque 
may not be reduced; (b) design torque may be reduced 

5.9 Summary of Design Procedure for Members Subjected to Bending 

Moment, Shear and Torsion 

1. Draw the shear force, bending moment and torque diagrams. 

2. Select cross-sectional dimensions b  and h  based on factored bending moment, and 
determine the required area of reinforcement. 

3. Check if torsion may be neglected. Torsion may be neglected if 

( )
cp

cp
2

cu p
A

'f27.0T λφ≤   (5.17 ) 

(a) 
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If this is the case, proceed on with shear design as done in Chapter 4, and choose flexural 
and shear reinforcement. 

If ( )
cp

cp
2

cu p
A

'f27.0T λφ> , torsion must be considered as shown in the following steps. 

The critical section for torsion is located at distance d  from the face of the support if no 
torques are applied within this distance. If torques are applied within distance d  from face 
of support, critical torsion is located at face of the support. 

4. Check the adequacy of the size of the cross section in terms of preventing brittle 
mode of failure resulting from diagonal compressive stresses due to shear and 
torsion combined. 

For a solid cross section to be adequate, 
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'f2
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2
hu

2

w

u φ   (5.18) 

For a hollow cross section to be adequate, 
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'f2

db
V

A7.1
pT

db
V

c
w

c

oh
2
hu

w

u φ   (5.19) 

If Eq. (5.18) or (5.19) is not satisfied, cross sectional dimensions need to be increased. 

5. Determine the area of stirrups required for shear. To facilitate the addition of 
stirrups for shear and torsion, the area of shear reinforcement is expressed in terms 

of 
S
Av , 

df
V

S
A

yt

sv =   ( 4.15 ) 

If db'f2.2V wcs > , the cross section needs to be enlarged. Also, determine maximum 

stirrup spacing based on shear.  
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If dbfV wcs ′≤ , maximum stirrup spacing maxS  should not exceed the smaller of 
2
d  or 

60 cm. If db'fVdb'f2.2 wcswc >> , maximum stirrup spacing is limited to the 

smaller of 
4
d or 30 cm. 

6. Determine the required area of stirrups for torsion in terms of  
S
At . 

Since nu TT Φ= , Eq. (5.26) when θ  is taken as °45  can be written as  

yt

nt
fA2

T
S
A

o
=    

Besides, compute maximum stirrup spacing based on torsion. Maximum stirrup spacing is 
limited to the smaller of 8/hp  or 30 cm. 

7. Determine combined area of stirrups required for shear and torsion. 
S
At  is expressed 

in terms of 
S
Av .  

For two-legged closed stirrups, 







+






=








S
A

S
A

S
A tv

T

v 2  

where 
T

v

S
A







  should be equal or larger than 

yt

w

yt

wc
f

Sb5.3
f

Sb'f2.0
≥ . 

8. Select stirrup size, and compute stirrup spacing based on the amount determined in 
step 7. Maximum stirrup spacing must not exceed the smaller of the two values 
evaluated in steps 5 and 6. 

9. Calculate the longitudinal reinforcement required for torsion. 

θ2

y

yt
h

t
l cot

f
f

p
S
AA 
















=   ( 5.34 ) 

If yyt ff = , and θ  is taken as °45 ,  h
t

l p
S
A

A 





=  
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The longitudinal reinforcement lA  is not to be less than the value given by 

y

yt
h

t

y

cpc
min,l f

f
p

S
A

f
A'f33.1

A 





−=   (5.35) 

where 
yt

wt
f
b175.0

S
A

≥  

10. Size combined longitudinal reinforcement. The longitudinal reinforcement is to be 
uniformly distributed around the perimeter of the cross section, and must have a 
diameter not less than 0.042 of stirrup spacing or 10 mm, whichever is larger. 

Flexural reinforcement determined in step 2 is to be added to the longitudinal 
reinforcement required for torsion at the flexural steel level, and the reinforcement 
is chosen at the tension side of the section. Also, the reinforcement is chosen at the 
compression side of the section. If the vertical distance, center-to-center, between 
the top and bottom reinforcement exceeds 30 cm, middle layers are added until the 
spacing is satisfied. 

11. Torsion reinforcement must be extended at least )( dbt +  beyond the point where no 

torsion reinforcement is required. 

12. Draw neat sketches showing reinforcement details. 

Example (5.1): 

 

For the cross section shown in Figure 
5.14.a, design the torsional reinforcement, 
if required, given that: 

mtTu .4= , tonsVu 0.16= , 
2/250 cmkgfc =′ , 

and ./4200 2cmkgfy =  

Figure 5.14.a: cross section 

Solution: 
1- Draw the shear force, bending moment, and torque diagrams. 
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The section is already designed for bending moment. The magnitudes of shear force and 
torsion are given. 

2- Select cross sectional dimensions and determine area of flexural reinforcement. 

Cross sectional dimensions in addition to flexural reinforcement are given. 

3- Check if torsion may be neglected. 

