

Set ready for $5^{\text {th }}$ Srade Math with Ms. Murano!

In this packet you will find a review of the most important topics you learned in $4^{\text {th }}$ Grade Math this year. Reviewing these topics over the summer will help you be prepared for $5^{\text {th }}$ Grade Math in September!

There is a brief review of each important topic with problems that are solved for you to use to refresh your memory. In total, there are 100 questions for you to answer and they are separated into 7 groups. My suggestion is to try to complete one group of problems each week so that you can space them out over the summer.

I will be collecting these summer packets on the first day of school and they will count as a grade, so make sure you show all of your work! I can't wait to meet you all in September!

fappy Reviewing!!!!

Adding Whole Numbers

I. Write the problem vertically, lining up the numbers to the right.
2. Add the ones digits of the numbers. If the sum is 10 or more, carry the tens digit and write the ones digit in the answer.
3. Repeat with the tens digits. Be sure to add in any carried digits, too!
4. Continue working right to left until there are no more digits to add.
ex: $5,938+746$

$\rightarrow 6,684$

Subtracting Whole Numbers

I. Write the problem vertically, lining up the numbers to the right.
2. Subtract the ones digits of the numbers. If the top digit is less than the bottom digit, borrow. (Cross out the digit next to it and decrease it by one. Add 10 to the ones digit.) Then subtract the bottom digit from the new top one.
3. Repeat with the tens digits of the numbers.
4. Continue working right to left until there are no more digits to subtract.
ex: 458-268
$\begin{array}{r}315 \\ -48 \\ -268 \\ \hline 190\end{array}$
$\rightarrow \quad 190$

Rounding Whole Numbers

I. Keep all digits to the left of the place you are rounding the same.
2. If the digit to the right of the rounding digit is less than 5 , keep the rounding digit the same. If it's 5 or greater, increase the rounding digit by 1 .
3. Change all places to the right of the digit you are rounding to 0 .
ex: round 34,647 to the nearest hundred

The 6 is in the hundreds place.

Keep the 34 the same.
After the 6 is a 4 , which is less than 5 , so the 6 stays the same and the numbers after it turn to zeroes.
$\rightarrow \quad 34,600$

Find each sum or difference.

I. $89+74$	2. $627+913$	$3.723+11$
$4.2,354+3,728$	$5.1,925+89$	$6.7,627+836$
$7.53-31$	$8.682-426$	$9.844-79$
$10.2,365-1,299$	$11.3,014-45$	

Round the number 245,382 to the nearest given place value.

13. hundred	14. ten-thousand	15. thousand	16. ten

Multiplying by l-Digit Numbers
I. Write the problem vertically, with the greater number on top. Be sure to line up the numbers to the right.
2. Multiply the bottom number by the ones digit of the top
number. Write down the ones digit of that answer and carry
2. Multiply the bottom number by the ones digit of the top
number. Write down the ones digit of that answer and carry the tens digit.
3. Multiply the bottom number by the tens digit of the top number. If you carried a digit from the first product, be sure to add it to you your new product. Write down the ones digit of the answer and carry the tens digit.

$$
\text { ex: } 892 \times 6
$$

4. Repeat with any remaining digits of the top number, working right to left.

Multiplying Two 2-Digit Numbers
I. Write the problem vertically. Be sure to line up the numbers to the right.
2. Multiply the ones digit of the bottom number by each digit of the top number, right to left, (as explained in the multiplying by I-digit numbers section above).
3. Bring down a zero.
4. Multiply the tens digit of the bottom number by each digit of the top number, right to left, (as explained in the multiplying ex: 76×24 by I-digit numbers section above).
5. Add the two products together to get your final answer.

$$
\begin{array}{r}
1 \\
2 \\
76 \\
\times 24 \\
\hline 304 \\
+1520 \\
\hline 1824
\end{array}
$$

$$
\rightarrow \quad 1,824
$$

Find each product.

17.24×7	18.96×3	19.57×2
20.845×5	21.910×8	22.341×6
$23.1,387 \times 4$	$24.8,452 \times 9$	$25.5,023 \times 8$
26.32×20		

Dividing with l-Digit Divisors

I. Write out the long division problem with the first number (dividend) underneath the division symbol and the second number (divisor) to the left of the division symbol.
2. Divide the divisor into the smallest part of the dividend it can go into and write the number of times it can go in on top of the division symbol.
3. Multiply the number on top by the divisor and write the product under the number you divided into in step 2.
4. Subtract your product from the number above it.
ex: $6,413 \div 9$

5. Bring down the next digit of the dividend.
6. Repeat steps 2-5 until there is nothing left to bring down.
7. If your last subtraction answer is not zero, write the remainder on top.

Checking Division Answers Using Multiplication

I. Multiply your quotient (not including the remainder) by the divisor.
2. Add your remainder to the product you get.
3. Make sure the answer you get is the same number as the dividend in the original problem.
ex: $6,413 \div 9=712$ R 5

Find each quotient. Check your answers using multiplication.

32. $95 \div 6$	$33.58 \div 2$	$34.86 \div 3$
$35.232 \div 4$	$36.512 \div 7$	$37.203 \div 8$
$38.625 \div 5$	$39.442 \div 9$	$40.102 \div 3$
$41.2,304 \div 6$		

Greatest Common Factor

Factors are numbers that can be multiplied together to equal a given number.

