5 – EDTA Titrations

Table 13-1 🕔	Values of $\alpha_{V^{4-}}$ for	Table 1:	B-2 Formatio	n constan	ts for metal-EDTA	complexe	28
EDTA at 20°C and $\mu = 0.10$ M		Ion	$\log K_{\rm f}$	Ion	log K _f	Ion	log K _f
		Li ⁺	2.79	Mn ³⁺	25.3 (25°C)	Ce ³⁺	15.98
pН	$\alpha_{Y^{4-}}$	Na ⁺	1.66	Fe ³⁺	25.1	Pr ³⁺	16.40
0	1.3×10^{-23}	K^+	0.8	Co ³⁺	41.4 (25°C)	Nd ³⁺	16.61
0	1.3×10^{-18}	Be ²⁺	9.2	Zr ⁴⁺	29.5	Pm ³⁺	17.0
1	1.9×10^{-18}	Mg^{2+}	8.79	Hf^{4+}	29.5 ($\mu = 0.2$)	Sm ³⁺	17.14
2	3.3×10^{-14}	Ca^{2+}	10.69	VO^{2+}	18.8	Eu ³⁺	17.35
3	2.6×10^{-11}	Sr ²⁺	8.73	VO_2^+	15.55	Gd ³⁺	17.37
4	3.8×10^{-9}	Ba ²⁺	7.86	Ag^+	7.32	Tb ³⁺	17.93
5	3.7×10^{-7}	Ra ²⁺	7.1	Tl ⁺	6.54	Dy ³⁺	18.30
6	2.3×10^{-5}	Sc ³⁺	23.1	Pd^{2+}	18.5 (25°C,	Ho ³⁺	18.62
7	5.0×10^{-4}	Y^{3+}	18.09		$\mu = 0.2)$	Er ³⁺	18.85
		La ³⁺	15.50	Zn ²⁺	16.50	Tm ³⁺	19.32
8	5.6×10^{-3}	V^{2+}	12.7	Cd^{2+}	16.46	Yb ³⁺	19.51
9	5.4×10^{-2}	Cr^{2+}	13.6	Hg ²⁺	21.7	Lu ³⁺	19.83
10	0.36	Mn^{2+}	13.87	Sn ²⁺	18.3 ($\mu = 0$)	Am ³⁺	17.8 (25°C)
11	0.85	Fe ²⁺	14.32	Pb^{2+}	18.04	Cm ³⁺	18.1 (25°C)
12	0.98	Co^{2+}	16.31	A1 ³⁺	16.3	Bk ³⁺	18.5 (25°C)
13	1.00	Ni ²⁺	18.62	Ga ³⁺	20.3	Cf ³⁺	18.7 (25°C)
14	1.00	Cu^{2+}	18.80	In ³⁺	25.0	Th ⁴⁺	23.2
	1.00	Ti ³⁺	21.3 (25°C)	T1 ³⁺	37.8 ($\mu = 1.0$)	U^{4+}	25.8
		V ³⁺	26.0	Bi ³⁺	27.8	Np ⁴⁺	24.6 (25°C, $\mu = 1.0$)
		Cr ³⁺	23.4				

Table 13-2 Formation constants for metal-EDTA complexes

1] The conditional formation constant K_f' for CaY²⁻ is related to K_f through which of the relationships? ¹

a) $K_{f}' = K_{f}$ at pH =0 b) $K_{f}' = \alpha_{y4}K_{f}$ c) $K_{f} = \alpha_{y4}K_{f}'$ d) $K_{f}' = 1 / K_{f}$ e) $K_{f}' = K_{f}^{2}$

2] In reference to EDTA titrations the symbol, α_{v4-} , indicates which of the following?²

- a) The fraction of metal chelated by EDTA
- b) The concentration of EDTA in the Y^{4-} form.
- c) The fraction of EDTA in the Y^{4-} form.
- d) The analytical concentration of metal.
- e) The fraction of EDTA not in the Y⁴⁻ form.

