5 - EDTA Titrations

Table $\mathbf{1 3 - 1}$ Values of $\alpha_{Y^{4-}}$ for
EDTA at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ and $\mu=0.10 \mathrm{M}$
$\mathbf{p H}$
0
1

Table 13-2 Formation constants for metal-EDTA complexes

$\mathbf{I o n}$	$\boldsymbol{l o g} \boldsymbol{K}_{\mathbf{f}}$	$\mathbf{I o n}$	$\boldsymbol{l o g} \boldsymbol{K}_{\mathbf{f}}$	$\mathbf{I o n}$	$\boldsymbol{l o g} \boldsymbol{K}_{\mathbf{f}}$
Li^{+}	2.79	Mr^{3+}	$25.3\left(25^{\circ} \mathrm{C}\right)$	Ce^{3+}	15.98
Na^{+}	1.66	Fe^{3+}	25.1	Pr^{3+}	16.40
$\mathrm{~K}^{+}$	0.8	Co^{3+}	$41.4\left(25^{\circ} \mathrm{C}\right)$	Nd^{3+}	16.61
Be^{2+}	9.2	Zr^{4+}	29.5	Pm^{3+}	17.0
Mg^{2+}	8.79	Hf^{4+}	$29.5(\boldsymbol{\mu}=0.2)$	Sm^{3+}	17.14
Ca^{2+}	10.69	VO^{2+}	18.8	Eu^{3+}	17.35
Sr^{2+}	8.73	VO_{2}^{+}	15.55	Gd^{3+}	17.37
Ba^{2+}	7.86	Ag^{+}	7.32	$\mathrm{~Tb}^{3+}$	17.93
Ra^{2+}	7.1	Tl^{+}	6.54	Dy^{3+}	18.30
Sc^{3+}	23.1	Pd^{2+}	$18.5\left(25^{\circ} \mathrm{C}\right.$,	Ho^{3+}	18.62
Y^{3+}	18.09			$\mu=0.2)$	Er^{3+}
La^{3+}	15.50	Zn^{2+}	16.50	18.85	
$\mathrm{~V}^{2+}$	12.7	Cd^{2+}	16.46	Tm^{3+}	19.32
Cr^{2+}	13.6	Hg^{2+}	21.7	19.51	
Mn^{2+}	13.87	Sn^{2+}	$18.3(\mu=0)$	Lu^{3+}	19.83
Fe^{2+}	14.32	$\mathrm{~Pb}^{2+}$	18.04	$17.8\left(25^{\circ} \mathrm{C}\right)$	
Co^{2+}	16.31	Al^{3+}	16.3	Cm^{3+}	$18.1\left(25^{\circ} \mathrm{C}\right)$
Ni^{2+}	18.62	Ga^{3+}	20.3	Bk^{3+}	$18.5\left(25^{\circ} \mathrm{C}\right)$
Cu^{2+}	18.80	In^{3+}	25.0	Cf^{3+}	$18.7\left(25^{\circ} \mathrm{C}\right)$
Ti^{3+}	$21.3\left(25^{\circ} \mathrm{C}\right)$	Tl^{3+}	$37.8(\mu=1.0)$	Th^{4+}	23.2
$\mathrm{~V}^{3+}$	26.0	Bi^{3+}	27.8	U^{4+}	25.8
Cr^{3+}	23.4			$\mathrm{~Np}^{4+}$	$24.6\left(25^{\circ} \mathrm{C}, \boldsymbol{\mu}=1.0\right)$

1] The conditional formation constant K_{f}^{\prime} for Ca^{2-} is related to K_{f} through which of the relationships? ${ }^{1}$
a) $\mathrm{K}_{\mathrm{f}}^{\prime}=\mathrm{K}_{\mathrm{f}} \quad$ at $\mathrm{pH}=0$
b) $K_{f}^{\prime}=\alpha_{y 4}-K_{f}$
c) $K_{f}=\alpha_{y 4}-K_{f}^{\prime}$
d) $K_{f}^{\prime}=1 / K_{f}$
e) $K_{f}^{\prime}=K_{f}^{2}$

2] In reference to EDTA titrations the symbol, $\alpha_{y 4}$, indicates which of the following? ${ }^{2}$
a) The fraction of metal chelated by EDTA
b) The concentration of EDTA in the Y^{4-} form.
c) The fraction of EDTA in the Y^{4-} form.
d) The analytical concentration of metal.
e) The fraction of EDTA not in the Y^{4-} form.