To find the greatest common factor (GCF) of 2 or more numbers:
I. List all the factors of each number.
2. Find the largest number that is a factor of each number.
ex: find the GCF of $12 \& 15$

$$
\begin{aligned}
12= & 1 \times 12,2 \times 6,3 \times 4 \\
& 12: 1,2,3,4,6,12 \\
15= & 1 \times 15,3 \times 5
\end{aligned}
$$

15: 1, (3) 5,15

$$
\text { GCF }=3
$$

Least Common Multiple

Multiples are numbers that can be divided by a given number without a remainder.

To find the least common multiple (LCM) of 2 or more numbers:
I. List the first several multiples of each number.
2. Find the smallest number that is a multiple of each number.
ex: find the LCM of 6\&8

8: $8,16,24,32,40$

$$
L C M=24
$$

Find the greatest common factor of each pair or group of numbers.

$44.20 \& 15$	$45.12 \& 18$	$46.24 \& 30$	$47.22 \& 28$
$48.20 \& 40$	$49.18 \& 27$	$50.6,8, \& 12$	$51.12,18, \& 24$

Find the least common multiple of each pair or group of numbers

52. $8 \& 10$	$53.9 \& 6$	54.812	55.788
$56.9 \& 12$	$57.10 \& 15$	$58.6,9, \& 12$	$59.4,6, \& 10$

Simplifying Fractions

1. Divide the numerator and denominator by a common factor.
2. Repeat until the only common factor of the numerator and denominator is I.
ex: simplify $\frac{10}{12}$
you can divide both 10 and 12 by 2

$$
\frac{10 \div 2}{12 \div 2}
$$

the only number you can divide both 5 and 6 by is I, so you are done!

Comparing Fractions

I. Find a common denominator for the fractions by finding a common multiple of the two denominators.
2. For each fraction, determine what you multiplied the denominator by to get that common denominator, and then multiply the numerator by that same number.
3. Now that the fractions are rewritten with common denominators, compare the two fractions. The fraction with the larger numerator is greater.
4. Use the appropriate symbol to compare the fractions. <: less than, >: greater than, =: equal to
ex: compare: $\frac{3}{4} \circlearrowleft \frac{5}{6}$
12 is a multiple of both 4 and 6

$$
\begin{gathered}
\frac{3}{4} \times 3 \times \frac{9}{=} \frac{9}{12} \quad \\
\\
\\
\\
\frac{9}{12}<\frac{10}{6} \times 2 \times 210 \\
=\frac{12}{=}
\end{gathered}
$$

9 is smaller than 10 , so the l^{st} fraction is LESS THAN the $2^{\text {nd }}$ fraction

Simplify each fraction.

$60 . \frac{9}{12}$	$61 . \frac{6}{8}$	$62 \cdot \frac{6}{15}$	$63 \cdot \frac{4}{8}$
$64 . \frac{8}{24}$	$65 \cdot \frac{3}{12}$	$66 \cdot \frac{2}{10}$	$67 \cdot \frac{10}{30}$

Compare each pair of fractions using $<$,$\rangle , or = by renaming them with a common$ denominator.

68.	$\frac{3}{5} \longrightarrow \frac{2}{10}$	$69 . \quad \frac{1}{4} \longrightarrow \frac{1}{6}$	70.

Geometric Figures

Point: a location	
Line: a straight line made up of points that extends forever in both directions	
Ray: a part of a line with one endpoint that extends forever in one direction	
Angle: two rays with a common endpoint	
Right Angle: an angle with a measure of 90°	
Acute Angle: an angle with a measure less than 90°	
Parallel Lines: lines that never meet and are always the same	
distance apart	

Identify each geometric figure.

77.	78.	79.	80.
81.	82.	83.	84.

Draw your own example of each geometric figure.

85. obtuse angle	86. ray	87. acute angle	88. parallel lines

Use a geometry term to identify the bold part of each triangle.

Solve each word problem.

92. Tina left her house at 6:45 AM. She came home at 1:35 PM. How long was she out of the house?	93. Greg made $\$ 18$ per hour doing yardwork. If he worked for 6 hours, how much money did he make?	94. Mrs. Appleton baked 24 cookies. If she split the cookies evenly among her 5 children, how many cookies did each child get? How many cookies were leftover?
95. If Tyler is currently 51 inches tall, how many inches more does he need to grow to be 5 feet tall?	96. 24 out of the 30 students in Mr. Willow's class ride the bus to school. What fraction of the class does not ride the bus? Express your answer in simplest form.	97. Xavier played video games for I hour and 45 minutes before he went to bed. If he went to bed at $9: 00 \mathrm{PM}$, what time did he start playing video games?
98. Hot dogs come in packages of 12. Hot dog buns come in packages of 8 . What is the least number of hot dogs ε buns you can buy so that you have the same number of each?	99. Joelle makes $\$ 9$ each hour she babysits. If a new phone costs \$112, how many hours must she babysit so that she has enough money to buy the phone?	100. Heather goes to ballet three times a week for 30 minutes each time. She tap dances twice a week for 45 minutes each time. How much time in all does she dance per week?

