CHAPTER 5: TORSION

5.1 Introduction

If external loads act far away from the vertical plane of bending, the beam is subjected to
twisting about its longitudinal axis, known as torsion, in addition to the shearing force and
bending moment.

Torsion on structural elements may be classified into two types; statically determinate, and
statically indeterminate.

In Figures 5.1.a through 5.1.e several examples of beams subjected to torsion are shown. In
these figures, torsion results from either supporting a dlab or a beam on one side only, or
supporting loads that act far away transverse to the longitudinal axis of the beam.

Shear stresses due to torsion create diagonal tension stresses that produce diagonal
cracking. If the member is not adequately reinforced for torsion, a sudden brittle failure can
occur.

Since shear and moment usually develop simultaneously with torsion, a reasonable design
should logically account for the interaction of these forces. However, variable cracking, the
inelastic behavior of concrete, and the intricate state of stress created by the interaction of
shear, moment, and torsion make an exact analysis unfeasible. The current torsion design
approach assumes no interaction between flexure, shear and torsion. Reinforcement for
each of these forcesis designed separately and then combined.



b
A/_ Z ) ) A )
) Spandrel ) r7 L
beam !
ZZ@T » (@ ) ”
M=T
A B~
§ -
\ o
(0)

N

Figure 5.1: Reinforced concrete members subjected to torsion: (a)
spandrel beam; (b)& (c) loads act away from the vertical plane of
bending; (d) curved beam; (e) circular beam

5.2 Shear Stresses Dueto Torsion

In a rectangular solid section, assuming elastic behavior, the shearing stresses vary in
magnitude from zero at the centroid to a maximum at midpoints of the long sides as shown
in Figure 5.2. The maximum shear stresst . isgiven as

ax

t = (5.1)
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where x is the shorter side of the section, y is the longer side of the section, and a isa

constant in terms of Yy A close approximationto a is
X

a=-— - (5.2
34 18y

X

Uncracked concrete members behavior is neither perfectly
elastic nor perfectly plastic. However, elastic-based

formulas have been satisfactorily used to predict torsiona //\
behavior. N
Both solid and hollow members are considered as tubes.
Experimental test results for solid and hollow beams with M e
the same outside dimensions and identical areas of torsion y
reinforcement, shown in Figure 5.3, suggest that once
torsional cracking has occurred, the concrete in the center

of the member has a limited effect on the torsiona strength A
of the cross section and thus can be ignored. In 1995, the
ACI Code analyzed solid beams as hollow beams for which

equations for evauating shear stresses are easer to
develop.
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Figure 5.2: Shear stresses
in arectangular section
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Figure 5.3: Ultimate torsional strength of solid and hollow sections of
the same size

5.2.1 Principal StressesDueto Pure Torsion

When the beam shown in Figure 5.4.ais subjected to pure torsion, shearing stresses develop
in the four faces as shown by the elements. The principal stresses on these elements are
shown in Figure 5.4.b.

The principal tensile strength is equal to the principal compressive stress and both are equal
to the shearing stresst . Ultimately, when the principal tensile strength exceeds the
maximum tensile strength of the beam, cracking will occur spiraling around the outside
surface of the beam as shown in Figure 5.4.c.

In a reinforced concrete member, such a crack would cause brittle failure unless torsional
reinforcement is provided to limit the growth of this crack. Closed stirrups and longitudinal
barsin the corners of the section are usually used as torsional reinforcement.
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Figure 5.4: Principal stresses and cracking due to puretorsion: (a) shear
stresses; (b) principal stresses; (c) crack
5.2.2 Principal StressesDueto Torsion, Shear, and M oment

If a beam is subjected to torsion, shear, and bending, the two shearing stresses add on one
side face and counteract each other on the opposite face, as shown in Figure 5.5. Therefore,
inclined cracks start at the face where the shear stresses add (crack AB) and extend across
the extreme tension fiber. If the bending moment is large, the crack will extend almost
vertically across the back face (crack CD). The compressive stresses at the bottom of the
cantilever beam prevent the cracks from extending al the way down the full height of the
front and back faces.
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Figure 5.5: Combined shear, torsion and moment: (a) shear stresses due
to puretorsion; (b) shear stressesdueto direct shear; (c) crack

5.24 Torsionin Thin-walled Tubes

Thin-walled tubes of any shape can be quite smply analyzed for the shear stresses caused
by a torque applied to the tube. We will consider here an arbitrary cross-sectiona shape
subjected to pure torsion by torques T applied at the ends. Furthermore, all cross sections of
the tube are assumed to be closed and have similar dimensions and the longitudinal axis is a
straight line.