3] It is advantageous to conduct EDTA titrations of metal ions in ${ }^{3}$
a) acidic pH^{\prime} 's to assist metal ion hydrolysis
b) basic $\mathrm{pH}^{\prime} \mathrm{s}$ to prevent metal ion hydrolysis
c) basic $\mathrm{pH}^{\prime} \mathrm{s}$ to maximize Y^{4-} fraction
d) basic $\mathrm{pH}^{\prime} \mathrm{s}$ to minimize Y^{4-} fraction
e) acidic pH^{\prime} s to maximize Y^{4-} fraction

4] What is K_{f}^{\prime} for SrEDTA ${ }^{2-}$ at pH 11 ? ${ }^{4}$
5] The formal concentration of EDTA is 1.00 mM . What is the concentration of the Y^{4-} form at pH 4 ? ${ }^{5}$

6] What is the fraction of EDTA in the Y^{4-} form at pH 7.00 ? ${ }^{6}$
a) 1.00
b) $5.0 \mathrm{e}-4$
c) 0.36
d) 0.500
e) $3.3 \mathrm{e}-14$

7] What is the conditional formation constant of CaEDTA ${ }^{2-}$ at pH 10.00 ? 7
8] The fraction of free metal $\left(\alpha_{m}\right)$ in the following equilibrium can be expressed as: ${ }^{8}$

$$
\mathrm{M}+\mathrm{L}=\mathrm{ML}
$$

$\beta=[\mathrm{ML}] /[\mathrm{M}][\mathrm{L}]$
9] What is the fraction of EDTA in the Y^{4-} form at pH 5 ? ${ }^{9}$
10] Given that $\alpha_{y 4-}=3.8 \mathrm{e}-9$ at $\mathrm{pH} 4.00 \& \alpha_{y 4-}=1.9 \mathrm{e}-18$ at pH 1.00 what is the conditional formation constant for FeY^{-}at those $\mathrm{pH}^{\prime} \mathrm{s}$. $\log \mathrm{K}_{\mathrm{f}}=25.1^{10}$

11] Calculate the concentrations of free Fe^{3+} in a $0.10 \mathrm{M} \mathrm{FeY}^{-}$solution at pH 4.00 and $1.00 .{ }^{11}$
12] Which of the three regions below is where moles of added EDTA equals moles of metal M^{n+} ? ${ }^{12}$

Region 3

13] For Ag^{+}in the presence of $\mathrm{NH}_{3}, \log \beta_{1}=3.31$ and $\log \beta_{2}=7.23$. The fraction of free Ag^{+}in solution can be calculated from: ${ }^{13}$

$$
\begin{aligned}
& \text { a] } \alpha_{\mathrm{Ag}^{+}}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\} \\
& \text { b] } \alpha_{\mathrm{Ag}^{+}}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]\right\} \\
& \text { c] } \alpha_{\mathrm{Ag}^{+}}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]^{2}+\beta_{2}\left[\mathrm{NH}_{3}\right]\right\} \\
& \text { d] } \alpha_{\mathrm{Ag}^{+}}=1 /\left\{1+\beta_{1}+\beta_{2}\right\} \\
& \text { e] } \alpha_{\mathrm{Ag}_{+}}=\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\}
\end{aligned}
$$

14] Calculate the concentration of free Ca^{2+} when $\left[\mathrm{Y}^{4-}\right]=4.5 \mathrm{e}-3 \mathrm{M}$, and $\left[\mathrm{CaY}^{2-}\right]=9.0 \mathrm{e}-3$, at pH 10. $\mathrm{Kf}_{\mathrm{f}}{ }^{\prime}=1.8 \mathrm{e} 10 .{ }^{14}$

15] A solution of $50.0-\mathrm{mL}$ of $1.00 \times 10^{-3} \mathrm{M} \mathrm{NiCl}_{2}$ (aq) is titrated with $1.00 \times 10^{-3} \mathrm{M}$ EDTA in a solution of $0.100 \mathrm{M} \mathrm{NH}_{3}$ at pH 11.00 . What is pNi if $25.0-\mathrm{mL}$ of the titrant solution is added? Note that $\alpha_{\mathrm{Ni}^{2}+}=1.34 \times 10^{-4}$ at $0.100 \mathrm{M} \mathrm{NH}_{3} .{ }^{15}$