3] It is advantageous to conduct EDTA titrations of metal ions in ³

- a) acidic pH's to assist metal ion hydrolysis
- b) basic pH's to prevent metal ion hydrolysis
- c) basic pH's to maximize Y⁴⁻ fraction
- d) basic pH's to minimize Y⁴⁻ fraction
- e) acidic pH's to maximize Y⁴⁻ fraction

4] What is K_f' for SrEDTA²⁻ at pH 11?⁴

5] The formal concentration of EDTA is 1.00 mM. What is the concentration of the Y^{4-} form at pH 4? ⁵

6] What is the fraction of EDTA in the Y^{4-} form at pH 7.00? ⁶

- a) 1.00
- b) 5.0e-4
- c) 0.36
- d) 0.500
- e) 3.3e-14

7] What is the conditional formation constant of CaEDTA²⁻ at pH 10.00? 7

8] The fraction of free metal (α_m) in the following equilibrium can be expressed as: ⁸ M + L = ML $\beta = [ML] / [M][L]$

9] What is the fraction of EDTA in the Y^{4-} form at pH 5? ⁹

10] Given that α_{y4-} = 3.8e-9 at pH 4.00 & α_{y4-} = 1.9e-18 at pH 1.00 what is the conditional formation constant for FeY⁻ at those pH's. log K_f = 25.1 ¹⁰

11] Calculate the concentrations of free Fe $^{3+}$ in a 0.10 M FeY⁻ solution at pH 4.00 and 1.00. ¹¹

12] Which of the three regions below is where moles of added EDTA equals moles of metal M^{n+} ? ¹²

13] For Ag⁺ in the presence of NH₃, log β_1 = 3.31 and log β_2 = 7.23. The fraction of free Ag⁺ in solution can be calculated from: ¹³

a) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3] + \beta_2[NH_3]^2\}$ b) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3] + \beta_2[NH_3]\}$ c) $\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3]^2 + \beta_2[NH_3]\}$ d) $\alpha_{Ag+} = 1 / \{1 + \beta_1 + \beta_2\}$ e) $\alpha_{Ag+} = \{1 + \beta_1[NH_3] + \beta_2[NH_3]^2\}$

14] Calculate the concentration of free Ca²⁺ when $[Y^{4-}] = 4.5e-3$ M, and $[CaY^{2-}] = 9.0e-3$, at pH 10. K_f' = 1.8e10. ¹⁴

15] A solution of 50.0-mL of 1.00×10^{-3} M NiCl₂(aq)is titrated with 1.00×10^{-3} M EDTA in a solution of 0.100 M NH₃ at pH 11.00. What is pNi if 25.0-mL of the titrant solution is added? Note that $\alpha_{Ni2+} = 1.34 \times 10^{-4}$ at 0.100 M NH₃.¹⁵

16] What is K_f'' for the NiEDTA²⁻ complex in 0.100 NH₃ at pH 11? ¹⁶

17] a] What is $[NiEDTA^{2}]$ if 75.0-mL of titrant is added to the $NiCl_2$ solution in the above problem?

b] Which is true if 75.0-mL of 1.00×10^{-3} M EDTA titrant is added to the 50.0-mL of 1.00×10^{-3} M NiCl₂ solution in 0.1M NH₃? Assume equilibrium conditions. ¹⁷

a) [Ni²⁺] = [EDTA]
b) [NiEDTA²⁻] > [EDTA]
c) [NiEDTA²⁻] = [EDTA]
d) [Ni²⁺] > [EDTA]

18] A] Calculate the concentration of free Mg^{2+} in a solution of 50.0 mL of 0.0500 M Mg^{2+} when 5.00 mL of 0.0500 M EDTA is added at pH 10.00. ¹⁸

Mg²⁺ + EDTA = MgY²⁻ K_f' = α_{y4} -K_f = 0.36*6.2e8 = 2.2e8 B] When 50.0 mL of 0.0500 M EDTA is added.

C] When 51.00 of 0.0500 M EDTA is added.