The shear stresses t  acting on the cross section are shown in Figure 5.6, which shows an
element of the tube cut out between two cross sections at distance dx. The intensity of the
shear stresses varies across the thickness of the tube. Since the tube is thin, we may assume
t to be constant across the thickness of the tube.

From equilibrium of forces in the x-direction,



FIO = FC (5.3)
Where

Fb =t b tb dx (5.9
and

FC =t c tC dx (5.5

Where tb and tC is tube thickness at points b and c, respectively.

Equating Eq. (5.4) and (5.5) gives

t_ dx=t t dx or,
cc

'ty

oty =tot (5.6)

Therefore, the product of the shear stresst and the thickness of the tube t is constant at

every point in the cross section. This product is known as the shear flow and denoted by the
letter g, and Eq. (5.6) can be written as

g=t t=constant (5.7
The largest shear stress occurs where the thickness of the tube is smallest, and vice versa.
When the thickness is constant, the shear stressis also constant.

To relate the shear flow g to thetorque T, consider an element of area of length ds, where

ds is measured along the centerline of the cross section. The total shear force acting on this
element of is qds , and the moment of this force about any point “O” is dT =r qds,

where r isthe perpendicular distance from point “O” to the line of action of the force.

The torque produced by shear is obtained by integrating along the entire length of centerline
of the cross section, given by

T=qgrds (5.8)



Figure5.6: Shear stressesin athin-walled tube

The quantity r ds represents twice the area of the shade triangle shown in Figure 5.6.e.
Therefore, the integral ¢r ds represents double the area A enclosed by the centerline of

the cross section, or
@r ds=2A (5.9
Substituting Eq. (5.9) into Eg. (5.8) gives

T=2qA (5.10)
Using Eq. (5.7) and (5.10), one gets
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From Eq. (5.11) the shear stresst is given by

t=— (5.12)

Eqg. (5.11) and (5.12) apply to any shape in the elastic range. In the inelastic range Eq.
(5.12) appliesonly if the thickness t is constant.

5.3 Current ACI Code Design Philosophy

The current design procedure for torsion is based on the following assumptions:
§ Concrete strength in torsion is neglected.
8§ Torsion has no effect on shear strength of concrete.

§ Torsion stress determination is based on thin-walled tube, space truss analogy. Both
solid and hollow members are considered as tubes before and after cracking, and
resistance is assumed to be provided by the outer part of the cross section centered
around the stirrups.

8§ No interaction exists between moment, shear, and torsion. Reinforcement for each of
the three forces is calculated separately and then combined.

The basic design equation for torsion is
T,=FT, (5.13)

Where T, isthe factored torque, T, isthe nominal torsional capacity, and F isthe strength

reduction factor for torsion, taken as 0.75.

5.4 Limit on Consideration of Torsion

In pure torsion, the principal tensile stress s ,, shown in Figure 5.7, is equal to the shear
stresst at agiven location. From Eqg. (5.12) for athin-walled tube,

T

AT (5.14)

Slzt =



10

Where t is the wall thickness at a point where the shear stresst is being computed and A,
is the area enclosed by the centerlines of the wall thicknesses.

- c,=71
-~ 6,=1
45°
T —» T
T

Figure5.7: Principal stressesdueto puretorsion

It is noteworthy that Eq. (5.14) is derived exclusively for hollow sections. To apply this to
solid uncracked sections, the actual section is replaced by an equivaent thin-walled tube
with a wall thickness t prior to cracking of 3 A, /4 p,,, and an area enclosed by the wall

centerline A equas 2 A, /3, where p,, isthe perimeter of the concrete section and A,

is the area enclosed by this perimeter. Substituting these into Eq. (5.14) gives

-
Slzt: .
zae?Ach&?’/%pQ
3 5%4 P, 5

and

(5.15)

Torsiona cracking is assumed to occur when the principal tensile stress s, reaches the
tensile strength of concrete in biaxia tension-compression, taken as 1.06 \/f_c¢ since the

tensile strength under biaxial tension is less than that under uniaxial tension. Substituting
thisin Eq. (5.15), gives the cracking torque T, as

2
T =1.06 /T, K’%) (5.16)
cp

The ACI Code requires that torsion be considered in design if T, exceeds 0.25T, given by
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T, 3 f 0271 Jf¢ M (5.17)
Pep

Torques that do not exceed approximately one-quarter of the cracking torque T, will not

cause a structurally significant reduction in either flexural or shear strength and can be
ignored.

