
5 Hyperbolic Geometry

5.1 Saccheri, Lambert and Absolute Geometry

As evidenced by its absence from his first 28 theorems, Euclid clearly found the parallel postulate
awkward; indeed many later mathematicians believed it could not be an independent axiom. Two of
the earliest to work rigorously on this were Giovanni Saccheri (1667–1733) & Johann Lambert (1728–
1777), who attempted to force contradictions by assuming the negation of the parallel postulate.
While they failed at their primary purpose, their insights provided the foundation of a new non-
Euclidean geometry. Before considering their work, we define some terms and recall our earlier
discussion regarding parallels.

Definition 5.1. Absolute or neutral geometry is the axiomatic system comprising all of Hilbert’s
axioms except Playfair’s axiom. Euclidean geometry is a special case of neutral geometry.
A non-Euclidean geometry is typically a model satisfying some or all of Euclid’s/Hilbert’s axioms and
for which parallels are non-unique:

There exists a line ` and a point P 6∈ ` through which there are either no parallels or at least two.

For example, spherical geometry is non-Euclidean since there are no parallel lines (Hilbert’s axioms
I-2 and O-3 are also false, as is the exterior angle theorem).

Results in absolute geometry Everything in the first 28 theorems of Euclid, including:

• Basic constructions: bisectors, perpendiculars, etc.

• The Exterior Angle Theorem.

• Triangle congruence theorems: SAS, ASA, SAA, SSS.

• Congruent/equal angles imply parallels: i.e.

α ∼= β =⇒ ` ‖ m
`

m
P

β

α

This is equivalent to the existence of a parallel m to a given line ` through a point P 6∈ `.

Arguments requiring unique parallels We have previously discussed the following results whose
proofs relied on Playfair’s axiom: the arguments are therefore false in absolute geometry:

• A line crossing parallel lines makes equal angles: in the picture, ` ‖ m =⇒ α ∼= β. This is the
uniqueness in Playfair: the parallel m to ` through P is unique.

• Angles in a triangle sum to a straight edge (180°).

• Constructions of squares/rectangles.

• Pythagoras’ Theorem.

While our arguments for the above are certainly false, we cannot instantly claim that the results are
false in absolute geometry: there might be alternative proofs! To show that the results really require
unique parallels, we must exhibit a model: we shall describe such in the next section. The existence
of this model explains why Saccheri and Lambert failed in their endeavors: the parallel postulate
(Playfair) is indeed independent of Euclid’s (Hilbert’s) other axioms.
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The Saccheri–Legendre Theorem

We start with an extension of the Exterior Angle Theorem
based on Euclid’s proof.
Given 4ABC, take M to be the midpoint of AC and ex-
tend BM to E such that BM ∼= ME to obtain congruent
triangles. Observe:

M

A

B C

E

1. ]ACB +]CAB = ]ACB +]ACE < 180°: this is essentially Euclid’s Exterior Angle Theorem.

2. The sum of the angles in4ABC and4EBC are equal.1

3. One (or both!) of ]EBC or ]BEC is ≤ 1
2]ABC.

We may iterate this construction to produce a sequence40 = 4ABC,41 = 4BEC,42,43, . . . each
of which has the same angle sum and such that at least one angle in4n has measure

αn ≤
1
2n]ABC

If the sum Σ of the angles in4ABC were greater than 180°, then

Σ = 180° + ε

for some ε > 0. Since 1
2n → 0, we may choose n large enough so that αn < ε. But then the sum of the

other two angles in4n would be greater than 180°, contradicting the Exterior Angle Theorem!
We have therefore proved:

Theorem 5.2 (Saccheri–Legendre). The angle sum in a triangle is at most 180° in absolute geometry.

Saccheri’s failed hope was to prove equality without invoking the parallel postulate. That he got half
way there is still remarkable!

Saccheri and Lambert Quadrilaterals Saccheri and Lambert both considered quadrilaterals in the
absence of the parallel postulate. Two families of such are named in their honor.

Definition 5.3. A Saccheri quadrilateral ABCD satisfies

AD ∼= BC and ]DAB = ]CBA = 90°

AB is the base and CD the summit.
The interior angles at C and D are the summit angles.

A Lambert quadrilateral has three right-angles; for instance AMND.
BA M

N

CD

We draw these with curved sides to indicate that the summit angles need not be right-angles, though,
as yet, we have no model which shows that they could be anything else. Regardless of how they are
drawn, AD, BC and CD are all segmemts!

1With the parallel postulate, we could use congruence of angles ∠BAC ∼= ∠ECA to conclude that CE ‖ BA, from which
the sum of the angles in a triangle is 180° and the observation is trivial. We cannot do this in absolute geometry!
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The seeming symmetry of a Saccheri quadrilateral is not an illusion.

Lemma 5.4. 1. If we bisect the base and summit of a Saccheri
quadrilateral, we obtain congruent Lambert quadrilaterals.

2. The summit angles of a Saccheri quadrilateral are congruent.

3. In Euclidean geometry, Saccheri and Lambert quadrilaterals
are rectangles (four right-angles).

BA M

N

CD

We leave parts 1 and 2 as an exercise.

Proof of 3. By part 1 we need only prove this for a Saccheri quadrilateral. Following the exterior angle
theorem,

←→
AB is a crossing line making equal (right-) angles, whence AD ‖ BC.

However
←→
CD also crosses the same parallel lines; by the parallel postulate, the summit angles sum to

a straight edge. Since these are congruent, they must both be right-angles.

We can now prove another of the conclusions of Saccheri & Lambert.

Theorem 5.5. In absolute geometry, the summit angles of a Saccheri quadrilateral measure ≤ 90°.

Proof. Extend CB to E (on the opposite side of AB to C) such that
BE ∼= DA. Let M be the midpoint of AB.
SAS says that4DAM ∼= 4EBM, whence M lies on DE.
The summit angles at C and D therefore sum to

]ADC +]BCD = ]ADM +]EDC +]DCE
= ]CED +]EDC +]DCE
≤ 180°

by the Saccheri–Legendre Theorem.

A B

CD

E

M

Exercises Complete these exercises in absolute geometry; you cannot use Playfair or Euclid’s par-
allel postulate!

1. Prove parts 1 and 2 of Lemma 5.4.

(Hint: use the picture: all you need are the triangle congru-
ence theorems. . . )

2. Use the same picture to give a quick alternative proof
of Theorem 5.5.

BA M

N

CD
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5.2 Models of Hyperbolic Geometry

In the early 1800’s James Boylai, Carl Friedrich Gauss and Nikolai Lobashevsky independently took
the next step. Rather than attempting to establish the parallel postulate as a theorem within Eu-
clidean geometry, they defined a new geometry based on the first four of Euclid’s postulates plus an
alternative to the parallel postulate:

Axiom 5.6 (Boylai–Lobashevshky/Hyperbolic Postulate). Given a line and a point not on the line,
there exist at least two parallel lines through the point.

The resulting axiomatic system2 is known as hyperbolic geometry. Consistency was proved in the late
1800’s by Beltrami, Klein and Poincaré, each of whom created models of hyperbolic geometry by
defining point, line, etc., in novel ways. The simplest model is arguably the Poincaré disk, named for
Henri Poincaré though first proposed by Beltrami.

Definition 5.7. The Poincaré disk is the interior of the unit circle{
(x, y) : x2 + y2 < 1

}
A hyperbolic line is a diameter or a circular arc meeting the unit circle at
right angles.
In the picture we have a hyperbolic line ` and a point P: also drawn
are several parallel hyperbolic lines to ` passing through P.
Points on the boundary circle are termed omega points: these are not in
the Poincaré disk and are essentially ‘points at infinity.’

P

`

It is easy to describe hyperbolic lines using equations in analytic geometry.

Lemma 5.8. Every hyperbolic line in the Poincaré disk model
is one of the following:

• A diameter passing through (a, b) 6= (0, 0) with Eu-
clidean equation bx = ay.

• The arc of a (Euclidean) circle with equation

x2 + y2 − 2ax− 2by + 1 = 0 where a2 + b2 > 1

and (Euclidean) center and radius

C = (a, b) and r =
√

a2 + b2 − 1

Moreover, there exists a unique hyperbolic line joining any two
points in the Poincaré disk.