Torsion may be neglected if uT  is smaller than 

( )
cp

cp
2

cu p
A

'f27.0T λφ≤  = 
( )

m.t0.4m.t922.0
10200

)2400(25027.075.0
5

2
<=

×

×  

Thus, torsion reinforcement must be considered. 

4- Check for probability of brittle failure of concrete. 

The dimensions of the cross section are adequate to prevent a brittle mode of failure if the 
following equation is satisfied  
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Assuming that φ 8 mm stirrups are used, 
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i.e. cross sectional dimensions are adequate for resisting brittle failure. 
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5- Determine the required area of stirrup reinforcement for shear. 

dbfV wcc ′= 53.0  

c
u

s V
V

V −
Φ

=  

( ) ( ) tons165.3
1000

20.544025053.0
75.0
0.16Vs =−=  

( )
( ) cm/cm0139.0

2.544200
1000165.3

df
V

S
A 2

yt

sv ===  

Since dbfV wcs ′≤ , maximum stirrup spacing maxS  should not exceed the smaller of 

cmd 10.27
2
20.54

2
==  or 60 cm, thus maxS  is not to exceed 27 cm. 

6- Determine the required area of stirrup reinforcement for torsion. 

The torsional stirrup reinforcement per unit length 
S
At , is given by 

( )o
o 45cotAf2
T

S
A

2
ty

ut
Φ

= ( ) ( ) ( ) cm/cm047.0
44.159785.0420075.02

100.4 2
5

=
×

×
=  

maxS  is the smaller of 8/hp  or 30 cm, where 8/hp  = 164.80/8 = 20.60 cm, thus maxS  is not 

to exceed 20 cm. 

7- Determine the combined area of stirrup reinforcement for shear and torsion. 

( ) cm/cm1079.0047.020139.0
S
A 2

total

v =+=





  

( ) O.Kcm1079.0cm/cm033.0
4200

405.3
f

b5.3 22

yt

w <==  

8- Select stirrup size and spacing. 

Try 8φ  mm closed stirrups 

( ) 1079.0
S
50.02

=  and S = 9.26 cm. 
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Try 10φ  mm closed stirrups 

( ) 1079.0
S
785.02

=  and S = 14.55 cm. 

Therefore, maximum stirrup spacing based on shear and torsion combined is 20 cm, which 
is larger than 14 cm. Use two-legged, φ 10 mm closed stirrups spaced at 14.0 cm. 

9- Calculate the longitudinal reinforcement required for torsion. 

Since yyt ff =  and for °= 45θ , 

( ) ( ) 2
h

t
l cm75.780.164047.0p

S
A

A ==





=  

The longitudinal reinforcement is not to be less than the value given by the following 
equation 

y

yt
h

t

y

cpc
min,l f

f
p

S
A

f
A'f33.1

A 





−=  

where ( )
vy

wt

f
b

S
A 175.0

≥  

( ) ( ) O.K00167.0
4200

40175.0
f

b175.0

yt

w ==  

( )( ) .K.Ocm27.475.7
4200

604025033.1A 2
min,l =−=   

10- Size combined longitudinal reinforcement. 

Distance between the centerlines of tension and compression reinforcement exceeds 30 cm, 
so a middle layer of longitudinal reinforcement is needed. 

2l cm58.2
3
75.7

3
A

==  

Minimum bar diameter is ( )140042.0S042.0 = mm88.5=  or 10 mm, whichever is larger, 

and 10 mm is the least diameter to be used. 
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Figure 5.14.b: Designed cross section 

Total area of top reinforcement = 2.26 + 2.58 = 4.84 cm2, use 5 φ 12 mm. 

Area of bottom reinforcement = 2.58 + 15.71 = 18.29 cm2, use 5 φ 22 mm. 

Area of middle reinforcement = 2.58 cm2, use 2 φ 14 mm. 

11- Develop torsional reinforcement. 

Torsion reinforcement must be extended at least ( ) cm0.952.5440 ≅+  beyond the section 

where no torsion reinforcement is required. 

12- Draw neat sketches showing reinforcement details. 

Figure 5.14.b shows cross sectional dimensions and reinforcement details. 

Example (5.2): 
The cantilever beam shown in Figure 5.15.a supports a factored concentrated load of 8 tons 
applied at point C. Neglecting own weights of members AB and BC, design member AB for 
moment, shear, and torsion. 

Use 2/300 cmkgfc =′ , and 2/4200 cmkgfy = . 
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Figure 5.15.a: Beam and loads 

Solution: 
1- Draw the shear force, bending moment, and torque diagrams. 

These diagrams are shown in Figure 5.15.b. 

 
Figure 5.15.b: Shear force and bending moment diagrams 

m.t32M maxu = , tons8V maxu = , and m.t8T maxu = . 

2- Select cross sectional dimensions and determine area of flexural reinforcement. 

Minimum depth of member AB based on deflection requirement is equal to 

cml 50
8

400
8

== . Use a 40 × 60 cm cross section. 
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cmd 20.540.180.0460 =−−−= , assuming φ 20 mm reinforcing bars, and φ 8 mm 

stirrups. 