19] Calculate pCa if 20.0 mL of 0.050 M of EDTA is added to 15.0 mL of 0.050 M Ca^{2+} at pH 9.0. ¹⁹

20] Calculate pCu for the titration curve for 50.00 mL of 0.0200 F Cu^{2+} at pH 5.00 when 0, 10.00, 25.00, 30.00 mL of 0.0400 M EDTA solution are added to the titration mixture.²⁰

21] Calculate the conditional formation constant of $Fe^{III}(Y)^{-}$ (where Y = EDTA) in presence of 0.0100 M NaOOCH₃ at pH 7.00, if C_{Fe3+} = 1.00e-4 M, and [EDTA] = 1.50e-4 M.²¹

22] a] Calculate the concentration of free Ag^+ for 0.010 F Ag^+ in 0.10 M NH_3 .

b] Calculate pAg when a 50.00-mL of 0.010 M(or F) Ag $^{\rm +}$ is mixed with 75.00-mL of 0.010 M EDTA at pH 10.00 in 0.10 M NH_3. 22

23] 50 mL of 0.010 M Zn^{2+} is titrated with 0.010 M EDTA in 0.010 M NH₃ at pH 9.00. ²³

A] calculate K_f".

B] Calculate the pZn when 50.0 mL of 0.0100 M Zn^{2+} is added to 25.0 mL of 0.0100 M EDTA in 0.010 M NH₃ at pH 9.00.

C] Calculate the pZn when 50.0 mL of 0.0100 M Zn^{2+} is added to 50.0 mL of 0.0100 M EDTA in 0.010 M NH₃ at pH 9.00.

D] Calculate the pZn when 50.0 mL of 0.0100 M Zn^{2+} is added to 75.0 mL of 0.0100 M EDTA in 0.010 M NH_3 at pH 9.00.

Answers

¹ $K_f' = \alpha_{y4}K_f$

 $^{\rm 2}$ The fraction of EDTA in the $Y^{\rm 4-}$ form.

³ basic pH's to maximize Y⁴⁻ fraction

⁴ $K_{f}' = \alpha_{y4}K_{f} = 0.85*5.4e8 = 4.6e8$

⁵ [**Y**⁴⁻] = 3.8e-9*1.00e-3 M = 3.8e-12 M

⁶ B

7
 K_f' = 0.36*10^{10.69} = 1.8e-10

⁸
$$\alpha_m = \frac{1}{1 + \beta[L]}$$

⁹ 3.7e-7

¹⁰
$$K_f = [FeY^-] / [Fe^{3+}][Y^{4-}]$$
 [Y⁴⁻] = $\alpha_{y4-}[EDTA]$
 $K_f = [FeY^-] / [Fe^{3+}]\alpha_{y4-}[EDTA]$
 $K_f' = \alpha_{y4-}K_f = [FeY^-] / [Fe^{3+}][EDTA]$
 $Fe^{3+} + EDTA = FeY^ K_f' = \alpha_{y4-}K_f$

At pH 4.00 $K_{f}' = \alpha_{y4}K_{f} = 3.8e-9 * 1.3e25 = 4.9e16$

At pH 1.00 K_f' = 1.9e-18 * 1.3e25 = 2.5e7

¹¹
$$Fe^{3+} + EDTA = FeY^{-}$$

0 0 0.10 M
+x +x -x

$$0.10 - x / x^2 = K_f'$$

x = 1.4e-9 @ pH 4.00

x = 6.3e-5 @ pH 1.00

¹² Region 2

¹³
$$\alpha_{Ag+} = 1 / \{1 + \beta_1[NH_3] + \beta_2[NH_3]^2\}$$

¹⁴ 1.8e10 = $[9.0e-3] / [Ca^{2+}][4.5e-3]$ [Ca²⁺] = 1.11e-10

¹⁵ Initial mol Ni²⁺ = 50.0-mL*1.00e-3 M = 0.0500 mmol

Added mol EDTA
= 25.0-mL*1.00e-3 M
= 0.0250 mmol
Excess Ni²⁺ = 0.0500 - 0.0250 mmol = 0.0250 mmol

$$C_{Ni2+} = 0.0250$$
 mmol / 75.0-mL
= 3.33e-4 M
Free [Ni²⁺] = $\alpha_{Ni2+} C_{Ni2+} = 1.34e-4*3.33e-4 = 4.47e-8$ M

pNi = 7.350

¹⁶ K_f'' = $\alpha_{Ni2+}\alpha_{Y4-}$ *K_f = 1.34e-4*0.85*10^{18.62} = **4.7e14**