1

r

O

P
Q

C

2In the modern approach we assume all of Hilbert’s axioms, replacing Playfair’s axiom with the hyperbolic postulate.
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Example 5.9. Find the equation of the hyperbolic line through the points P = (0, 1
2 ) and Q = ( 1

2 , 1
3 )

in the Poincaré disk: this is the picture shown in Lemma 5.8.
Substitute into x2 + y2 − 2ax− 2by + 1 = 0 to obtain a system of equations for a, b:{

1
4 − b + 1 = 0
1
4 +

1
9 − a− 2

3 b + 1 = 0
=⇒ (a, b) =

(
19
36

,
5
4

)

The required hyperbolic line
←→
PQ therefore has equation

x2 + y2 − 19
18

x− 5
2

y + 1 = 0 or
(

x− 19
36

)2

+

(
y− 5

4

)2

=
545
648

To complete the model, we need to define congruence of hyperbolic segments and angles.

Definition (5.7 continued). The hyperbolic distance between points P, Q in the Poincaré disk is

d(P, Q) := cosh−1

(
1 +

2 |PQ|2

(1− |P|2)(1− |Q|2)

)

where |PQ| is the Euclidean distance and |P| , |Q| are the Euclidean
distances of P, Q from the origin.
Hyperbolic line segments are congruent if they have the same length.
The angle between hyperbolic rays is that between their (Euclidean)
tangent lines: angles are congruent if they have the same measure.

θ

Lemma 5.10. The hyperbolic distancea of a point P from the origin is

d(O, P) = cosh−1 1 + |P|2

1− |P|2
= ln

1 + |P|
1− |P|

aIt should seem reasonable for hyperbolic functions to play some role in hyperbolic geometry! As a primer:

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
, tanh x =

sinh x
cosh x

=
ex − e−x

ex + e−x and cosh−1 x = ln(x +
√

x2 − 1)

Example 5.11. We calculate the sides and angles in the right-triangle
with vertices O = (0, 0), P = ( 1

2 , 0) and Q = (0, 1
2 ).

|P| = 1
2 = |Q| , |PQ|2 = 1

4 +
1
4 = 1

2

d(O, P) = d(O, Q) = ln
1 + 1

2

1− 1
2

= ln 3 = cosh−1 5
3
≈ 1.099

d(P, Q) = cosh−1

(
1 +

2 · 1
2

(1− 1
4 )

2

)
= cosh−1 25

9
≈ 1.681

θP

Q

O
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Now observe that the hyperbolic line
←→
PQ has equation

x2 + y2 − 5
2

x− 5
2

y + 1 = 0

Implicit differentiation yields

2x− 5
2
+

[
2y− 5

2

]
dy
dx

= 0 =⇒ dy
dx

=
4x− 5
5− 4y

=⇒ dy
dx

∣∣∣∣
P
= −3

5

Since the side OP is horizontal, we conclude that the interior angle to the triangle at P is

θ = tan−1 3
5
≈ 30.96°

By symmetry, we have the same angle at Q. With a right-angle at O, we conclude that the sum of the
angles in the triangle is approximately 151.93° < 180°!
As a sanity check, we compare some data for the hyperbolic triangle4OPQ and the Euclidean triangle
with the same vertices

Property Hyperbolic Triangle Euclidean Triangle
Edge lengths 1.099 : 1.099 : 1.681 0.5 : 0.5 : 0.707
Relative edge ratios 1 : 1 : 1.530 1 : 1 : 1.414
Angles 30.06°, 30.96°, 90° 45°, 45°, 90°

Observe that the hyperbolic side lengths are longer, and that the hypotenuse is relatively longer in
the hyperbolic case. It should also be obvious that the hyperbolic side lengths also do not satisfy the
usual Pythagorean relation a2 + b2 = c2.

We leave the next result as an exercise: it says that distance increases smoothly as one moves along a
hyperbolic line.

Lemma 5.12. Fix P and a hyperbolic line through P. Then the distance function Q 7→ d(P, Q) maps
the set of points on one side of P differentiably and bijectively onto the interval (0, ∞).

The Lemma means that hyperbolic circles are well-defined and look
like one expects: the circle of hyperbolic radius δ centered at P is the
set of points Q such that d(P, Q) = δ.

In the picture we’ve drawn several hyperbolic circles and their cen-
ters. One of the circles has several of its radii drawn. Notice how the
centers are closer (in a Euclidean sense) to the boundary circle than
one might expect: this is since hyperbolic distances measure greater
the further one is from the origin.

You might be suspicious (and you’d be correct—see Exercise 5.2.5)
that hyperbolic circles in the Poincaré disk model are also Euclidean
circles! Moreover, their hyperbolic radii intersect the circles at right-
angles as we’d expect.
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Theorem 5.13. The Poincaré disk is a model of hyperbolic geometry.

Sketch Proof. A rigorous proof would require us to check the hyperbolic postulate and all Hilbert’s
axioms except Playfair. Instead we check Euclid’s postulates 1–4 and the hyperbolic postulate 5.

1. Lemma 5.8 says we can join any given points in the Poincaré disk by a unique segment.

2. A hyperbolic segment joins two points inside the (open) Poincaré disk. The distance formula in-
creases (Lemma 5.12) unboundedly as P moves towards the boundary circle, so we can always
make a hyperbolic line longer.

3. Hyperbolic circles are defined above.

4. All right-angles are equal since the notion of angle is unchanged from Euclidean geometry.

5. The first picture on page 4 shows multiple parallels. . .

Other Models of Hyperbolic Space: non-examinable

There are several other models of hyperbolic space. Here are three of the most common.

The Klein Disk Model The approach is similar to the Poincaré disk except that lines are taken to
be çhords of the unit circle and the distance function is defined differently:

dK(P, Q) =
1
2

∣∣∣∣ln |PΘ| |QΩ|
|PΩ| |QΘ|

∣∣∣∣
where Ω, Θ are the points where the chord meets the circle. It is
easier to compute distances in this model since hyperbolic lines
are the same as Euclidean lines.

The cost is that the notion of angle is different. Perpendicularity
comes from the following idea: Take a hyperbolic line and find
the tangents to the unit circle where it meets. Any chord whose
extension passes through the intersection of these tangents is or-
thogonal to the original line. Measuring other angles is difficult!

A famous result from differential geometry (Gauss’ Theorem Egregium) says that this problem is
unavoidable. If H is a model of hyperbolic geometry, then its intrinsic curvature says that it is impos-
sible to find an embedding f : H → R2 which preserves both the concepts of straight line and angle.
Poincaré’s model preserves angles but results in ‘bendy’ lines: Klein’s hyperbolic lines are ‘Euclidean
straight’ but his angles are ugly. The best we can do is to have one concept or the other: we cannot
have both.3

3The same problem arises when trying to make a map of part of the Earth (another curved geometry). One can have
maps which preserve distance or angle, but not both.
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The Poincaré Half-plane Model This is equivalent to the Poincaré disk via a modified stereo-
graphic projection and is widely used in complex analysis. The set of points comprises the upper
half-plane (y > 0) in R2. Hyperbolic lines are vertical lines or semicircles centered on the x-axis:

x = constant, or (x− a)2 + y2 = r2

Two advantages are the simple expressions for lines and that angles are measured as in Euclidean
space. The expression for hyperbolic distance remains horrific!

y

x
The Poincaré half-plane: a hyperbolic triangle is shaded

The Hyperboloid Model Unlike the other models, this one is embedded in three dimensions.
Points comprise the upper sheet (z ≥ 1) of the hyperboloid

x2 + y2 = z2 − 1

A hyperbolic line is the intersection of the hyperbolid with a plane through the origin. Isometries
(congruence) can be described using matrix-multiplication and the formula for hyperbolic distance
is particularly easy: between two points P = (x, y, z) and Q = (a, b, c) in this model, the hyperbolic
distance is

d(P, Q) = cosh−1(cz− ax− by)

Difficulties include working in three dimensions and the fact
that angles are awkward.

The relationship between the Hyperboloid and Poincaré
disk models is via projection. Place the disk in the x, y-plane
centered at the origin and draw a line through a point in the
disk and the point (0, 0,−1). The intersection of this line
with the hyperboloid gives the correspondence.
In the picture, the orange and green points on the blue hy-
perbolic lines correspond in the two models.