16] What is $\mathrm{K}_{\mathrm{f}}{ }^{\prime \prime}$ for the NiEDTA ${ }^{2-}$ complex in $0.100 \mathrm{NH}_{3}$ at pH 11 ? ${ }^{16}$
17] a] What is [NiEDTA ${ }^{2-}$] if $75.0-\mathrm{mL}$ of titrant is added to the NiCl_{2} solution in the above problem?
b] Which is true if $75.0-\mathrm{mL}$ of $1.00 \times 10^{-3} \mathrm{M}$ EDTA titrant is added to the $50.0-\mathrm{mL}$ of $1.00 \times 10^{-3} \mathrm{M}$ NiCl_{2} solution in $0.1 \mathrm{M} \mathrm{NH}_{3}$? Assume equilibrium conditions. ${ }^{17}$
a) $\left[\mathrm{Ni}^{2+}\right]=[E D T A]$
b) $\left[\mathrm{NiEDTA}^{2-}\right]>$ [EDTA]
c) $\left[\right.$ NiEDTA $\left.{ }^{2-}\right]=[E D T A]$
d) $\left[\mathrm{Ni}^{2+}\right]>$ EDTA $]$

18] A] Calculate the concentration of free Mg^{2+} in a solution of 50.0 mL of $0.0500 \mathrm{M} \mathrm{Mg}^{2+}$ when 5.00 mL of 0.0500 M EDTA is added at pH 10.00 . ${ }^{18}$

$$
\mathrm{Mg}^{2+}+\mathrm{EDTA}=\mathrm{MgY}^{2-} \quad \mathrm{K}_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{y} 4} \mathrm{~K}_{\mathrm{f}}=0.36 * 6.2 \mathrm{e} 8=2.2 \mathrm{e} 8
$$

B] When 50.0 mL of 0.0500 M EDTA is added.
C] When 51.00 of 0.0500 M EDTA is added.
19] Calculate pCa if 20.0 mL of 0.050 M of EDTA is added to 15.0 mL of $0.050 \mathrm{M} \mathrm{Ca}^{2+}$ at pH 9.0 . 19

20] Calculate pCu for the titration curve for 50.00 mL of $0.0200 \mathrm{FCu}^{2+}$ at pH 5.00 when $0,10.00$, $25.00,30.00 \mathrm{~mL}$ of 0.0400 M EDTA solution are added to the titration mixture. ${ }^{20}$

21] Calculate the conditional formation constant of $\mathrm{Fe}^{\text {III }}(\mathrm{Y})^{-}$(where $\mathrm{Y}=\mathrm{EDTA}$) in presence of $0.0100 \mathrm{M} \mathrm{NaOOCH}_{3}$ at pH 7.00 , if $\mathrm{C}_{\text {Fe3+ }}=1.00 \mathrm{e}-4 \mathrm{M}$, and [EDTA] $=1.50 \mathrm{e}-4 \mathrm{M} .{ }^{21}$

22] a] Calculate the concentration of free Ag^{+}for $0.010 \mathrm{~F} \mathrm{Ag}^{+}$in $0.10 \mathrm{M} \mathrm{NH}_{3}$.
b] Calculate pAg when a $50.00-\mathrm{mL}$ of 0.010 M (or F) Ag^{+}is mixed with $75.00-\mathrm{mL}$ of 0.010 M EDTA at pH 10.00 in $0.10 \mathrm{M} \mathrm{NH}_{3} .{ }^{22}$

23] 50 mL of $0.010 \mathrm{M} \mathrm{Zn}^{2+}$ is titrated with 0.010 M EDTA in $0.010 \mathrm{M} \mathrm{NH}_{3}$ at $\mathrm{pH} 9.00 .{ }^{23}$
A] calculate $\mathrm{K}_{\mathrm{f}}{ }^{\prime \prime}$.
B] Calculate the pZn when 50.0 mL of $0.0100 \mathrm{M} \mathrm{Zn}^{2+}$ is added to 25.0 mL of 0.0100 M EDTA in $0.010 \mathrm{M} \mathrm{NH}_{3}$ at pH 9.00 .

C] Calculate the pZn when 50.0 mL of $0.0100 \mathrm{M} \mathrm{Zn}^{2+}$ is added to 50.0 mL of 0.0100 M EDTA in $0.010 \mathrm{M} \mathrm{NH}_{3}$ at pH 9.00 .

D] Calculate the pZn when 50.0 mL of $0.0100 \mathrm{M} \mathrm{Zn}^{2+}$ is added to 75.0 mL of 0.0100 M EDTA in $0.010 \mathrm{M} \mathrm{NH}_{3}$ at pH 9.00 .