For an isolated member with or without flanges, A, is the area of the entire cross section
including the area of voids in hollow cross sections, and p,, is the perimeter of the entire
cross section as shown in Figure 5.8. For a T-beam cast monolithically with aslab, A, and

P, caninclude portions of the adjacent slab conforming to the following:

For monolithic construction, a beam includes that portion of dab on each side of the beam
extending a distance equal to the projection of the beam above or below the slab, whichever
is greater, but not greater than four times the slab thickness. (See Figure 5.9)
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Figure 5.8: Definition of Ag: (a) thin walled tube;
(b) area enclosed by shear flow path
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Figure5.9: L and T beamsin monolithic construction
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5.5 Ensuring Ductile M ode of Failure

The size of the cross section is limited for two reasons, first, to reduce unpleasant cracking
and second to prevent crushing of the concrete due to principal compressive stresses
resulting out of shear and torsion.

For solid sections, ACI Code 11.5.3.1 requires that the following equation be satisfied

2
&V, 0 Ph 9
= .,.c‘ Ty £f +2 + (5-18)

\/gbwdﬂ §1.7 AZon 5 g ‘/_g
For hollow sections, ACI Code 11.5.3.1 requires that
&V, 0 Ph Q ¢ &V

C u > c 4 2 T (519)
%mdg 817thg g \/_g
where:

T, = factored torsional moment at section

V, = factored shear force at section

b, =web width

d = effective depth

p, = perimeter of centerline of outermost closed transverse torsiona reinforcement

A,, = areaenclosed by centerline of outermost closed transverse torsional reinforcement

ACl 11.5.3.2 requires that if the wall thickness varies around the perimeter of a hollow
section, Eq. (5.19) be evaluated at the location where the left-hand side of this equation is a
maximum.

Furthermore, if the wall thickness is less than fa} , ACI Code 11.5.3.3 requires that the
Ph

second term in Eq. (5.19) be taken as g%%tg where t is the thickness of the wall of
h

the hollow section at the location where the stresses are being checked.
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5.6 Critical Section for Torsion

According to ACI Code 11.5.2.4, sections located less than a distance d from the face of a
support are designed for not less than the factored torque computed at a distance d. If a
concentrated torque occurs within this distance, the critical section for design must be taken
at the face of the support. A concentrated torque occurs when a cross beam frames into one
side of agirder near the support of the girder.

5.7 Torsional Reinforcement

Both longitudinal and transverse reinforcement are required to resist diagona tension
stresses due to torsion. The stirrups must be closed, since torsion cracks can spira around
the beam. ACI Code 11.5.4.1 requires the use of longitudinal reinforcing bars in addition to
closed stirrups, perpendicular to the axis of the member or spiral reinforcement.

5.7.4 Transverse Reinforcement
A beam subjected to pure torsion can be modeled as a hollow-tube space truss consisting of

closed stirrups, longitudina bars in the corners, and diagona concrete compression
members which spiral around the beam between cracks. The height and width of the truss

are y, and x,, measured between the centers of the corner bars. The angle of the crack is
g , generaly taken as 45° for reinforced concrete.

The shear flow q, isgiven by
q=—— =t t (5.11)

The total shear force due to torsion along each of the two vertical sides of the truss shown
in Figure 5.10.ais equal to the product of the shear flow g and the distance y, between the
centerlines of these two sides
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Figure 5.10: Torsional reinforcement: (a) Space truss analogy; (b) forces
in stirrups; (c) resolution of shear force V,

=0

V,=V,=qY, (5.20)

Substituting Eq. (5.11) into Eq. (5.20) gives

.
V, =V, = 22 (5.21)

Similarly, the shear force due to torsion along each of the two horizontal sidesis given as

T
\/l :V3 = ﬁ (522)

14
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Thetop crack in Figure 5.10.b intersects a number of stirrups n, where

n= % (5.23)

where S isthe spacing of the stirrups.