Under this correspondence, it is easy to check that the
inverse-cosh formulæ for hyperbolic distance are in accord.
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Exercises All questions are within the Poincaré disk model

1. (a) Find the equation of the hyperbolic line joining P = ( 1
4 , 0) and Q = (0, 1

2 ).
(b) Find the side lengths of the hyperbolic triangle4OPQ where O = (0, 0) is the origin.
(c) The triangle in part (b) is right-angled at O. If o, p, q represent the hyperbolic lengths of

the sides opposite O, P, Q respectively, check that the Pythagorean theorem p2 + q2 = o2

is false. Now compute cosh p cosh q: what do you observe?

2. Let P =

(
1
2 ,
√

5
12

)
and Q =

(
1
2 ,−

√
5
12

)
(a) Compute the hyperbolic distances d(O, P), d(O, Q) and d(P, Q), where O is the origin.
(b) Compute the angle ]POQ.

(c) Show that the hyperbolic line ` =
←→
PQ has equation

x2 − 10
3

x + y2 + 1 = 0

(d) Calculate dy
dx and hence show that a tangent vector to ` at P is

√
15i + 7j. Use this to

compute ]OPQ.

3. We extend Example 5.11. Let c ∈ (0, 1) and label O = (0, 0), P = (c, 0) and Q = (0, c).

(a) Compute the hyperbolic side lengths of4OPQ.
(b) Find the equation of the hyperbolic line joining P = (c, 0) and Q = (0, c).

(c) Use implicit differentiation to prove that the interior angles at P and Q measure tan−1 1−c2

1+c2 .
What happens as c→ 0+ and as c→ 1−?

4. Let 0 < r < 1 and find the hyperbolic side lengths and interior angles of the equilateral triangle
with vertices (r, 0), (− r

2 ,
√

3r
2 ) and (− r

2 ,−
√

3r
2 ).What do you observe as r → 0+ and r → 1−?

5. (a) Use the cosh distance formula to prove that the hyperbolic circle of hyperbolic radius
ρ = ln 3 and center C = ( 1

2 , 0) in the Poincaré disk has Euclidean equation(
x− 2

5

)2

+ y2 =
4

25

(b) Prove that every hyperbolic circle in the Poincaré disk is in fact a Euclidean circle.

6. We sketch a proof of Lemma 5.12.

(a) Prove that f (x) = cosh−1 x = ln(x +
√

x2 − 1) is strictly increasing on the interval (1, ∞).

(b) By part (a), it is enough to show that |PQ|2
1−|Q|2 increases as Q moves away from P along a

hyperbolic line. Appealing to symmetry, let P = (0, c) lie on the hyperbolic line with
equation x2 + y2 − 2by + 1 = 0. Prove that

|PQ|2

1− |Q|2
=

(b− c)y + bc− 1
1− by

and hence show that this is an increasing function of y when c < y < 1
b .
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5.3 Parallels and Perpendiculars in Hyperbolic Geometry

From now on, all pictures and examples will be illustrated within the Poincaré disk model. Recall
(page 1) that we may use anything from absolute geometry: in case you need to be convinced, here
is such a result, proved in the style of Euclid but illustrated in the Poincaré disk.

Lemma 5.14. Through a point P not on a line ` there exists a unique perpendicular to `.

Proof. Choose a point A ∈ ` and join AP. If AP is perpendicular to `, we only need uniqueness.

Otherwise, ` is not tangent to the circle centered at P with ra-
dius |AP|. It follows that there exists a second intersection
point B ∈ `.
Construct the circles with radius |AB| centered at A and B
respectively: these have two intersections Q, R. Let m =

←→
QR.

Checking the following should be an easy exercise:

• m intersects ` at right-angles (M in the picture)

• P ∈ m

• M is the midpoint of AB

To help, note that the blue and green arcs are radii of their
respective circles, so we have several isosceles triangles. . .

P

B

A

Q

R

M

`

m

For uniqueness, suppose we have two perpendiculars to ` through P intersecting ` at distinct points
M, N. Then4PMN has two right-angles which contradicts Saccheri–Legendre (Theorem 5.2).

The Fundamental Theorem of Parallels in Hyperbolic Geometry

We now consider a major departure from Euclidean geometry.

Theorem 5.15 (Fundamental Theorem of Parallels). Given a hyper-
bolic line ` and a point P not on `, drop the perpendicular PQ to `.
There exist precisely two parallel lines m, n to ` through P with the
following properties:

1. A ray based at P intersects ` if and only if it lies between m and
n in the same fashion as

−→
PQ.

2. m and n make congruent acute angles µ with
−→
PQ.

`

R

Q

P

n

m

µ

Definition 5.16. The limiting, or asymptotic, parallels to ` through P are the lines m, n. Every other
parallel is termed ultraparallel.
The angle of parallelism at P relative to ` is the acute angle µ.
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The proof depends crucially on ideas from analysis, particularly continuity & suprema.

Proof. The lines through P are in bijective correspondence with angles in the interval (−90°, 90°]
measured with respect to PQ. Points R ∈ ` are in bijective continuous correspondence with the real
numbers. We therefore have a continuous function

f : R→ (−90°, 90°] where f (r) = ]QPR

By the exterior angle theorem, 90° 6∈ range f .
Since dom f = R is an interval, the intermediate value theorem forces range f to be a subinterval of
(−90°, 90°).
Transfer QR to the other side of Q to produce S ∈ `. Applying SAS we see that ]QPS = −]QPR,
whence the interval I = range f is symmetric:

θ ∈ I ⇐⇒ −θ ∈ I

Let µ = sup I ≤ 90° be the least upper bound; by symmetry, −µ = inf I is the greatest lower bound.
Let m and n be the lines making angles ±µ respectively. Plainly every ray making angle θ ∈ (−µ, µ)
intersects `.
Suppose m intersected ` at M. Let N ∈ ` lie on the other side of M from Q. Then ]QPN > µ is a
contradiction. It follows that m is parallel to `. Similarly n ‖ ` and we have part 1.
Finally m = n ⇐⇒ µ = 90°. In such a case there would exist only one parallel to ` through P,
contradicting the hyperbolic postulate.

Except for the last line, the proof works perfectly in absolute geometry: if we restrict to Euclidean
geometry, then the ‘angle of parallelism’ is always 90°!

Corollary 5.17. The perpendicular distance δ = d(P, Q) and the angle of parallelism are related via

cosh δ = csc µ or equivalently tan
µ

2
= e−δ

We postpone the proof to Exercise 5.3.3 and a discussion of omega-triangles.

Examples 5.18. 1. Let ` be the hyperbolic line with equation

x2 + y2 − 4x + 1 = 0 (Euclidean center (2, 0) radius
√

3)

Its omega points are Ω =
(

1
2 ,
√

3
2

)
and Θ =

(
1
2 ,−

√
3

2

)
.

By symmetry, the perpendicular from P = (0, 0) to ` has equation
y = 0 and results in Q = (2−

√
3, 0).

The limiting parallels clearly have equations y = ±
√

3x, from
which the angle of parallelism is µ = tan−1

√
3 = 60°.

P

Ω

Θ

Q

In accordance with Corollary 5.17, we easily verify that

δ = d(P, Q) = ln
1 + (2−

√
3)

1− (2−
√

3)
= ln

√
3! e−δ =

1√
3
= tan

60°
2
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2. We find the limiting parallels and the angle of parallelism when

P =

(
− 3

10
,

4
10

)
and x2 + y2 + 2x + 4y + 1 = 0

First find the omega-points by intersecting the line with the
boundary circle x2 + y2 = 1:

Ω = (−1, 0), Θ =

(
3
5

,−4
5

)

P

Ω

Θ

Q

µ

P lies on the diameter containing Θ, whence
←→
PΘ immediately has equation y = − 4

3 x.

For
←→
PΩ, substitute into the usual expression x2 + y2 − 2ax− 2by + 1 = 0 to obtain

x2 + y2 + 2x− 13
8

y + 1 = 0 (Euclidean center (a, b) = (−1, 13
16 ), radius 13

16 )

Clearly
←→
PΘ has slope − 4

3 . For
←→
PΩ, implicit differentiation yields a slope of

dy
dx

=
a− x
y− b

=
16(1 + x)
13− 16y

=⇒ dy
dx

∣∣∣∣
P
=

16 · 7
10

13− 64
10

=
56
33

whence the angle of parallelism is half that between the vectors
( −33
−56

)
and

( 3
−4
)
:

µ =
1
2

cos−1

( −33
−56

)
·
( 3
−4
)∣∣( −33

−56

)∣∣ ∣∣( 3
−4
)∣∣ = 1

2
cos−1 5

13
≈ 33.69°

Corollary 5.17 can now be used to find the perpendicular distance d(P, Q) = ln 3+
√

13
2 .