The reinforcement ratio at section of maximum factored moment is given by 

( ) ( ) ( )
( )( ) ( )

00769.0
3002.54409.0

3210353.211
4200

30085.0
2

5
=














−−=  

( ) ( ) 2
s cm67.1620.544000769.0A ==  

3- Check if torsion may be neglected. 

Torsion may be neglected if uT  is smaller than 

( )
cp

cp
2

cu p
A

'f27.0T λφ≤ = 
( ) ( )
( )( ) u5

2
Tm.t01.1

1060402
240030075.027.0

<=
+

 

Therefore, torsion must be considered. 

4- Check for probability of brittle failure of concrete. 

The dimensions of the cross section are adequate to insure a ductile mode of failure if this 
condition is satisfied 
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i.e. cross sectional dimensions are adequate in terms of ensuring ductile failure. 

5- Determine the required area of stirrup reinforcement for shear. 

dbfV wcc ′= 53.0  

c
u

s V
V

V −
Φ

=  

( ) ( ) tons24.9
1000

20.544030053.0
75.0
0.8Vs −=−=  

This means that shear reinforcement is not required, and 0.0=
S
Av . 

6- Determine the required area of stirrup reinforcement for torsion. 

The torsional stirrup reinforcement per unit length 
S
At , is given as 

( ) ==
o45cotAf2

T
S
A

oty

ut
Φ ( )( )( ) cm/cm0935.0

44.159785.0420075.02
100.8 2

5
=

×
×  

maxS  is the smaller of 8/hp  or 30 cm, where 8/hp  = 164.80/8 = 20.60 cm, thus maxS  is 

not to exceed 20 cm. 

7- Determine the combined area of stirrup reinforcement for shear and torsion. 

( ) cm/cm187.0035.0.020.0
S
A 2

total

v =+=





  

( ) O.Kcm187.0cm/cm033.0
4200

405.3
f

b5.3 22

yt

w <==  

8- Select stirrup size and spacing. 

Try φ 10 mm closed stirrups 

( ) 187.0
S
785.02

=  and  S = 8.40 cm. This spacing is rather small, so try φ 12 mm closed 

stirrups,  
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( ) 187.0
S
13.12

=  and  S = 12.09 cm. 

Use φ 12 mm closed stirrups spaced at 12.0 cm. 

9- Calculate the longitudinal reinforcement required for torsion. 

Since yyt ff =  and for °= 45θ , 

( ) ( ) 2
h

t
l cm41.1580.1640935.0p

S
A

A ==






=  

The longitudinal reinforcement is not to be less than the value given by the following 
equation 

y

yt
h

t

y
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min,l f

f
p

S
A

f
A'f33.1
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where ( )
vy

wt

f
b

S
A 175.0

≥  

( ) ( ) O.K00167.0
4200

40175.0
f

b175.0

yt

w ==  

( )( ) 2
min,l cm35.241.15

4200
604030033.1A −=−=  (not applicable) 

10- Size combined longitudinal reinforcement. 

Distance between centerlines of tension and compression reinforcement exceeds 30 cm, so 
a middle layer of longitudinal reinforcement is needed. 

2l cm14.5
3
41.15

3
A

==  

Minimum bar diameter is ( ) mm04.5120042.0S042.0 ==  or 10 mm, whichever is larger, 

and 10 mm is the least diameter to be used. 

Total area of top reinforcement = 16.67 + 5.614 = 21.81 cm2, use  5 φ 25 mm. 

Area of bottom reinforcement = 5.14 cm2, use 4 φ 14 mm. 

Area of middle reinforcement = 5.14 cm2, use 4 φ 14 mm. 
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11- Develop torsional reinforcement. 

Torsional reinforcement is needed for the entire length of part AB, since the torque is 
constant in magnitude. 

12- Draw neat sketches showing reinforcement details. 

Figure 5.15.c shows cross sectional dimensions and designed reinforcement. 

 
Figure 5.15.c: Designed cross section 

5.10 Problems 

P5.11.1 A cantilever beam 3.0 m long and 40 cm wide, shown in Figure P5.11.1 supports its 
own weight plus a concentrated service load located 0.50 m from the end of the beam and 
0.50 m away from the vertical axis of the beam. The concentrated load consists of 7.0 ton 
dead load and 8.0 ton live load. Design the reinforcement for flexure, shear, and torsion. 

Use 2/300 cmkgfc =′  and 2
yyt cm/kg4200ff == . 

 
Figure P5.11.1 
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P5.11.2 A shear force tonsVu 20=  and a torque mtTu .0.8=  act on the cross section of 

the box-beam in Figure P 5.11.2. Determine the spacing of the stirrups and the area of 
longitudinal steel required to carry the given shear and torsion. 

Use 2/280 cmkgfc =′  and 2
yyt cm/kg4200ff == . 

 
Figure P5.11.2 

 