The force in each stirrup at ultimate torque, assuming yielding of all stirrups is equal to
A fy, where A isthe area of one leg of aclosed stirrup resisting torsion within a distance

S,and fy; istheyield stress of the transverse reinforcement.
From equilibrium of forces in the vertical direction
Vo=nA fy (5.24)

Substituting Eq. (5.23) into Eq. (4.24) gives

cot f
VZYo qaA fy

5 S (5.25)
Equating Eqg. (5.25) and (5.21) resultsin
Th Yo _ Yo cotq A fy
2A S
where T, isthe nominal torsion capacity, or
A T (5.26)

S 2A, fycotq
Where g may be taken any angle between 30° and 60°. ACI Code 11.5.3.6 permits q to
be taken as 45° and the area A, to be taken as 0.85 Ay, where Ay, is the area enclosed

by the centerline of outermost closed stirrups.

5.7.5 Longitudinal Reinforcement
The force V, in Figure 5.10.c can be resolved into a diagonal compression force, D,,
parallel to the concrete struts and an axial tension force, N,, where D, and N, are given
by
N, =V, cotq (5.27)
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Similarly, on the top and bottom faces

N, =V, cotq (5.28)
Thetotal longitudinal force is

N=2(N, +N,) (5.29)
Substituting Eq. (5.27) and (5.28) into Eq. (5.29) gives

N =2(V, cotq +V, cotq) (5.30)
Substituting EqQ. (5.21) and (5.22) into Eq. (5.30) gives

N=2 ?I;—ZS + ;—zgcot q

or,

2T A [2(x, +y, )] cotq (5.31)

N =

The force in the corner bars at ultimate strength is given as
N=A fy, (5.32)

where A is total area of longitudinal torsion reinforcement, and fy is yield stress of
longitudinal torsion reinforcement.

But 2(x, +y,)=p, € perimeter of the closed stirrup. Using this and equating Eq. (5.31)
and (5.32) gives

_Tn Pn cotq

= 5.33
Aty (5.33)
Substituting Eq. (5.26) into Eq. (5.33) gives
A :gﬁg Ph 9—yt+cot2q (5.34)

eSe &fyy
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5.7.6 Minimum Amount of Torsion Reinforcement

5.7.6.1 Longitudinal Reinforcement
To ensure that concrete beams will fail in a ductile manner, ACI Code 11.5.5.3 requires that
the minimum area of longitudinal steel should not be less than
_ 1.33f'c Agp = fyt
f

¢ —*Ph—— (5.35)

,min -
y eSg Ty

where A 0.175ﬂ
S fyt
5.7.6.2 Transverse Reinforcement

ACI Code 11.5.5.2 specifies that where torsion reinforcement is required, the minimum area
of transverse closed stirrups for combined action of shear and torsion is computed by:

02T byS, 35b,S

(A +24)= » »

(5.36)

where A, is the area of two legs of a closed stirrup while A, is the area of one leg of a
closed stirrup.

5.7.7 Details of Torsion Reinforcement

5.7.7.1 Transverse Reinforcement
When a rectangular beam fails in torsion, the corners of the beam tend to spall off due to
the compressive stresses in the concrete diagonals of the space truss. In tests, closed stirrups
anchored by 90-degree hooks failed when this occurred. For this reason, 135-degree hooks
are preferable for torsional stirrups in all cases. In regions where this spalling is prevented
by an adjacent dab or flange, ACI Code 11.5.4.2 relaxes this and allows 90 degree hooks,
as shown in Figure 5.11.
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Figure5.11: Spalling of corners of beamsloaded in torsion

ACI Code 11.5.4.4 requires that for hollow sections in torsion, the distance between the
centerline of the closed stirrups to the inside face of the wall of the hollow section should not
be less than i.
2p,
5.7.7.2 Longitudinal Reinforcement
ACI Code 11.5.4.3 requires that longitudinal torsion reinforcement be developed at both
ends. If high torsion acts near the end of a beam, the longitudinal torsion reinforcement
should be adequately anchored. Sufficient development length should be provided outside
the inner face of the support to develop the needed tension force in the bars. This may
require hooks or horizonta U-shaped bars lapped with the longitudinal torsion
reinforcement.
ACI Code 11.5.6.3 requires that torsion reinforcement be provided for a distance of at least
(bt + d) beyond the point theoretically required for torsional reinforcement, where by is
width of that part of cross section containing the closed stirrups, and d is the effective depth
of section. This requirement is dictated because torsional cracks develop in a spiral form.