By contrast, without the development of later machinery, it is very tricky to find the co-
ordinates of Q. If you want a serious challenge, see if you can convince yourself that Q =(

93(−29+2
√

117)
1865 , 26(−29+2

√
117)

1865

)
.

Angles in Triangles, Rectangles and the AAA congruence

We finish this section three important observations that follow from the Hyperbolic Postulate.

Theorem 5.19. In hyperbolic geometry:

1. There are no rectangles (quadrilaterals with four right-angles): in particular, the summit angles
of a Saccheri quadrilateral are acute.

2. The angles in a triangle always sum to less than 180°.

3. (AAA Congruence) If4ABC and4DEF have angles congruent in pairs, then their sides are
congruent in pairs and so4ABC ∼= 4DEF.
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We leave parts 2 and 3 to the homework: both follow easily from part 1. Note particularly that AAA
is a triangle congruence theorem in hyperbolic geometry, not a similarity theorem!

Lemma 5.20. In absolute geometry, a diagonal splits a rectangle into congruent triangles. In partic-
ular, the opposite sides of a rectangle are congruent.

Proof. Given a rectangle ABCD, draw a diagonal to obtain two sub-triangles as shown.
Each triangle has angle sum≤ 180°, yet the sum of these equals that
of the rectangle, 360°. Both triangles therefore have angle sum 180°.
Since both triangles are right-angled, their remaining angles sum to
90°. But the angles meeting at A also sum to 90°, whence we have
congruent angles: in the language of the picture,

α + β = 90° = α + γ =⇒ β = γ
A B

CD

α

β
γ

ASA using the diagonal as the common side proves that the triangles, and thus opposite sides of the
rectangle, are congruent.

We can now prove that rectangles are impossible in hyperbolic geometry. To be more precise, we
prove that if a rectangle exists within absolute geometry, then the hyperbolic postulate is false.

Proof of Theorem 5.19, part 1. Given a rectangle ABCD, let P ∈ CD and drop the perpendicular from P
to R ∈ AB. Clearly PRBC is a rectangle, since otherwise one of ARPD and RBCP would have angle
sum exceeding 360°.

By Lemma 5.20,
−→
BP splits PRBC so that the orange marked angles are congruent. In particular,

−→
BP

crosses CD at the same angle as it leaves B!

A

BC

D

RP

P1

P2

P3

P4

Q1

Q2

Q3

Q4

Now repeat the construction to obtain a sequence of points P, P1, P2, P3, . . . and congruent rectangles
as indicated. The equidistant sequence of points P, Q1, Q2, Q3, . . . must eventually pass D since CD
is finite: clearly

−→
BP intersects

←→
AD.

Since P was generic, we conclude that the angle of parallelism of B with respect to
←→
AD is 90° and that

the hyperbolic postulate is therefore false. There are no rectangles in hyperbolic geometry.
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Exercises 1. Prove the following in hyperbolic geometry (use Theorem 5.19).
(a) Two hyperbolic lines cannot have more than one common perpendicular.
(b) Saccheri quadrilaterals with congruent summits and summit angles are congruent.

2. Let ` be the line x2 + y2 − 4x + 2y + 1 = 0 and drop a perpendicular from O to Q ∈ `.

(a) Explain why Q has co-ordinates ( 2√
5
t,− 1√

5
t) for some t ∈ (0, 1).

(b) Show that the hyperbolic distance δ = d(O, Q) of ` from the origin is ln 1+
√

5
2 .

(c) By observing that Ω = (0,−1) is an omega-point for `, compute the angle of parallelism
µ = ]QOΩ explicitly and check that cosh δ = csc µ.

3. We prove a simplified version of Corollary 5.17. Let P = (0, 0) be the origin, let 0 < r < 1 and
consider the hyperbolic line ` passing through Q = (r, 0) at right-angles to PQ.

(a) Find the equation of ` and prove that the limiting parallels of ` through P have equations

y = ±1− r2

2r
x

(Hint: what does symmetry tell you about the location of the Euclidean center of `?)
(b) Let µ be the angle of parallelism of P relative to ` and δ = d(P, Q) the hyperbolic distance.

Prove that cosh δ = csc µ.
(Hint: csc2µ = 1 + cot2µ = 1 + 1

tan2µ
= . . .)

4. We work in absolute geometry.

(a) Suppose A, B and P are non-collinear and drop the per-
pendicular from P to Q ∈ ←→AB.
If P lies between the perpendiculars `, m to

←→
AB through A

and B, prove that Q is interior to AB.
(Hint: show that the other cases are impossible)

(b) Suppose there exists a triangle with angle sum 180°. Show
that there exists a right-triangle with angle sum 180° and
therefore a rectangle.

` m

A B

P

Q

Since rectangles are impossible in hyperbolic geometry, this proves part 2 of Theorem 5.19.

5. We prove the AAA congruence theorem (Theorem 5.19, part 3).

Suppose 4ABC and 4DEF are non-congruent but have angles congruent in pairs. WLOG as-
sume DE < AB. By uniqueness of angle/segment transfer, there exist unique points G ∈ AB
and H ∈ −→AC such that (SAS)4DEF ∼= 4AGH.

The picture shows the three possible arrangements.

(a) H is interior to AC.

(b) H = C.

(c) C lies between A and H.

In each case, explain why we have a contradiction.

A

B

C = H?
G

H?

H?
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5.4 Omega-triangles

The concept of limiting parallels allows us to extend the notion of triangle.

Definition 5.21. An omega-triangle or ideal-triangle is a ‘triangle’
one or more of whose vertices is an omega-point. At least two of
the sides of an omega-triangle form a pair of limiting parallels.

There are three types of omega-triangle depending on how many
omega-points they contain. In the picture, 4PQΩ has one
omega-point,4PΩΘ has two and4ΩΘΞ three!
It is perhaps surprising that many of the standard results (exterior
angle and congruence theorems) also apply to omega-triangles!

P

Ω

Θ

Ξ

Q

The first can be thought of as the AAA congruence theorem where one ‘angle’ is zero.

Theorem 5.22 (Angle-Angle Congruence for Omega-triangles). Suppose 4PQΩ and 4RSΘ are
omega-triangles with a single omega-point. If the the angles are congruent in pairs

∠PQΩ ∼= ∠RSΘ ∠QPΩ ∼= ∠SRΘ

then the finite sides of each triangle are also congruent: PQ ∼= RS.

It doesn’t really make sense to speak of the ‘infinite’ sides, or the ‘angles’ at omega points, being
congruent. If one defines congruence in terms of isometries (later), then the claim is more reasonable.

Proof. Transfer ∠SRΘ to P and choose T ∈ −→PQ such that PT ∼= RS. If T = Q we are done.

Otherwise, first assume PQ < PT as in the picture. The hypothesis
states that the marked orange angles at Q and T are congruent.

Let M be the midpoint of QT and drop the perpendicular to
←→
QΩ at N.

Choose L ∈ ←→ΩT on the opposite side of
←→
QT to N such that TL ∼= NQ.

The red angles are congruent, as are the pairs of green and blue lines:
SAS says 4MQN ∼= 4MTL, whence M lies on LN and we have a
right-angle(!) at L.

The angle of parallelism of L relative to
←→
QN is now 90°: contradiction.

There are several other possible orientations:

• T could lie on the same side of Q as P but the resulting argument
is the same after reversing the roles of Q and T.

• N could lie on the opposite side of Q from Ω. In this case SAS is
applied to the same triangles but with respect to the congruent
orange angles.

Ω

P

M

Q N

L

T

Q

• In the special case that N = Q, the orange angles are right-angles and the same contradiction
appears.
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Theorem 5.23 (Exterior Angle Theorem for Omega-Triangles). Suppose 4QTΩ has a single
omega-point. Extend TQ to P. Then ∠PQΩ > ∠QTΩ.

Proof. We show that the other cases are impossible.