Answers

${ }^{1} K_{f}^{\prime}=\alpha_{y 4}-K_{f}$
${ }^{2}$ The fraction of EDTA in the Y^{4-} form.
${ }^{3}$ basic pH^{\prime} s to maximize Y^{4-} fraction
${ }^{4} K_{f}^{\prime}=\alpha_{y 4}-K_{f}=0.85 * 5.4 \mathrm{e} 8=4.6 \mathrm{e} 8$
${ }^{5}\left[Y^{4-}\right]=3.8 e-9 * 1.00 e-3 M=3.8 e-12 M$
${ }^{6} B$
${ }^{7} K_{f}^{\prime}=0.36 * 10^{10.69}=1.8 \mathrm{e}-10$
${ }^{8} \alpha_{m}=\frac{1}{1+\beta[L]}$
${ }^{9} 3.7 \mathrm{e}-7$
${ }^{10} \mathrm{~K}_{\mathrm{f}}=\left[\mathrm{FeY}^{-}\right] /\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{Y}^{4-}\right] \quad\left[\mathrm{Y}^{4-}\right]=\alpha_{y 4}[$ [EDTA $]$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{f}}=\left[\mathrm{FeY}^{-}\right] /\left[\mathrm{Fe}^{3+}\right] \alpha_{\mathrm{y} 4}[\mathrm{EDTA}] \\
& \mathrm{K}_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{y} 4} \mathrm{~K}_{\mathrm{f}}=\left[\mathrm{FeY}^{-}\right] /\left[\mathrm{Fe}^{3+}\right][\mathrm{EDTA}] \\
& \mathrm{Fe}^{3+}+\mathrm{EDTA}^{3}=\mathrm{FeY}^{-} \quad \mathrm{K}_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{y} 4} \mathrm{~K}_{\mathrm{f}}
\end{aligned}
$$

$$
\text { At } \mathrm{pH} 4.00 \quad \mathrm{~K}_{\mathrm{f}}^{\prime}=\alpha_{\mathrm{y} 4}-\mathrm{K}_{\mathrm{f}}=3.8 \mathrm{e}-9 * 1.3 \mathrm{e} 25=4.9 \mathrm{e} 16
$$

At pH $1.00 \quad \mathrm{~K}_{\mathrm{f}}{ }^{\prime}=1.9 \mathrm{e}-18 * 1.3 \mathrm{e} 25=2.5 \mathrm{e} 7$

11

$$
\begin{array}{ll}
\mathrm{Fe}^{3+}+\mathrm{EDTA}= & \mathrm{FeY}^{-} \\
0 & 0 \\
+x \quad+x & -x \\
0.10-\mathrm{x} / \mathrm{x}^{2}=\mathrm{K}_{\mathrm{f}}^{\prime} &
\end{array}
$$