5.7.8 Spacing of Torsion Reinforcement
5.7.8.1 Transverse Reinforcement
According to ACI Code 11.5.6.1, the spacing of transverse torsion reinforcement center-to-

center is not to exceed the smaller of % or 30 cm. The spacing of the stirrup is limited to

ensure the development of the ultimate torsional strength of the beam and to control crack
widths.
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5.7.8.2 Longitudinal Reinforcement
ACI Code 11.5.6.2 requires that longitudinal torsion reinforcement be distributed around the
perimeter of closed stirrups with a maximum spacing of 30 cm. One bar must be positioned
in each corner of the stirrups to provide anchorage for the legs of the stirrups. The least
longitudinal bar diameter to be used is the larger of 0.042 times the stirrup spacing, or 10
mm. See Figure 5.12 for reinforcement detail.

Ay (top) h

<30cm

A (middle) | e o h

<30cm

A, (middle) +
A, (bending) | \&—o o © @

b

Figure5.12: Longitudinal reinforcement for flexure and torsion

5.8 Equilibrium and Compatibility Torsion

In designing for torsion in reinforced concrete structures, two cases may be identified:

5.8.1 Equilibrium Torsion
The torsiona moment cannot be reduced by redistribution of internal forces. This is
referred to as equilibrium torsion since the torsional moment is required to keep the
structure in equilibrium.
According to ACI Code 11.5.2.1, if the factored torsional moment T, in a member is

required to maintain equilibrium and exceed the minimum value given by Eq. (5.16), the
member is to be designed to carry that torsonal moment. An example for equilibrium
torsion is shown in Figure 5.13.a.

5.8.2 Compatibility Torsion

The torsional moment can be reduced by redistribution of internal forces after cracking if
the torsion arises from the member twisting to maintain compatibility of deformations. This
type of torsion is referred to as compatibility torsion, an example of which is shown in
Figure 5.13.h.
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According to ACI Code 11.5.2.2, for statically indeterminate structures where reduction of
the torsional moment in a member can occur due to redistribution of internal forces upon
cracking, the maximum factored torsional moment T, is permitted to be reduced to

1T (%)

Pcp

Design torque may not be reduced, because
moment redistribution is not possible

L/

Design torque for this spandrel beam may be
reduced, because moment redistribution is possible

(b)

Figure 5.13: Equilibrium vs. compatibility torsion: (a) design torque
may not be reduced; (b) design torque may be reduced

59 Summary of Design Procedure for Members Subjected to Bending

M oment, Shear and Torsion

1. Draw the shear force, bending moment and torque diagrams.

2. Select cross-sectional dimensions b and h based on factored bending moment, and
determine the required area of reinforcement.

3. Check if torsion may be neglected. Torsion may be neglected if

2
T, £f 0271 Jf¢ M (5.17)
Pep
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If this is the case, proceed on with shear design as done in Chapter 4, and choose flexural
and shear reinforcement.

If T, >f 0.271 \/f ﬁ%), torsion must be considered as shown in the following steps.
cp
The critical section for torsion is located at distance d from the face of the support if no
torques are applied within this distance. If torques are applied within distance d from face
of support, critical torsion is located at face of the support.
4. Check the adequacy of the size of the cross section in terms of preventing brittle
mode of fallure resulting from diagonal compressive stresses due to shear and
torsion combined.

For a solid cross section to be adequate,

2
&V, 0 Ph 9 /—

+('\ U f +2 T (518)
\/gbwdﬂ $1.7 A%on 5 g o

For ahollow cross section to be adequate,

&V, 0 Ph 9
c Ty £f Ve +2 T (5.19)
%mdg §1.7 A2on 5 g \/_g

If Eq. (5.18) or (5.19) is not satisfied, cross sectional dimensions need to be increased.

5. Determine the area of stirrups required for shear. To facilitate the addition of
stirrups for shear and torsion, the area of shear reinforcement is expressed in terms

ofi,
S

A Vs (4.15)

S fyd

If Vg>2.2,/f'c by, d, the cross section needs to be enlarged. Also, determine maximum
stirrup spacing based on shear.
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If V, £,/f8b, d, maximum stirrup spacing Syax should not exceed the smaller of % or
60 cm. If 22,f'c b, d>Vg>,/f'¢ by, d, maximum stirrup spacing is limited to the

smaller of %or 30 cm.

6. Determine the required area of stirrups for torsion in terms of %
Since T, =F T,, Eq. (5.26) when q istaken as 45° can be written as

Ao Ta
S 2A fy

Besides, compute maximum stirrup spacing based on torsion. Maximum stirrup spacing is
limited to the smaller of p, /8 or 30 cm.