To see that ∠PQΩ and ∠QTΩ cannot be congruent, consider the picture
in the proof of the AA congruence theorem. The orange angles cannot be
congruent since the entire picture is a contradiction!

If ∠PQΩ < ∠QTΩ, then we have the picture on the right. The goal is to
create a triangle contradicting the usual exterior angle theorem.

Transfer ∠QTΩ to Q to obtain
−→
QX interior to ∠TQΩ.

Since
←→
QΩ is a limiting parallel to

←→
TΩ, the Fundamental Theorem says that−→

QX intersects TΩ at a point Y.
But now4QTY contradicts the standard exterior angle theorem.

Ω

Y

P

Q

T

Q
X

The final congruence theorem is an exercise based on the previous picture.

Corollary 5.24 (Side-Angle Congruence for Omega-triangles). Suppose4QTΩ and4RSΘ have
a single omega-point. If ∠QTΩ ∼= ∠RSΘ and QT ∼= RS then ∠TQΩ ∼= ∠SRΘ.

A triangle with one omega-point only has three pieces of data: two finite angles and one finite edge.
The AA and SA congruence theorems say that two of these determine the third.

Other observations

Pasch’s Axiom: Versions of this are theorems for omega-triangles.

• If a line crosses a side of an omega-triangle and does not pass through any vertex (including
Ω), then it must pass through exactly one of the other sides.

• If a line passes through an interior point and exactly one vertex (including Ω) of an omega-
triangle, then it passes through the opposite side. This is partly embedded in the proof of
Theorem 5.23.

Perpendicular Distance and the Angle of Parallelism: Applied to right-angled omega-triangles, the AA
and SA congruence theorems prove that the angle of parallelism is a bijective function of the per-
pendicular distance. Moreover, by transferring the right-angle to the positive x-axis and the other
vertex to the origin, we obtain the arrangment in Exercise 5.3.3: this calculation therefore completes
the proof of Corollary 5.17.

Exercises 1. Let4PQΩ be an omega-triangle. Prove that ∠PQΩ +∠QPΩ < 180°

2. Suppose that ` and m are limiting parallels. Explain why they cannot have a common perpen-
dicular.

3. Prove the Side-Angle congruence theorem for omega-triangles with one omega-point.

16



5.5 Area and Angle-defect

We now discuss one of the triumphs of Johann Lambert, the astonishing fact that the sum of the
angles in a hyperbolic triangle determines its area. We start with a loose axiomatization of area as a
relative measure in absolute geometry.

Axiom I Two geometric figures have the same area if and only if they can be sub-divided into finitely
many pairs of mutually congruent triangles.4

Axiom II The area of a triangle is positive.

Axiom III The area of the union of disjoint figures is the sum of the areas of the figures.

Area determines angle-sum in absolute geometry

For this we require a useful quantity.

Definition 5.25. Let Σ4 be the sum of the angles in a triangle. Measured in radians, the angle-defect
of4 is π − Σ4.

Since triangles have angle-sum ≤ π (Saccheri-Legendre), it follows that

0 ≤ π − Σ4 ≤ π

In Euclidean geometry the defect is always zero, while in hyperbolic geometry the defect is strictly
positive (Theorem 5.19). A ‘triangle’ with three omega-points would have defect π.

Lemma 5.26. Angle-defect is additive: If a triangle is split into two sub-
triangles, then the defect of the whole is the sum of the defects of the parts.

The proof should be clear from the picture:

[π − (α + γ + ε)] + [π − (β + δ + ζ)] = π − (α + β + γ + δ)

since ε + ζ = π. Notice that angle-sum is not additive!

C

B

A
Q

γ

β

α

δ

ζ
ε

Theorem 5.27. If two triangles have the same area, then their angle-sums are identical.

Of course this is utterly trivial in Euclidean geometry!

Proof. The Lemma provides the induction step: if41 and42 have the same area, then their interiors
are disjoint unions of a finite collection of mutually congruent triangles:

41 =
n⋃

k=1

41,k and 42 =
n⋃

k=1

42,k where 41,k
∼= 42,k

Each pair41,k,42,k has the same angle-defect, whence the angle-defects of41 and42 are equal:

defect(41) =
n

∑
k=1

defect(41,k) =
n

∑
k=1

defect(42,k) = defect(42)

4To allow infinitely many infinitessimal sub-triangles would require ideas from calculus and complexify our discussion.
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Angle-sum determines area in hyperbolic geometry

The converse relies on a reversible construction relating triangles and Saccheri quadrilaterals. The
construction itself is valid in absolute geometry, even though the ultimate conclusion that angle-sum
determines area is not.

Lemma 5.28. 1. Given 4ABC, choose a side BC. Bisect the remaining sides at E, F and drop
perpendiculars from A, B ,C to

←→
EF. Then HICB is a Saccheri quadrilateral with base HI.

2. Conversely, given a Saccheri quadrilateral HICB with summit BC, let A be any point such that←→
HI bisects AB at E. Then the intersection F =

←→
HI ∩ AC is the midpoint of AC.

Both constructions yield the same picture and the following
conclusions:

• The triangle and quadrilateral have equal area.

• The sum of the summit angles of the quadrilateral
equals the angle sum of the triangle.

We’ve chosen BC to be the longest side of 4ABC; this isn’t
required, though it helpfully forces E, F to lie between H, I.

A

B CD

E FG

H I

Proof. 1. By two applications of the SAA congruence theorem (follow the arrows. . . )

4BEH ∼= 4AEG and 4CFI ∼= 4AFG

We conclude that BH ∼= AG ∼= CI whence HICB is a
Saccheri quadrilateral. The area and angle-sum corre-
spondences are immediate from the picture.

2. Suppose the midpoint were at J 6= F. By part 1, we
may create a new Saccheri quadrilateral with base BC
using the midpoints E, J.
The perpendicular bisector of BC (at D) bisects the
bases of both Saccheri quadrilaterals perpendicularly,
creating4EUV with two right-angles: contradiction.

J

U

V

A

B CD

E
FGH I

We now prove a special case of the main result.

Lemma 5.29. Suppose hyperbolic triangles4ABC and4PQR have congruent sides BC ∼= QR and
the same angle-sum. Then the triangles have the same area.

Proof. Construct the quadrilaterals corresponding to 4ABC and 4PQR with summits BC ∼= QR.
These have congruent summits and summit angles: by Exercise 5.3.1b they are congruent.

The final observation is what makes this special to hyperbolic geometry. In the Euclidean case, Saccheri
quadrilaterals are rectangles: congruent summits do not force congruence of the remaining sides.
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Theorem 5.30. In hyperbolic geometry, if 4ABC and 4PQR have the same angle-sum then they
have the same area.

Proof. If the triangles have a congruent pair of edges, we are done by the previous result. Otherwise,
we create a new triangle4LBC which matches the same Saccheri quadrilateral as4ABC.
Otherwise, WLOG suppose |AB| < |PQ| and construct the Saccheri quadrilateral with summit BC.
Select K on

←→
EF such that |BK| = 1

2 |PQ| and extend such that K is the midpoint of BL.

• By Lemma 5.28,

Area(4LBC) = Area(HICB) = Area(4ABC)

• By Theorem 5.27, 4LBC has the same angle-sum as
4ABC and thus4PQR.

• 4LBC and 4PQR share a congruent side (LB ∼= PQ)
and have the same angle-sum. Lemma 5.29 says their
areas are equal.

A

B CD

E F
G

H I

L

K

Since both area and angle-defect are additive, we immediately conclude:

Corollary 5.31. The angle-defect of a hyperbolic triangle is an additive function of its area: by
normalizing the definition of area,a we conclude that

π − Σ4 = Area(4)

aWe have strictly only proved that π − Σ4 = k ·Area(4) for some positive constant k. However, it can be shown that
k = 1 if we choose the area measure arising naturally from the hyperbolic distance function. In fact this is a special case of
the famous Gauss–Bonnet theorem: for any triangle on a surface with Gauss curvature K, we have

Σ4 − π =
∫∫
4

K dA

The three special constant-curvature examples of this result are:

Euclidean space This is flat (K = 0): the angle-defect is always zero.

Hyperbolic space This has constant negative curvature K = −1: the area
∫∫
4 dA is precisely the angle-defect π − Σ4.