$x=1.4 \mathrm{e}-9 @ \mathrm{pH} 4.00$
$\mathrm{x}=6.3 \mathrm{e}-5$ @ pH 1.00
${ }^{12}$ Region 2
${ }^{13} \alpha_{\mathrm{Ag}^{+}}=1 /\left\{1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right\}$
${ }^{14} 1.8 \mathrm{e} 10=[9.0 \mathrm{e}-3] /\left[\mathrm{Ca}^{2+}\right][4.5 \mathrm{e}-3] \quad\left[\mathrm{Ca}^{2+}\right]=1.11 \mathrm{e}-10$
${ }^{15}$ Initial mol Ni ${ }^{2+}=50.0-\mathrm{mL}^{*} 1.00 \mathrm{e}-3 \mathrm{M}=0.0500 \mathrm{mmol}$
Added mol EDTA
$=25.0-\mathrm{mL}^{*} 1.00 \mathrm{e}-3 \mathrm{M}$
$=0.0250 \mathrm{mmol}$
Excess $\mathrm{Ni}^{2+}=0.0500-0.0250 \mathrm{mmol}=0.0250 \mathrm{mmol}$
$\mathrm{C}_{\mathrm{Ni} 2+}=0.0250 \mathrm{mmol} / 75.0-\mathrm{mL}$
$=3.33 \mathrm{e}-4 \mathrm{M}$
Free $\left[\mathrm{Ni}^{2+}\right]=\alpha_{\mathrm{Ni} 2+} \mathrm{C}_{\mathrm{Ni} 2+}=1.34 \mathrm{e}-4 * 3.33 \mathrm{e}-4=4.47 \mathrm{e}-8 \mathrm{M}$
$\mathrm{pNi}=7.350$
${ }^{16} \mathrm{~K}_{\mathrm{f}}{ }^{\prime \prime}=\alpha_{\mathrm{Ni} 2+} \alpha_{\mathrm{Y} 4-} * \mathrm{~K}_{\mathrm{f}}=1.34 \mathrm{e}-4 * 0.85 * 10^{18.62}=4.7 \mathrm{e} 14$
${ }^{17}$ Initial mol Ni ${ }^{2+}=50.0-\mathrm{mL}^{*} 1.00 \mathrm{e}-3 \mathrm{M}=0.0500 \mathrm{mmol}$
Added mol EDTA $=75.0-\mathrm{mL}^{*} 1.00 \mathrm{e}-3 \mathrm{M}=0.0750 \mathrm{mmol}$
[NiEDTA] $=\mathbf{0 . 0 5 0 0} \mathbf{m m o l} / \mathbf{1 2 5 . 0}-\mathrm{mL}=4.00 \mathrm{e}-4 \mathrm{M}$
Excess EDTA $=0.0250 \mathrm{mmol} / 125.0-\mathrm{mL}=2.00 \mathrm{e}-4 \mathrm{M}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{f}}^{\prime \prime}=[\mathrm{NiEDTA}] / \mathrm{C}_{\mathrm{Ni}}{ }^{*}[\text { EDTA }]=4.00 \mathrm{e}-4 / \mathrm{C}_{\mathrm{Ni}} * 2.00 \mathrm{e}-4=4.7 \mathrm{e} 14 \\
& \mathrm{C}_{\mathrm{Ni}}=4.3 \mathrm{e}-15 \\
& {\left[\mathrm{Ni}^{2+}\right]=1.34 \mathrm{e}-4 * 4.3 \mathrm{e}-14=5.8 \mathrm{e}-18 \mathrm{M}} \\
& \mathbf{p N i}=\mathbf{1 7 . 2 4}
\end{aligned}
$$

Therefore $\left[\right.$ NiEDTA ${ }^{2-}$] $>$ [EDTA]
$\left.{ }^{18} \mathrm{~A}\right]$ Initial $\mathrm{Mg}^{2+}=0.0500 \mathrm{M} * 50.0 \mathrm{~mL}=2.50 \mathrm{mmol}$
Added EDTA $=0.0500 * 5.00 \mathrm{~mL}=0.25 \mathrm{mmol}$

$\mathrm{Mg}^{2+}+$	EDTA $=$	MgY^{2-}
2.50	0.25	0
-0.25	-0.25	+0.25
2.25	0	0.25

$\left[\mathrm{Mg}^{2+}\right]=2.25 \mathrm{mmol} / 55.00 \mathrm{~mL}=0.0409 \mathrm{pMg}=1.39$
B] added EDTA $=0.0500 \mathrm{M}^{*} 50.0 \mathrm{~mL}=2.50 \mathrm{mmol}$

$\mathrm{Mg}^{2+}+$ EDTA $=$	MgY^{2-}	
2.50	2.50	0
-2.50	-2.50	+2.50
0	0	2.50

$\left[\mathrm{Mg}^{2+}\right]=2.50 \mathrm{mmol} / 100 \mathrm{~mL}=0.0250 \mathrm{M}$