¹⁷ Initial mol Ni²⁺ = 50.0-mL*1.00e-3 M = 0.0500 mmol

Added mol EDTA = 75.0-mL*1.00e-3 M = 0.0750 mmol

[NiEDTA] = 0.0500 mmol / 125.0-mL = 4.00e-4 M

Excess EDTA = 0.0250 mmol / 125.0-mL = 2.00e-4 M

Therefore [NiEDTA²⁻] > [EDTA]

¹⁸ A]	Initial Mg ²⁺ = 0.0500 M * 50.0 mL = 2.50 mmol				
	Added EDTA = 0.0500 * 5.00 mL = 0.25 mmol				
	Mg ²⁺ +	EDTA =	MgY ²⁻		
	2.50	0.25	0		
	-0.25	-0.25	+0.25		
	2.25	0	0.25		

[Mg²⁺] = 2.25 mmol / 55.00 mL = 0.0409pMg = 1.39

B] added EDTA = 0.0500 M * 50.0 mL = 2.50 mmol

Mg ²⁺ +	- EDTA	=	MgY ²⁻
2.50	2.50		0
-2.50	-2.50		+2.50
0	0		2.50

 $[Mg^{2+}] = 2.50 \text{ mmol} / 100 \text{ mL} = 0.0250 \text{ M}$ $Mg^{2+} + EDTA = MgY^{2-}$

	0	0		0.0250
	<u>+x</u>	+x		<u>-x</u>
	0.0250	Э-х / х ² :	= 2.2e8	
x = 1.0)7e-5		pMg =	4.97
C] added EDTA = 0.0500 M * 51.0 mL = 2.55 mmol				
	Mg ²⁺ -	F EDTA :	=	MgY ²⁻
	2.50	2.55	0	
	-2.50	-2.50	+2.50	
	0	0.05	2.50	
	[MgY ²⁻] = 2.50 mmol / 101 mL = 2.47e-2 M			
	[EDTA] = 0.05 mmol / 101 mL = 4.95e-4			
	K _f ' = [MgY ²⁻] / [Mg ²⁺][EDTA] = 2.47e-2 M / [Mg ²⁺]*4.95e-4			
	K _f ' = 2.2e8			
$[Mg^{2+}] = 2.3e-7$				
pMg = 6.64				

```
pMg = 6.64
<sup>19</sup> mol EDTA = 20.0 mL * 0.050 M = 1.0 mmol
mol Ca<sup>2+</sup> = 15.0 mL * 0.050 M = 0.75 mmol
excess EDTA region where,
[CaY<sup>2-</sup>] = 0.75 mmol / 35.0 mL = 2.1e-2 M
[EDTA] = 0.25 mmol / 35.0 mL = 7.1e-3 M
K<sub>f</sub> = [CaY<sup>2-</sup>] / [Ca<sup>2+</sup>]*[Y<sup>4-</sup>]
[Y<sup>4-</sup>] = \alpha_{Y4-} [EDTA]
K<sub>f</sub> *\alpha_{Y4-} = K<sub>f</sub>' = [CaY<sup>2-</sup>] / [Ca<sup>2+</sup>]*[EDTA]
```

 $K_{f} = 4.9e10$

 $K_{f}' = 5.4e-2*4.9e10 = 2.6e9$

2.6e9 = 2.1e-2 M / [Ca²⁺]*7.1e-3 M [Ca²⁺] = 1.1e-9 M

pCa = 8.94

²⁰ At 0.00 [Cu²⁺] = 0.020 M pCu = 1.70

At 10.00 mL

Initial mols $Cu^{2+} = 0.0200 \text{ M} * 50.00 \text{ mL} = 1.00 \text{ mmols}$ Added mols EDTA = 0.040 M * 10.00 mL = 0.40 mmols Excess $Cu^{2+} = 1.00 \text{ mmol} - 0.40 \text{ mmol} = 0.60 \text{ mmol}$ $[Cu^{2+}]_{\text{free}} = 0.60 \text{ mmol} / 60.00 \text{ mL} = 0.010 \text{ M}$

pCu = 2.00

At 25.00 mL

Initial mols $Cu^{2+} = 1.00$ mmols

Added mols EDTA = 0.040 M * 25.00 mL = 1.0 mmols

This is the equivalence point therefore the formal concentration of CuEDTA is

[CuEDTA] = 1.0 mmols / 75.00 mL = 1.3e-2 M

Now Calculate free Cu²⁺:

 $Cu^{2+} + EDTA \implies CuEDTA$

+x +x 1.3e-2 –x

 $K_{f} = 6.3e18$

@ pH 5.00

α_{Y4-} = 3.7e-7

 $K_{f}' = \alpha_{Y4} K_{f} = 3.7e-7 * 6.3e18 = 2.33e12$

1.3e-2 -x / $x^2 = 2.33e12$ 1.3e-2 / $x^2 \approx 2.33e12$ x = 7.5e-8

pCu = 7.12

At 30.00 mL

Initial mols $Cu^{2+} = 1.00$ mmols

Added mols EDTA = 0.0400 M * 30.00 mL = 1.20 mmols

Excess EDTA = 1.20 – 1.00 mmol = 0.20 mmol

[EDTA]_{excess} = 0.20 mmol / 80.00 mL = 2.5e-3

We now have the following equilibrium to consider:

 $Cu^{2+} + EDTA \implies CuEDTA$

+x 2.5e-3+x 1.3e-2 -x

(1.3e-2 - x) / (2.5e-3+x) x = 2.33e12

 $(1.3e-2) / (2.5e-3) x \cong 2.33e12$ x = 2.2e-12

pCu = 11.65

$$\begin{aligned} ^{21} \text{ K}_{f}(\text{Fe}^{\text{III}}(\text{OOCH}_{3})^{2^{+}}) &= 10^{3.38} = 2.39\underline{8}\text{e3} \\ \text{K}_{f}(\text{Fe}^{\text{III}}(\text{OOCH}_{3})_{2^{+}}) &= 10^{7.1} = 1.2\underline{6}\text{e7} \\ \text{K}_{f}(\text{Fe}^{\text{III}}(\text{OOCH}_{3})_{3}) &= 10^{9.7} = 5.0\underline{1}\text{e9} \\ \alpha_{\text{Fe}3^{+}} &= 1 / \{1 + \beta_{1}[\text{CH}_{3}\text{OO}^{-}] + \beta_{2}[\text{CH}_{3}\text{OO}^{-}]^{2} + \beta_{3}[\text{CH}_{3}\text{OO}^{-}]^{3}\} \\ &= 1 / \{1 + 2.39\underline{8}\text{e3} [0.0100] + 1.2\underline{6}\text{e7} [0.0100]^{2} + 5.0\underline{1}\text{e9} [0.0100]^{3}\} \\ &= 1 / \{1 + 2.39\underline{8} + 1.2\underline{6}\text{e3} + 5.0\underline{1}\text{e3}\} \\ &= 1 / 6.2\underline{7}\text{e3} \\ &= 1.5\underline{9}\text{e}\text{-4} \end{aligned}$$

α_{y4-} @ pH 7.00 = 5.0e-4 (Table 13-1)

 $K_f = 10^{25.1} = 1.3e25$ (Table 13-2)

 $K_{f}'' = \alpha_{Fe3+}\alpha_{y4}K_{f} = 1.59e-4 * 5.0e-4 * 1.3e25 = 1e18$

²² <u>a] See Appendix</u> $\beta_1 = 10^{3.31} = 2.04e3$ $\beta_2 = 10^{7.23} = 1.70e7$

$$\alpha_{Ag^+} = 1/(1 + \beta_1[NH_3] + \beta_2[NH_3]^2) = 1/(1 + 2.04e3*0.100 + 1.70e7*0.100^2) = 5.88e-6$$

 $[Ag^{+}] = \alpha_{Ag+}C_{Ag+} = 5.88e-6*0.010 \text{ M} = 5.88e-8 \text{ M}$

b] $K_{f}'' = K_{f} \alpha_{A_{g}+} \alpha_{Y_{4-}} = 10^{7.32*} 5.88e - 6*0.36 = 44.2$