Spherical geometry A sphere of radius 1 has constant positive curvature K = 1: the area of a triangle is its angle-excess Σ4−π.

A full discussion of this result, of Gauss curvature and what is meant by ‘arising naturally’ are properly subjects for a
(long!) course in differential geometry.

Note finally how the Angle-Angle-Angle congruence (Theorem 5.19, part 3) is related to the corollary:

4ABC ∼= 4DEF AAA⇐⇒ angles congruent in pairs

⇓ ⇓
equal area Cor⇐⇒ same angle-defect
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Example 5.32. Recall the isosceles right-triangle from Example 5.11 with vertices O, P = ( 1
2 , 0) and

Q = (0, 1
2 ). Its angle-sum and area are

π

2
+ 2 tan−1 3

5
≈ 151.93° =⇒ area = π −

(
π

2
+ 2 tan−1 3

5

)
=

π

2
− 2 tan−1 3

5
≈ 0.490

Note that a Euclidean triangle with the same vertices has area 1
8 = 0.125.

Generalizing this (see Exercise 5.2.3), the triangle with vertices O, P = (c, 0) and Q = (0, c) has area

π −
(

π

2
+ 2 tan−1 1− c2

1 + c2

)
=

π

2
− 2 tan−1 1− c2

1 + c2

As expected, lim
c→0+

area(c) = 0. In the other limit, the triangle becomes an omega-triangle with two

omega-points and we have lim
c→1−

area(c) = π
2 : an infinitely large triangle with finite ‘area’!

Our discussion in fact provides an explicit method for cutting a triangle into subtriangles and rear-
ranging its pieces to create a triangle with equal area.

A

B C

L

K

S1

S3

41

43

P

R

Q

S2

42

Suppose 41 and 42 have equal area. Let L, K be chosen as in the proof of Theorem 5.30 so that
QR ∼= BL. We now have:

• 41,42,43,S1,S2,S3 have the same area.

• The summit angles of S1,S2,S3 are congruent (half the angle sum of each triangle).

• S2,S3 are congruent since they share a summit and have congruent summit angles.

We can now follow the steps in Lemma 5.28 to transform41 to42:

41 → S1 → 43 → S3 ∼= S2 → 42

where each arrow represents cutting off two triangles and moving them. Indeed this works even for
triangles in Euclidean geometry: try it!
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Exercises 1. Use Corollary 5.31 to find the area of the hyperbolic triangle with given vertices.

(a) O = (0, 0), P = ( 1
2 ,
√

5
12 ) and Q = ( 1

2 ,−
√

5
12 ).

(Hint: you should already know the angles from previous exercises!)

(b) O = (0, 0), P = ( 1
4 , 0), Q = (0, 1

2 ).

(c) P = (r, 0), Q =
(
− r

2 ,
√

3r
2

)
, R =

(
− r

2 ,−
√

3r
2

)
where 0 < r < 1.

2. In the proof of Theorem 5.30, explain why we can find K such that |BK| = 1
2 |PQ|.

3. Show that there is no finite triangle in hyperbolic geometry that achieves the maximum area
bound π.

(Hard!) For a challenge, try to prove that all omega-triangles also satisfy the angle-defect for-
mula: Area = π − Σ, so that only triangles with three omega-points have maximum area.

4. Let Ω1, . . . , Ωn be n distinct omega-points arranged counter-clockwise around the boundary
circle of the Poincaré disk. A region is bounded by the n hyperbolic lines

←−→
Ω1Ω2,

←−→
Ω2Ω3, . . . ,

←−−→
ΩnΩ1

What is the area of the region? Hence argue that the ‘area’ of hyperbolic space is infinite.

5. Suppose that an omega-triangle is drawn with vertices at O = (0, 0), Ω = (1, 0) and P = (0, h)
where h > 0.

(a) Prove that the hyperbolic segment PΩ is an arc of a circle with equation

(x− 1)2 + (y− k)2 = k2

for some k > 0.

(b) Prove that the area of4OPΩ is given by

A(h) = sin−1 2h
1 + h2
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5.6 Isometries and Calculation

There are (at least!) two major issues in our approach to hyperbolic geometry.

Calculations are difficult In analytic (Euclidean) geometry we typically choose the origin and orienta-
tion of axes to ease calculation. We’d like to do the same in hyperbolic geometry.

We assumed too much We defined distance, angle and line separately, yet these concepts are not indepen-
dent! In Euclidean geometry, the distance function, or metric, defines angle measure via the dot
product,5 and (with some calculus) the arc-length of any curve. One proves that the paths of
shortest length (geodesics) are straight lines: the metric therefore defines the notion of line!

There is a related remedy for these issues: isometries, the rigid motions of the Poincaré disk. To work
with these we make an alternative definition within the complex plane.

Definition 5.33. The Poincaré disk is the set D := {z ∈ C : |z| < 1} equipped with the distance
function

d(z, w) :=
∣∣∣∣ln |z−Ω| |w−Θ|
|z−Θ| |w−Ω|

∣∣∣∣
where Ω, Θ are the omega-points for the hyperbolic line through z, w (defined via circles).

We’ll see later that this is the same distance given by the usual cosh formula: it is already easy to see
that d(z, 0) = ln 1+|z|

1−|z| as in Lemma 5.10. For the present, we state some facts from complex analysis.

Definition 5.34. A Möbius (fractional-linear) transformation is a function of the form f (z) = az+b
cz+d

where a, b, c, d ∈ C and ad− bc 6= 0.

Theorem 5.35. A Möbius transformation f (z) = az+b
cz+d has the following properties:

1. (Invertibility) f : C∪ {∞} → C∪ {∞} is bijective, with inverse f−1(z) = dz−b
−cz+a .

2. (Conformality) If two curves in C intersect at an angle, then the images of these curves under
f intersect at the same angle.

3. (Line/circle preservation) Every line/circlea is mapped to another line/circle.

4. (Cross-ratio) For any four distinct points z1, z2, z3, z4, we have(
f (z1)− f (z2)

)(
f (z3)− f (z4)

)(
f (z2)− f (z3)

)(
f (z4)− f (z1)

) =
(z1 − z2)(z3 − z4)

(z2 − z3)(z4 − z1)

aIn C∪ {∞} a line is just a circle containing ∞. . .

5Writing |u| = |PQ| for the length of a line segment, we see that for any u, v,

u · v =
1
2

(
|u + v|2 − |u|2 − |v|2

)
so that the metric defines the dot product. Now define angle measure via u · v = |u| |v| cos θ.
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The isometries of the Poincaré disk are built from a subset of the Möbius transformations.

Theorem 5.36. The orientation-preservinga isometries of the Poincaré disk have the form

f (z) = eiθ α− z
αz− 1

where |α| < 1 and θ ∈ [0, 2π)

All isometries can be found by composing f with complex conjugation (reflection in the real axis).

aIf C is to the left of
−→
AB, then f (C) is to the left of

−−−−−−→
f (A) f (B). This is the usual ‘right-hand rule.’

Referring to the properties in Theorem 5.35:

1. The isometries are precisely the set of Möbius transformations which map D bijectively to itself.

2. Preservation of angles is required for a rigid motion.

3. The unit circle is preserved, so that omega-points are mapped to omega-points. Moreover, the
class of hyperbolic lines is preserved: any circle or line intersecting the unit circle at right-angles
is mapped to another such (angle-preservation is used here).

4. Let Ω and Θ be the omega-points on the hyperbolic line joining z, w ∈ D. By properties 2 and
3, we see that f (Ω) and f (Θ) are the omega-points on the hyperbolic line through f (z), f (w).
Preservation of the cross-ratio shows that f is an isometry:

d( f (z), f (w)) =

∣∣∣∣ln | f (z)− f (Ω)| | f (w)− f (Θ)|
| f (z)− f (Θ)| | f (w)− f (Ω)|

∣∣∣∣ = ∣∣∣∣ln |z−Ω| |w−Θ|
|z−Θ| |w−Ω|

∣∣∣∣ = d(z, w)

How does this help us compute? The isometry f moves α to the origin; one can then choose θ to
orient whichever direction you like along the positive x-axis.