$$
\mathrm{Mg}^{2+}+\text { EDTA }=\mathrm{MgY}^{2-}
$$

$\mathrm{K}_{\mathrm{f}}=4.9 \mathrm{e} 10$
$K_{f}^{\prime}=5.4 \mathrm{e}-2 * 4.9 \mathrm{e} 10=2.6 \mathrm{e} 9$
$2.6 \mathrm{e} 9=2.1 \mathrm{e}-2 \mathrm{M} /\left[\mathrm{Ca}^{2+}\right]^{*} 7.1 \mathrm{e}-3 \mathrm{M}\left[\mathrm{Ca}^{2+}\right]=1.1 \mathrm{e}-9 \mathrm{M}$
$\mathrm{pCa}=8.94$
${ }^{20}$ At $0.00 \quad\left[\mathrm{Cu}^{2+}\right]=0.020 \mathrm{M} \quad \mathrm{pCu}=1.70$
At 10.00 mL
Initial mols $\mathrm{Cu}^{2+}=0.0200 \mathrm{M} * 50.00 \mathrm{~mL}=1.00 \mathrm{mmols}$
Added mols EDTA $=0.040 \mathrm{M} * 10.00 \mathrm{~mL}=0.40 \mathrm{mmols}$
Excess $\mathrm{Cu}^{2+}=1.00 \mathrm{mmol}-0.40 \mathrm{mmol}=0.60 \mathrm{mmol}$
$\left[\mathrm{Cu}^{2+}\right]_{\text {free }}=0.60 \mathrm{mmol} / 60.00 \mathrm{~mL}=0.010 \mathrm{M}$
$\mathrm{pCu}=2.00$
At $\mathbf{2 5 . 0 0} \mathbf{~ m L}$
Initial mols $\mathrm{Cu}^{2+}=1.00 \mathrm{mmols}$
Added mols EDTA $=0.040 \mathrm{M} * 25.00 \mathrm{~mL}=1.0 \mathrm{mmols}$
This is the equivalence point therefore the formal concentration of CuEDTA is
[CuEDTA] $=1.0 \mathrm{mmols} / 75.00 \mathrm{~mL}=1.3 \mathrm{e}-2 \mathrm{M}$
Now Calculate free Cu^{2+} :
$\mathrm{Cu}^{2+}+$ EDTA \rightleftarrows CuEDTA
$+x \quad+x \quad 1.3 \mathrm{e}-2-\mathrm{x}$
$K_{f}=6.3 e 18$
@ pH 5.00
$\alpha_{\mathrm{Y} 4}=3.7 \mathrm{e}-7$
$K_{f}^{\prime}=\alpha_{Y 4-} K_{f}=3.7 \mathrm{e}-7 * 6.3 \mathrm{e} 18=2.3 \underline{3} \mathrm{e} 12$
$1.3 \mathrm{e}-2-\mathrm{x} / \mathrm{x}^{2}=2.33 \mathrm{e}$ e12
$1.3 \mathrm{e}-2 / \mathrm{x}^{2} \cong 2.3 \underline{3} \mathrm{e} 12$

$$
x=7.5 \mathrm{e}-8
$$

$\mathrm{pCu}=7.12$

At $\mathbf{3 0 . 0 0} \mathbf{~ m L}$

Initial mols $\mathrm{Cu}^{2+}=1.00 \mathrm{mmols}$
Added mols EDTA $=0.0400 \mathrm{M} * 30.00 \mathrm{~mL}=1.20 \mathrm{mmols}$
Excess EDTA $=1.20-1.00 \mathrm{mmol}=0.20 \mathrm{mmol}$
$[\text { EDTA }]_{\text {excess }}=0.20 \mathrm{mmol} / 80.00 \mathrm{~mL}=2.5 \mathrm{e}-3$
We now have the following equilibrium to consider:

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+\text { EDTA } \rightleftarrows \text { CuEDTA } \\
& +\mathrm{x} \quad 2.5 \mathrm{e}-3+\mathrm{x} \quad 1.3 \mathrm{e}-2-\mathrm{x}
\end{aligned}
$$

$(1.3 e-2-x) /(2.5 e-3+x) x=2.3 \underline{3} e 12$
$(1.3 e-2) /(2.5 e-3) x \cong 2.33 \mathrm{e}-12 \quad x=2.2 e-12$

```
pCu=11.65
```