7. Determine combined area of stirrups required for shear and torsion. % is expressed
in terms of %

For two-legged closed stirrups,

A 0 ae%o ae’ZAo
&S g eSra eSg
S 0.2, f. S
where gﬁg should be equal or larger than c bwS, 356y S

8. Select stirrup size, and compute stirrup spacing based on the amount determined in
step 7. Maximum stirrup spacing must not exceed the smaller of the two values
evaluated in steps 5 and 6.

9. Calculate the longitudinal reinforcement required for torsion.

A a&f. 0
A :g—gp ¢ N >cot2 q (5.34)
eSeg &fyg

If fyt:fy,andq istaken as 45°, A:geigph

eSg



The longitudinal reinforcement A is not to be less than the value given by

_1'331/flc '%p &\ O fyt
mn= " ¢ Ph—— (5.35)
fy eSg fy

where A, 0.175ﬂ
S fyt
10. Size combined longitudinal reinforcement. The longitudinal reinforcement is to be
uniformly distributed around the perimeter of the cross section, and must have a
diameter not less than 0.042 of stirrup spacing or 10 mm, whichever is larger.

Flexural reinforcement determined in step 2 is to be added to the longitudinal
reinforcement required for torsion at the flexural steel level, and the reinforcement
is chosen at the tension side of the section. Also, the reinforcement is chosen at the
compression side of the section. If the vertical distance, center-to-center, between
the top and bottom reinforcement exceeds 30 cm, middle layers are added until the
spacing is satisfied.

11. Torsion reinforcement must be extended at least (b, + d) beyond the point where no
torsion reinforcement is required.

12. Draw neat sketches showing reinforcement details.

Example (5.1):

For the cross section shown in Figure A E—
5.14.a, design the torsiona reinforcement,
if required, given that:

T, =4tm V, =16.0tons 60 cm

2Q12mm

f 8= 250 kg / cm?

o e o o 5020 mm

and f, =4200kg/cm?.
’ P40 cmﬁL

Figure5.14.a: cross section

Solution:
1- Draw the shear force, bending moment, and torque diagrams.

23
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The section is aready designed for bending moment. The magnitudes of shear force and
torsion are given.

2- Select cross sectional dimensions and determine area of flexural reinforcement.
Cross sectional dimensions in addition to flexural reinforcement are given.

3- Check if torson may be neglected.

Torsion may be neglected if T, issmaller than

=0.922tm <40 tm

A2cp| _ 075 0.27 250 (2400)?
Ty £f 0271 1o (pcp) (200)” 10°

Thus, torsion reinforcement must be considered.

4- Check for probability of brittle failure of concrete.

The dimensions of the cross section are adequate to prevent a brittle mode of failure if the
following equation is satisfied

2
\/aeVoCuth 0

€bud s 17 AZon & §_+ng

Assuming that f 8 mm stirrups are used,

d=60- 4- 0.8- 1.0=54.20 cm
X, =40- 2" 4- 0.80=31.20 cm
y,=60- 2" 4- 0.80=51.2cm
p, =2(31.2+51.2)=164.80 cm
A, =(31.2" 51.2)=1597.44 cm?

&V, 0 + Tu P 9

gbwdg €17 A2 5
2 16000 o a.0” 10° " 164. 80
§40 (54.20) 5 é 1.70 (1597.44)° & p

=16.89 kg / cm?

-—253f Na 253075\/25 300kg/cm

i.e. cross sectiona dimensions are adequate for resisting brittle failure.
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5- Determinetherequired area of stirrup reinforcement for shear.

V, =053,/f¢h, d

V.=V y
F

S Cc

Vo= 16.0  0.53/250 (40) (54.20) =3.165tons
0.75 1000

Vs _ 3.165(1000)
S fyd 4200(54.2)

=0.0139 cm? / cm

Since V,£,/f¢h,d, maximum stirrup spacing S, should not exceed the smaller of
d 5420

> > 27.10 cm or 60 cm, thus S, isnot to exceed 27 cm.

6- Determinetherequired area of stirrup reinforcement for torsion.

Thetorsiona stirrup reinforcement per unit length % , Isgiven by

© 105
A LT 4010 _ =0.047 cm? / cm
S oF fuh Cot2(450) 2 (0.75) (4200) (0.85" 1597.44)

S, Isthesmaller of p, /8 or 30 cm, where p, /8 = 164.80/8 = 20.60 cm, thus S, isnot

to exceed 20 cm.