Example 5.37. Let P = 1
2 and Q = 2

3 +
√

2
3 i. Move P to the origin using

an isometry with α = P:

f (z) = eiθ α− z
αz− 1

= eiθ 1− 2z
z− 2

=⇒ f (P) = O

f (Q) = eiθ 1− 4
3 − 2

√
2

3 i
2
3 − 2 +

√
2

3 i
= − 1 + 2

√
2i

−4 +
√

2i
eiθ =

i√
2

eiθ

Choosing eiθ = −i places f (Q) = 1√
2

on the positive x-axis. Now check:

P
Q

O = f (P) f (Q)

d(P, Q) = cosh−1

(
1 +

2 |PQ|2

(1− |P|2)(1− |Q|2)

)
= cosh−1

(
1 +

2
4

(1− 1
4 )(1− 2

3 )

)
= cosh−1 3 = ln(3 + 2

√
2)

d( f (P), f (Q)) = ln
1 + 1√

2

1− 1√
2

= ln

√
2 + 1√
2− 1

= ln(3 + 2
√

2)

The points really are the same distance apart! Indeed the hyperbolic segment PQ (with equation
x2 + y2 − 5

2 x + 1 = 0) is transformed by f to a segment f (P) f (Q) of the x-axis.
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Recall (e.g. Example 5.11) how we previously computed angles. Isometries make this much easier.

Example 5.38. Given A = − i
2 , B = − i

5 and C = − 1
5 (3 + i), we find d(A, B), d(A, C) and ]BAC.

Start by moving A to the origin and consider f (B):

f (z) = eiθ− i
2 − z

i
2 z− 1

=
2z + i
2− iz

eiθ , f (B) =
− 2i

5 + i
2− 1

5

eiθ =
i
3

eiθ =
1
3

It is unnecessary, but eiθ = −i forces f (B) onto the positive x-axis. Our isometry is therefore

f (z) =
2z + i
z + 2i

=⇒ f (C) =
− 2

5 (3 + i) + i
− 1

5 (3 + i) + 2i
=

1 + i
2

By mapping A to the origin, two sides of the triangle are now
Euclidean straight lines and the computations are easy:

d(A, B) = d(O, f (B)) = ln
1 + 1

3

1− 1
3

= ln 2

d(A, C) = d(O, f (C)) = ln
1 + 1√

2

1− 1√
2

= 2 ln(
√

2 + 1)

]BAC = arg
(

1 + i
2

)
=

π

4

A

B
C

O = f (A)
f (B)

f (C)

The picture hopefully makes clear the meaning of orientation-preserving: 4ABC is rotated and trans-
lated to obtain4 f (A) f (B) f (C), but not reflected.

Interpretation of Isometries (non-examinable) Following Euclidean geometry, we want to inter-
pret isometries as rotations, reflections and translations. Here is the dictionary in hyperbolic space.

Translation of α to the origin is accomplished by Tα(z) = α−z
αz−1

The picture shows repeated applications of Tα to seven colored points.
To translate α to β, do a composition!

T−β ◦ Tα(z) =
(αβ− 1)z− α + β

(α− β)z + αβ− 1

Rotations Rθ(z) = eiθz rotates counter-clockwise around the origin. To
rotate around α, one computes the composition

T−α ◦ Rθ ◦ Tα

The picture shows repeated rotation by 30° = π
6 around α.

Reflection Pθ(z) = e2iθz reflects across the line making angle θ with the
real axis. Composition permits more general reflections

T−α ◦ Pθ ◦ Tα

α
O

α

24



Hyperbolic Trigonometry

The goal of trigonometry is to ‘solve’ triangles: given minimal numerical data, we compute the re-
maining side lengths and angle measures. In hyperbolic geometry, the triangle congruence theorems
(SAS, ASA, SSS, SAA and AAA) provide suitable minimal data.
Given a right triangle, we may apply an isometry to move the right-angle to the origin and the non-
hypotenuse sides to the positive axes. The non-hypotenuse side lengths are

a = cosh−1
(

1 + p2

1− p2

)
, b = cosh−1

(
1 + q2

1− q2

)
To measure the hypotenuse, first translate p to the origin

f (z) =
p− z
pz− 1

But then
a

b c

p

iq

0
B

A

b

a

c

f (p)

f (iq)

B
A

f (iq) =
p− iq

ipq− 1
=
−p(1 + q2) + iq(1− p2)

p2q2 + 1
=⇒ tan B =

q(1− p2)

p(1 + q2)
and | f (iq)|2 =

p2 + q2

p2q2 + 1

We therefore see that

cosh c =
1 + | f (iq)|2

1− | f (iq)|2
=

1 + p2 + q2 + p2q2

1− p2 − q2 + p2q2 =
1 + p2

1− p2 ·
1 + q2

1− q2 = cosh a cosh b

Moreover, applying the hyperbolic identity sinh2b = cosh2b− 1, we obtain

sinh b =
2q

1− q2 =⇒ tanh b =
sinh b
cosh b

=
2q

1 + q2

Applying standard trig identities such as sec2B = 1 + tan2B, we finally conclude:

Theorem 5.39. In a hyperbolic right-triangle with adjacent a, opposite b, and hypotenuse c,

cos B =
tanh a
tanh c

sin B =
sinh b
sinh c

tan B =
tanh b
sinh a

cosh c = cosh a cosh b

The final expression is Pythagoras’ Theorem for hyperbolic triangles.

Corollary 5.40 (Hyperbolic Cosine Rule). Apply the above argument to a triangle with vertices
0, p, qeiθ to obtain

cosh c = cosh a cosh b− sinh a sinh b cos C

where cosh a =
1 + p2

1− p2 , sinh a =

√
cosh2a− 1 =

2p
1− p2 , etc.

Expressing the right-hand side of this in terms of p, q and applying the Euclidean cosine rule yields
our original cosh-formula for distance (page 5).
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Corollary 5.41 (Hyperbolic Sine Rule). In any hyperbolic triangle,

sinh a
sin A

=
sinh b
sin B

=
sinh c
sin C

The picture shows the generic situation: simply apply Theorem 5.39 and
equate the sinh h-terms. . .

a
b h

B
A

Armed with these results, one can solve any hyperbolic triangle numerically given the information in
one of the triangle congruence theorems. Admittedly some (particularly ASA and the general AAA)
are very messy to compute with, but others are straightforward.

Examples 5.42. 1. (right-angled AAA) A triangle has angles π
6 , π

4 and π
2 : find its sides.

Using the tan-formula,

1√
3
= tan

π

6
=

tanh b
sinh a

=
sinh b

sinh a cosh b

1 = tan
π

4
=

tanh a
sinh b

=
sinh a

cosh a sinh b

Now multiply together and use hyperbolic Pythagoras, a

c
b

π
4

π
6

1√
3
=

1
cosh a cosh b

=
1

cosh c
=⇒ c = cosh−1

√
3 = ln(

√
3 +
√

2) ≈ 1.1462

We quickly see that sinh c =
√

cosh2 c− 1 =
√

2, whence the sine-rule yields the other sides:

sinh b = sin
π

4
· sinh c

sin π
= 1 =⇒ b = sinh−1 1 = cosh−1

√
2 ≈ 0.8814

=⇒ cosh a =
cosh c
cosh b

=

√
3
2

=⇒ a ≈ 0.6565

2. (SAS) A triangle has angle C = π
3 between sides a = b = cosh−1 2. Find the remaining data.

We have sinh a = sinh b =
√

cosh2a− 1 =
√

3. By the cosine rule,

cosh c = 2 · 2−
√

3
√

3 · 1
2
=

5
2

=⇒ c = cosh−1 5
2

Finally, apply the sine rule:

sin B = sin A =
sin C sinh a

sinh c
=

√
3

2
·
√

3√
21/2

=
3√
21

=

√
3
7

The area of this triangle is therefore

π − π

3
− 2 sin−1

√
3
7
≈ 0.6669
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Hyperbolic Tilings

The first example above can be used to make a regular tiling of hyperbolic space.

Take eight congruent copies of the triangle and arrange
them around the origin as in the picture. Now reflect
the quadrilateral over each of its edges and repeat the
process in all directions. We obtain a regular tiling of
hyperbolic space comprising four-sided figures with six
meeting at every vertex!