Initial mol Ag⁺ = 50.00-mL*0.010 M = 0.500 mmol

Added mol EDTA = 75.00-mL*0.010 M = 0.750 mmol

All Ag⁺ is complexed with EDTA with leftover EDTA

[AgY³⁻] = 0.500 mmol / 125.00-mL = 4.00e-3 M

[EDTA]_{free} = 0.250 mmol / 125.00-mL = 2.00e-3 M

 $K_{f}'' = [AgY^{3-}] / C_{Ag+} [EDTA]$

44.2 = 4.00e-3 M / C_{Ag+} 2.00e-3 M

 $C_{Ag+} = 4,52e-2$

 $[Ag^{+}] = \alpha_{Ag^{+}}C_{Ag^{+}} = 5.88e-6 * 4.52e-2 M = 2.66e-7 M$

pAg = 6.575

²³ A] Appendix I in your text has

$$\begin{split} &\log \beta_{1} = 2.18 & \beta_{1} = 151 \\ &\log \beta_{2} = 4.43 & \beta_{2} = 2.69e4 \\ &\log \beta_{3} = 6.74 & \beta_{3} = 5.50e6 \\ &\log \beta_{4} = 8.70 & \beta_{4} = 5.01e8 \\ &\alpha_{M} = 1 / \{1 + \beta_{1}[L] + \beta_{2}[L]^{2} + ... + \beta_{n}[L]^{n} \} \end{split}$$

 $\alpha_{Zn2+} = 1 / \{1 + 151[0.010] + 2.69e4[0.010]^2 + 5.50e6[0.010]^3 + 5.01e8[0.010]^4\}$ $\alpha_{Zn2+} = 1 / \{1 + 1.51 + 2.69 + 550.0 + 5010.0\}$ = 1.79e-4 $K_f = 3.2e16$ Table 13-2 $\alpha_{y4-} = 5.4e-2$ Table 13-1

$$K_f'' = K_f \alpha_{Zn2+} \alpha_{y4-} = 3.2e16 * 5.4e-2* 1.79e-4 = 3.1e11$$

$$C_{zn2+} = 0.250 \text{ mmol} / 75.0 \text{ mL} = 3.33e-3 \text{ M}$$

$$[Zn^{2+}] = \alpha_{Zn2+} C_{Zn2+} = 1.79e-4 * 3.33e-3 M$$

pZn = 6.225

C] Initial Zn²⁺ = 50.0 mL * 0.0100 M = 0.500 mmol

Added EDTA = 50.0 mL * 0.0100 M = 0.500 mmol
Initial
$$Zn^{2+}$$
 = Added EDTA \therefore eq. pt.
Initial $[ZnY^{2-}]$ = 0.500 mmol / 100.0 mL = 5.00e-3 M
 $ZnY^{2-} = C_{Zn2+} + EDTA$
5.00e-3 0 0
 $-x +x +x +x$
 $K_{f}'' = 3.1e11 = (5.00e-3 - x) / x^{2}$
 $x = C_{Zn2+}$
 $x = 1.27e-7 M$
 $[Zn^{2+}] = \alpha_{Zn2+} C_{Zn2+} = 1.79e-4 * 1.27e-7 M$

[Zn²⁺] = 2.27e-11 M

pZn = 10.64

pZn = 14.94

D] Initial $Zn^{2+} = 50.0 \text{ mL} * 0.0100 \text{ M} = 0.500 \text{ mmol}$ Added EDTA = 75.0 mL * 0.0100 M = 0.750 mmol Excess EDTA = 0.250 mmol $[ZnY^{2-}] = 0.500 \text{ mmol} / 125.0 \text{ mL} = 4.00e-3$ [EDTA] = 0.250 mmol / 125.0 mL = 2.00e-3 M $K_{f}'' = 3.1e11 = [ZnY^{2-}] / C_{zn2+}*[EDTA]$ $3.1e11 = 4.00e-3 / C_{zn2+}* 2.00e-3$ $C_{zn2+} = 6.45e-12$ $[Zn^{2+}] = \alpha_{Zn2+} C_{zn2+} = 1.79e-4 * 6.45e-12M = 1.15e-15$