$$
\begin{aligned}
& { }^{21} \mathrm{~K}_{\mathrm{f}}\left(\mathrm{Fe}^{\text {III }}\left(\mathrm{OOCH}_{3}\right)^{2+}\right)=10^{3.38}=2.39 \underline{8} \mathrm{e} 3 \\
& \quad \mathrm{~K}_{\mathrm{f}}\left(\mathrm{Fe}^{\text {III }}\left(\mathrm{OOCH}_{3}\right)_{2}{ }^{+}\right)=10^{7.1}=1.2 \underline{6} \mathrm{e} 7 \\
& \mathrm{~K}_{\mathrm{f}}\left(\mathrm{Fe}^{\text {III }}\left(\mathrm{OOCH}_{3}\right)_{3}\right)=10^{9.7}=5.0 \underline{1} \mathrm{e} 9 \\
& \alpha_{\mathrm{Fe} 3+} \\
& \\
& =1 /\left\{1+\beta_{1}\left[\mathrm{CH}_{3} \mathrm{OO}\right]+\beta_{2}\left[\mathrm{CH}_{3} \mathrm{OO}^{-}\right]^{2}+\beta_{3}\left[\mathrm{CH}_{3} \mathrm{OO}^{-}\right]^{3}\right\} \\
& \\
& =1 /\left\{1+2.39 \underline{8} \mathrm{e} 3[0.0100]+1.2 \underline{6} \mathrm{e} 7[0.0100]^{2}+5.0 \underline{1} \mathrm{e} 9[0.0100]^{3}\right\} \\
& \\
& =1 /\{1+2.39 \underline{8}+1.2 \underline{6} \mathrm{e} 3+5.0 \underline{1} \mathrm{e} 3\} \\
& \quad=1 / 6.2 \underline{7} \mathrm{e} 3 \\
& \quad=1.5 \underline{9} \mathrm{e}-4
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{y 4} @ \mathrm{pH} 7.00=5.0 \mathrm{e}-4 \text { (Table 13-1) } \\
& \mathrm{K}_{\mathrm{f}}=10^{25.1}=1.3 \mathrm{e} 25 \text { (Table 13-2) } \\
& \mathrm{K}_{\mathrm{f}}{ }^{\prime \prime}=\alpha_{\mathrm{Fe} 3+} \alpha_{\mathrm{y} 4}-\mathrm{K}_{\mathrm{f}}=1.5 \underline{9} \mathrm{e}-4 * 5.0 \mathrm{e}-4 * 1 . \underline{\mathrm{e}} \mathrm{e} 25=1 \mathrm{e} 18 \\
& { }^{22} \text { a] See Appendix } \quad \beta_{1}=10^{3.31}=2.04 \mathrm{e} 3 \quad \beta_{2}=10^{7.23}=1.70 \mathrm{e} 7 \\
& \alpha_{\mathrm{Ag}+}=1 /\left(1+\beta_{1}\left[\mathrm{NH}_{3}\right]+\beta_{2}\left[\mathrm{NH}_{3}\right]^{2}\right)=1 /\left(1+2.04 \mathrm{e} 3 * 0.100+1.70 \mathrm{e} 7 * 0.100^{2}\right)=5.88 \mathrm{e}-6 \\
& {\left[\mathrm{Ag}^{+}\right]=\alpha_{\mathrm{Ag}^{+}} \mathrm{C}_{\mathrm{Ag}+}=5.88 \mathrm{e}-6^{*} 0.010 \mathrm{M}=5.88 \mathrm{e}-8 \mathrm{M}} \\
& \text { b] } K_{\underline{f}}^{\prime \prime}=K_{f} \underline{\alpha}_{A g+} \underline{\alpha_{Y 4-}}=10^{7.32 * 5.88 \mathrm{e}-6 * 0.36=44.2} \\
& \text { Initial mol Ag }{ }^{+}=50.00-\mathrm{mL}^{*} 0.010 \mathrm{M}=0.500 \mathrm{mmol} \\
& \text { Added mol EDTA }=75.00-\mathrm{mL}^{*} 0.010 \mathrm{M}=0.750 \mathrm{mmol} \\
& \text { All } \mathrm{Ag}^{+} \text {is complexed with EDTA with leftover EDTA } \\
& {\left[\mathrm{AgY}^{3-}\right]=0.500 \mathrm{mmol} / 125.00-\mathrm{mL}=4.00 \mathrm{e}-3 \mathrm{M}} \\
& {[E D T A]_{\text {free }}=0.250 \mathrm{mmol} / 125.00-\mathrm{mL}=2.00 \mathrm{e}-3 \mathrm{M}} \\
& \left.\mathrm{~K}_{\mathrm{f}}{ }^{\prime \prime}=\left[\mathrm{Ag}^{3-}\right] / \mathrm{C}_{\mathrm{Ag}+} \text { [EDTA }\right] \\
& 44.2=4.00 \mathrm{e}-3 \mathrm{M} / \mathrm{C}_{\mathrm{Ag}+} 2.00 \mathrm{e}-3 \mathrm{M} \\
& \mathrm{C}_{\mathrm{Ag}+}=4,52 \mathrm{e}-2 \\
& {\left[\mathrm{Ag}^{+}\right]=\alpha_{\mathrm{Ag}^{+}} \mathrm{C}_{\mathrm{Ag}^{+}}=5.88 \mathrm{e}-6 * 4.52 \mathrm{e}-2 \mathrm{M}=2.66 \mathrm{e}-7 \mathrm{M}} \\
& \mathrm{pAg}=6.575 \\
& { }^{23} \text { A] Appendix I in your text has }
\end{aligned}
$$