In hyperbolic space, many different regular tilings are
possible. Suppose such is to be made using regular m-
sided polygons, n of which are to meet at each vertex:
each polygon comprises 2m copies of the fundamental
right-triangle, whose angles are therefore π

2 , π
m and π

n .
Since the angles sum to less than π radians, we see that
there exists a regular tiling of hyperbolic space when-
ever m, n satisfy

π

2
+

π

m
+

π

n
< π ⇐⇒ (m− 2)(n− 2) > 4

The first example is m = 4 and n = 6, where the fun-
damental triangle is clear. In the second example four
pentagons meet at each vertex and the interiors of the
polygons have been colored. This was produced using
the tools found here and here: have a play!

The multitude of possible tilings in hyperbolic geome-
try is in contrast to Euclidean geometry, where a regular
tiling requires equality

(m− 2)(n− 2) = 4

The three solutions (m, n) = (3, 6), (4, 4), (6, 3) cor-
respond to the only tilings of Euclidean geometry by
regular polygons (equilateral triangles, squares and
hexagons). However, all can be scaled to arbitrary side-
lengths. In hyperbolic geometry, there are infinitely
many distinct tilings, but each has a unique side-length.

For related fun, look up M.C. Escher’s Circle Limit art-
works, some of which are based on hyperbolic tilings.
If you want an excuse to play video games while pre-
tending to study geometry, have a look at Hyper Rogue,
which relies on (sometimes irregular) tilings.

π
m

π
n

The fundamental triangle

(m, n) = (4, 6)

(m, n) = (5, 4)
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Exercises 1. Use Definition 5.33 to prove that d(z, 0) = ln 1+|z|
1−|z| .

(Hint: what are the omega-points for the line through 0 and z?)

2. Use an isometry to find angle ]ABC when

A = 0, B =
i
2

, C =
1 + i

2

3. Associate a Möbius transformation f (z) = az+b
cz+d with the matrix

(
a b
c d

)
in an obvious way.

If g is another Möbius transformation, prove that the composition f ◦ g is associated to the
product AB of the matrices associated to f , g. Hence verify that f−1(z) = dz−b

a−cz .

(Since multiplying a, b, c, d by a non-zero scalar doesn’t change f , we see that the group of Möbius trans-
formations is isomorphic to the projective special linear group PSL2(R). The isometries of hyperbolic
space form a proper subgroup.)

4. (a) A triangle has vertices A = 1
3 , B = 1

2 and C, where C lies in the upper half-plane (positive
imaginary part) such that ]BAC = 45° and b = d(A, C) = cosh−1 3
Compute a = d(B, C) using the hyperbolic cosine rule.

(b) The isometry

f (z) =
1
3 − z

1
3 z− 1

=
1− 3z
z− 3

moves A to the origin. What is f (B) and therefore f (C)?
(Hint: remember that f is orientation preserving)

(c) Use the inverse of the isometry f to compute the co-ordinates of C. As a sanity-check, use
the cosh distance formula to recover your answer to part (a).

5. Use the Maclaurin series cosh x = 1 + 1
2 x2 + 1

4! x
4 + · · · to multiply out the terms of the hy-

perbolic Pythagorean theorem cosh c = cosh a cosh b to order 4 (i.e. a4, a2b2, etc.). What is the
relationship to the Euclidean Pythagorean theorem?

6. A right hyperbolic triangle has non-hypotenuse sides a = cosh−1 2 and b = cosh−1 3. Find the
hypotenuse, the angles and the area of the triangle.

7. Use the hyperbolic cosine rule to prove that the cosh distance formula is valid.

8. An equilateral hyperbolic triangle has side-length a and angle A. Prove that cos A = cosh a
cosh a+1 . If

an equilateral triangle has each angle 45°, what is its side-length?

(Hint: Apply the cosine rule)
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The Poincaré Disk for Differential Geometers (non-examinable)

This last optional section should be accessible to anyone who’s taken a vector-calculus course cover-
ing line-integrals and surface area. All we really need is the Poincaré Disk model with its distance
function d(z, w) and description of the isometeries (Theorems 5.35, 5.36).

We first need a way to measure infinitessimal change. Consider the
infinitessimally separated points z and z + dz. Use an isometry

f : ξ 7→ z− ξ

zξ − 1

to map z to the origin. Then z + dz is mapped to

P := f (z + dz) =
−dz

z(z + dz)− 1
=

dz
1− |z|2

z + dz

z + dw

z

0 P

Q

f

where we deleted the z dz term since it is infinitessimally small compared to 1− |z|2.
Since isometries must preserve length and angle, this construction has several consequences:

Angle measure If we repeat the exercise for a second infinitessimal segment z → z + dw, we see that
the angle between the original segments is precisely that between the infinitessimal vectors dz
and dw. This is precisely the conformality observation in Theorem 5.35, and moreover shows
how the distance function determines the angle measure.

Infinitessimal distance and arc-length The hyperbolic distance from z to z + dz is

d(z, z + dz) = d(O, P) = ln
1 + |P|
1− |P| = ln(1 + |P|)− ln(1− |P|) = 2 |P| = 2 |dz|

1− |z(t)|2

where the approximation ln(1± |P|) = ± |P| is used since |P| is infinitessimal.

If z(t) parametrizes a curve in the disk, then the infinitessimal distance formula allows us to
compute the arc-length∫ t1

t0

2 |z′(t)|
1− |z(t)|2

dt

Area If dx and idy are infinitessimal horizontal and vertical changes in z = x + iy, then the area of
the infinitessimal rectangle spanned by z→ z + dx and z→ z + idy is the area element

dA =
2 dx

1− |z|2
2 dy

1− |z|2
=

4 dxdy
(1− x2 − y2)2

The area of a region R in the Poincaré disk is therefore given by the double integrals∫∫
R

4 dxdy
(1− x2 − y2)2 =

∫∫
R

4r dr dθ

(1− r2)2 =
∫∫

R
sinh δ dδ dθ

where the last expression is written in polar co-ordinates using the hyperbolic distance δ. In
this way the measure of area also depends on the distance function.
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Example 5.43 (Circles and ‘hyperbolic π’). Suppose that a circle has hyperbolic radius δ. By mov-
ing its center to the origin via an isometry, we can parameterize it in the usual manner:

z(t) = r
(

cos θ
sin θ

)
, θ ∈ [0, 2π) where δ = ln

1 + r
1− r

 r =
eδ − 1
eδ + 1

Its circumference (hyperbolic arc-length) is then∫ 2π

0

2r
1− r2 dθ =

4πr
1− r2 = 2π sinh δ = 2π

(
δ +

1
3!

δ3 +
1
4!

δ5 + · · ·
)
> 2πδ

where we used the Maclaurin series to compare. Its area is∫ 2π

0

∫ δ

0
sinh δ dδ dθ = 2π(cosh δ− 1) = π

(
δ2 +

2
4!

δ4 +
2
6!

δ6 + · · ·
)
> πδ2

A hyperbolic circle therefore has larger ratios of circumference : radius and area : radius2 than for a
Euclidean circle. Moreover, these ratios are not constant: one might say that the hyperbolic version of
π is a function!

Hyperbolic Lines as Geodesics Finally, we perform a calculus of variations argument to see that
the distance function in fact defines our notion of a hyperbolic line.

Definition 5.44. A geodesic is a path of shortest length between two points.

Theorem 5.45. The geodesics in the Poincaré disk model are precisely the hyperbolic lines.

Proof. First suppose that b lies on the positive x-axis. Parametrize a curve from 0 to b via

z(t) = x(t) + iy(t) where 0 ≤ t ≤ 1, z(0) = 0, z(1) = b

Now compute its arc-length:

∫ 1

0

2 |z′(t)|
1− |z(t)|2

dt =
∫ 1

0

2
√

x′2 + y′2

1− x2 − y2 dt ≥
∫ 1

0

2 |x′|
1− x2 dt ≥

∫ 1

0

2x′(t)
1− x(t)2 dt =

∫ b

0

2 dx
1− x2

= ln
1 + b
1− b

= d(0, b)

where we have equality if and only if y(t) ≡ 0 and x(t) is increasing. The length-minimizing path is
therefore along the x-axis.
More generally, given points A, B, apply an isometry f such that f (A) = 0 and f (B) = b lies on the
positive x-axis. The geodesic from A to B is therefore the image of the segment 0b under the inverse
isometry f−1. By the properties of Möbius transforms, this is an arc of a Euclidean circle through A, B
intersecting the unit circle at right-angles: our original definition of a hyperbolic line.
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