7- Determinethe combined area of stirrup reinforcement for shear and torsion.

oA 0

CY2  =0.0139 +2(0.047)=0.1079 cm? / cm
e S Gotal
35by _ 35(40)

=0.033cm?/cm <0.1079cm?® O.K
fur 4200

8- Select stirrup size and spacing.
Try f 8 mm closed stirrups

@ =0.1079 and S = 9.26 cm.
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Try f 10 mm closed stirrups
@ =0.1079 and S=14.55cm.

Therefore, maximum stirrup spacing based on shear and torsion combined is 20 cm, which
islarger than 14 cm. Use two-legged, f 10 mm closed stirrups spaced at 14.0 cm.

9- Calculate the longitudinal reinforcement required for torsion.

Since fy; = fy andfor q =45°,
A =€%9ph =(0.047)(164.80) =7.75 cm?
evog

The longitudinal reinforcement is not to be less than the value given by the following

equation

133 /fc Ay

mn—— £
fy

A, (0175)b,
f

yv

(0175)by, _0.175(40) _ ) v0167 ok
fit 4200

”T?é

fyt

9 o
g f

where

A min= 133‘24520240)(60) 7.75=427cm’ OK.

10- Size combined longitudinal reinforcement.
Distance between the centerlines of tension and compression reinforcement exceeds 30 cm,
so amiddle layer of longitudinal reinforcement is needed.

ﬂ—%—258cm

3
Minimum bar diameter is 0.042S =0.042(140) =5.88 mm or 10 mm, whichever is larger,

and 10 mmisthe least diameter to be used.
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T4 | sormm
< 3eom
e | b d [2EY mm
< 30 cm
T 22 meex
£ cm

Figure5.14.b: Designed cross section
Total area of top reinforcement = 2.26 + 2.58 = 4.84 cn¥, use 5f 12 mm.
Area of bottom reinforcement = 2.58 + 15.71 = 18.29 cm2, use 5f 22 mm.
Area of middle reinforcement = 2.58 cn?, use 2 f 14 mm.
11-Develop torsional reinforcement.

Torsion reinforcement must be extended at least (40 +54.2) @95.0cm beyond the section
where no torsion reinforcement is required.
12-Draw neat sketches showing reinforcement details.

Figure 5.14.b shows cross sectional dimensions and reinforcement details.

Example (5.2):

The cantilever beam shown in Figure 5.15.a supports a factored concentrated load of 8 tons
applied at point C. Neglecting own weights of members AB and BC, design member AB for
moment, shear, and torsion.

Use f¢=300kg/cm?, and f, = 4200 kg/cm®.



i e

*,

Figureb5.15.a: Beam and loads

Solution:
1- Draw the shear force, bending moment, and torque diagrams.

These diagrams are shown in Figure 5.15.b.

3 tons ‘ + (SFD)
A F.)
32 Em
i
A B2
Sim ccm (D)
A B

Figure 5.15.b: Shear force and bending moment diagrams

My max =32tm, V|, max =8tons, and T, pax =8tm.

2- Select cross sectional dimensions and determine area of flexural reinforcement.

28

Minimum depth of member AB based on deflection requirement is equa to

Ig = 4%0 =50cm. Use a40 x 60 cm cross section.
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d=60- 4- 0.80- 1.0=54.20cm, assuming f 20 mm reinforcing bars, and f 8 mm
stirrups.

The reinforcement ratio at section of maximum factored moment is given by

u=0.00769
4200 ]

_085(300) \/1 2.353(10)° (32) Y
¢ 0.9 (40)(54.2)° (300) §

A =0.00769 (40) (54.20) = 16.67 cm?

3- Check if torsion may be neglected.
Torsion may be neglected if T, issmaller than

T, £ 0271 {7 A%y _0.27 (0.75)+/300(2400)?
Pep 2(40 +60) (10)°

Therefore, torsion must be considered.

=1.01tm<T,

4- Check for probability of brittle failure of concrete.

The dimensions of the cross section are adequate to insure a ductile mode of failure if this
condition is satisfied

€bud s S17 AZon & §_+2\/_B

where

2
\/BEV 0 (‘ uph9

x, =40- 2" 4- 0.80=31.2cm
y, =60- 2" 4- 0.80=51.2cm
p, =2(31.2+51.2) =164.80 cm
A, =(31.2" 51.2) =1597.44cm’

.2

2
&V, © TuPh 2 _ 2 8000 6" 880 105(164. 80)0" 3827 kg o

0
%md P gl 70 A%0h 5 40 (54.20) 5 g 1.70(1597.44)% 5

-—253f J T 253075 4/ 300 3286kg/cm
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i.e. cross sectiona dimensions are adequate in terms of ensuring ductile failure.