$$
\begin{array}{ll}
\log \beta_{1}=2.18 & \beta_{1}=151 \\
\log \beta_{2}=4.43 & \beta_{2}=2.69 e 4 \\
\log \beta_{3}=6.74 & \beta_{3}=5.50 e 6 \\
\log \beta_{4}=8.70 & \beta_{4}=5.01 e 8 \\
\alpha_{M}=1 /\left\{1+\beta_{1}[L]+\beta_{2}[L]^{2}+\ldots+\beta_{n}[L]^{n}\right\}
\end{array}
$$

$$
\begin{aligned}
& \alpha_{Z n 2+}=1 /\left\{1+151[0.010]+2.69 e 4[0.010]^{2}+5.50 e 6[0.010]^{3}+5.01 e 8[0.010]^{4}\right\} \\
& \alpha_{z n 2+}=1 /\{1+1.51+2.69+550.0+5010.0\} \\
& =1.79 e-4 \\
& K_{f}=3.2 e 16 \quad \text { Table } 13-2 \\
& \alpha_{y 4-}=5.4 e-2 \quad \text { Table 13-1 } \\
& K_{f}^{\prime \prime}=K_{f} \alpha_{Z n 2+} \alpha_{y 4-}=3.2 e 16 * 5.4 e-2 * 1.79 e-4=3.1 e 11
\end{aligned}
$$

B] Initial $\mathrm{Zn}^{2+}=50.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.500 \mathrm{mmol}$
Added EDTA $=25.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.250 \mathrm{mmol}$
Excess $\mathrm{Zn}^{2+}=0.500-0.250=0.250 \mathrm{mmol}$ $C_{\text {zn2 }}=0.250 \mathrm{mmol} / 75.0 \mathrm{~mL}=3.33 \mathrm{e}-3 \mathrm{M}$
$\left[Z n^{2+}\right]=\alpha_{Z n 2+} C_{z n 2+}=1.79 e-4 * 3.33 e-3 \mathrm{M}$
$p Z n=6.225$
C] Initial $\mathrm{Zn}^{2+}=50.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.500 \mathrm{mmol}$
Added EDTA $=50.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.500 \mathrm{mmol}$
Initial $\mathrm{Zn}^{2+}=$ Added EDTA \therefore eq. pt.
Initial $\left[Z n Y^{2-}\right]=0.500 \mathrm{mmol} / 100.0 \mathrm{~mL}=5.00 \mathrm{e}-3 \mathrm{M}$
$Z n Y^{2-}=C_{Z n 2+}+E D T A$
5.00e-3 00
$-x \quad+x \quad+x$
$K_{f}^{\prime \prime}=3.1 e 11=(5.00 e-3-x) / x^{2}$
$x=C_{z n 2+}$
$x=1.27 e-7 \mathrm{M}$
$\left[Z n^{2+}\right]=\alpha_{Z n 2+} C_{z n 2+}=1.79 e-4 * 1.27 e-7 \mathrm{M}$

$$
\left[Z n^{2+}\right]=2.27 e-11 \mathrm{M}
$$

$p Z n=10.64$
D] Initial $\mathrm{Zn}^{2+}=50.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.500 \mathrm{mmol}$

$$
\begin{aligned}
& \text { Added EDTA }=75.0 \mathrm{~mL} * 0.0100 \mathrm{M}=0.750 \mathrm{mmol} \\
& \text { Excess EDTA }=0.250 \mathrm{mmol} \\
& {\left[Z n Y^{2-}\right]=0.500 \mathrm{mmol} / 125.0 \mathrm{~mL}=4.00 \mathrm{e}-3} \\
& {[E D T A]=0.250 \mathrm{mmol} / 125.0 \mathrm{~mL}=2.00 e-3 \mathrm{M}} \\
& K_{f}^{\prime \prime}=3.1 e 11=\left[Z n Y^{2-}\right] / C_{z n 2+} *[E D T A] \\
& 3.1 e 11=4.00 e-3 / C_{z n 2+} * 2.00 e-3 \\
& C_{z n 2+}=6.45 e-12 \\
& {\left[Z n^{2+}\right]=\alpha_{Z n 2+} C_{z n 2+}=1.79 e-4 * 6.45 e-12 \mathrm{M}=1.15 \mathrm{e}-15}
\end{aligned}
$$

$$
p Z n=14.94
$$