5- Determinetherequired area of stirrup reinforcement for shear.

V, =053./fgb, d

Vs :V_u - Vc
F
= 8.0 0.53+/300 (40)(54.20) _ 924tons
0.75 1000

This means that shear reinforcement is not required, and —- '% =

6- Determinetherequired area of stirrup reinforcement for torsion.

Thetorsiona stirrup reinforcement per unit length % , Isgiven as

A _ Ty 8.0 10°

S o fytAocot( ) 2 (0.75)(4200)(0.85" 1597.44)

is the smaller of p, /8 or 30 cm, where p, /8 = 164.80/8 = 20.60 cm, thus S, is

=0.0935 cm? / cm

St
not to exceed 20 cm.
7- Determine the combined area of stirrup reinforcement for shear and torsion.

FVO  ~00+2(0.0035)=0.187 cm? /cm

€S otal
3.5by = 3.5 (40) =0.033 cm2 /cm <0.187 cm2 O.K
fyt 4200

8- Select stirrup size and spacing.
Try f 10 mm closed stirrups

210.785) (0'785) =0.187 and S = 8.40 cm. This spacing is rather small, so try f 12 mm closed

stirrups,
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2(1.13)

=0.187 and S=12.09 cm.

Usef 12 mm closed stirrups spaced at 12.0 cm.
9- Calculate the longitudinal reinforcement required for torsion.

Since fyt = fy and for q =45°,
A :Ee%Qph = (0.0935) (164.80) = 15.41 cm?
e>vg

The longitudinal reinforcement is not to be less than the value given by the following
equation

13T Ap a6 Ty
mn—— ¢ f QE_ f_
y eog
where A s (0175)b,
i,
(0175)by _0175(40) _ o 1167 ok

fyt 4200

1.33+ 3;10205)40)(60) 15.41=- 2.35cm? (not applicable)

A mln

10- Size combined longitudinal reinforcement.
Distance between centerlines of tension and compression reinforcement exceeds 30 cm, so
amiddle layer of longitudinal reinforcement is needed.

ﬁ—%—S 14 cm?

3
Minimum bar diameter is 0.042 S =0.042(120)=5.04 mm or 10 mm, whichever is larger,
and 10 mmisthe least diameter to be used.
Total area of top reinforcement = 16.67 + 5.614 = 21.81 cn?, use 5f 25 mm.
Area of bottom reinforcement = 5.14 cn?, use 4 f 14 mm.

Area of middle reinforcement = 5.14 cn?, use 4 f 14 mm.
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11-Develop torsional reinforcement.

Torsional reinforcement is needed for the entire length of part AB, since the torque is
constant in magnitude.

12-Draw neat sketches showing reinforcement details.

Figure 5.15.c shows cross sectional dimensions and designed reinforcement.

@ & & - F W oot
(312 . mtierwp
& 12 cm
|“\\- W | s
60 cm
] o (Z2BIFmm
) l: £ 0o mox
Pem |

Figure5.15.c: Designed cross section

5.10 Problems

P5.11.1 A cantilever beam 3.0 m long and 40 cm wide, shown in Figure P5.11.1 supportsits
own weight plus a concentrated service load located 0.50 m from the end of the beam and
0.50 m away from the vertical axis of the beam. The concentrated load consists of 7.0 ton
dead load and 8.0 ton live load. Design the reinforcement for flexure, shear, and torsion.

Use f $=300kg/cm? and fyy = f, =4200 kg/cm?.

L 3m |

FigureP5.11.1
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P5.11.2 A shear force V, = 20tons and atorque T, =8.0t.m act on the cross section of

the box-beam in Figure P 5.11.2. Determine the spacing of the stirrups and the area of
longitudinal steel required to carry the given shear and torsion.

Use f¢=280 kg / cm? and fy, = f, =4200 kg / cm” .

Aﬁ jﬁ
10 cm "\ )
Aﬁ \
28 mm
stirrups
4
60cm 40cm

10 cm —

10cm|, 20cm |10cm|
A 7t 7t 7

AL 40 cm AL

FigureP5.11.2



