Induced Drag and High-Speed Aerodynamics

Robert Stengel, Aircraft Flight Dynamics, MAE 331, 2018

- Drag-due-to-lift and effects of wing planform
- Effect of angle of attack on lift and drag coefficients
- Mach number (i.e., air compressibility) effects on aerodynamics
- Newtonian approximation for lift and drag

Induced Drag

Aerodynamic Drag

$$
\text { Drag }=C_{D} \frac{1}{2} \rho V^{2} S \approx\left(C_{D_{0}}+\varepsilon C_{L}^{2}\right) \frac{1}{2} \rho V^{2} S
$$

$$
\approx\left[C_{D_{0}}+\varepsilon\left(C_{L_{o}}+C_{L_{e}} \alpha\right)^{2}\right] \frac{1}{2} \rho V^{2} S
$$

Induced Drag of a Wing, $\varepsilon C_{L}{ }^{2}$

- Lift produces downwash (angle proportional to lift)
- Downwash rotates local velocity vector clockwise in figure
- Lift is perpendicular to velocity vector
- Axial component of rotated lift induces drag
- But what is the proportionality factor, ε ?

Induced Angle of Attack

$C_{D_{i}}=C_{L} \sin \alpha_{i}$, where
$\alpha_{i}=C_{L} / \pi e A R$, Induced angle of attack

$$
C_{D_{i}}=C_{L} \sin \left(C_{L} / \pi e A R\right) \triangleq C_{L}^{2} / \pi e A R
$$

Three Expressions for Induced Drag of a Wing

$$
C_{D_{i}}=\frac{C_{L}^{2}}{\pi e A R} \triangleq \frac{C_{L}^{2}(1+\delta)}{\pi A R} \triangleq \varepsilon C_{L}^{2}
$$

$e=$ Oswald efficiency factor
$=1$ for elliptical distribution
$\delta=$ departure from ideal elliptical lift distribution

$$
\varepsilon=\frac{1}{\pi e A R}=\frac{(1+\delta)}{\pi A R}
$$

Spanwise Lift Distribution of Elliptical and Trapezoidal Wings

For some taper ratio between 0.35 and 1, trapezoidal lift distribution is nearly elliptical

Induced Drag Factor, $\boldsymbol{\delta}$

Oswald Efficiency Factor, e

$$
C_{D_{i}}=\frac{C_{L}^{2}}{\pi e A R}
$$

Empirical approximations for e
Pamadi

$$
\begin{gathered}
\kappa=\frac{A R \lambda}{\cos \Lambda_{L E}} \\
R=0.0004 \kappa^{3}-0.008 \kappa^{2}+0.05 \kappa+0.86 \\
e \approx \frac{1.1 C_{L_{\alpha}}}{R C_{L_{\alpha}}+(1-R) \pi A R}
\end{gathered}
$$

Raymer

$$
e \approx 1.78\left(1-0.045 A R^{0.68}\right)-0.64 \quad[\text { Straight wing }]
$$

$$
e \approx 4.61\left(1-0.045 A R^{0.68}\right)\left(\cos \Lambda_{L E}\right)^{0.15}-3.1 \text { [Swept wing] },
$$

Maximum Lift-to-Drag Ratio

Maximize L / D by proper choice of C_{L}

$$
\frac{L}{D}=\frac{C_{L}}{C_{D}}=\frac{C_{L}}{C_{D_{o}}+\varepsilon C_{L}^{2}} \quad \frac{\partial(L / D)}{\partial C_{L}}=0
$$

$$
\begin{gathered}
\frac{\partial(L / D)}{\partial C_{L}}=0=\frac{\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)-C_{L}\left(2 \varepsilon C_{L}\right)}{\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)^{2}}=\frac{\left(C_{D_{o}}-\varepsilon C_{L}^{2}\right)}{\left(C_{D_{o}}+\varepsilon C_{L}^{2}\right)^{2}} \\
\left(C_{L}\right)_{(L / D)_{\max }}=\sqrt{\frac{C_{D_{o}}}{\varepsilon}} \quad(L / D)_{\max }=\frac{1}{2 \sqrt{\varepsilon C_{D_{o}}}}
\end{gathered}
$$

Lift and Drag Coefficients Over Large Angles of Attack ($0^{\circ}<\alpha<90^{\circ}$)

All coefficients converge to Newtonian-like values at very
high angle of attack
Low- $A R$ wing has less drag than high- $A R$ wing at given a

Lift vs. Drag for Large Variation in

 Angle of Attack ($0^{\circ}<\alpha<90^{\circ}$)

Low- $A R$ wing has less drag than high- $A R$ wing, but less lift as well
High- $A R$ wing has the best overall subsonic L / D

Lift-to-Drag Ratio vs. Angle of Attack

- Performance metric for aircraft
- High-AR wing: Best overall subsonic L/D
- Low-AR wing: Best L / D at high angle of attack

$$
\frac{L}{D}=\frac{C_{L} \bar{q} S}{C_{D} \bar{q} S}=\frac{C_{L}}{C_{D}}
$$

Newtonian Flow and Aerodynamic Forces

Newtonian Flow

- No circulation
- "Cookie-cutter" flow
- Equal pressure across bottom of a flat plate
- Flow brought to a halt at the surface

Newtonian Flow

Normal Force

$$
\begin{aligned}
\text { Normal Force } & =\left(\frac{\text { Mass flow rate }}{\text { Unit area }}\right) \\
& \times(\text { Change in velocity }) \\
& \times(\text { Projected Area }) \\
& \times(\text { Angle between plate and velocity })
\end{aligned}
$$

$$
\begin{aligned}
N & =(\rho V)(V-0)(S \sin \alpha)(\sin \alpha) \\
& =\left(\rho V^{2}\right)\left(S \sin ^{2} \alpha\right) \\
& =\left(2 \sin ^{2} \alpha\right)\left(\frac{1}{2} \rho V^{2}\right) S
\end{aligned} \quad C_{N}=2 \sin ^{2} \alpha
$$

$$
\equiv C_{N}\left(\frac{1}{2} \rho V^{2}\right) S
$$

$\alpha=$ Incident flow angle

Newtonian Forces on a Flat Plate

$C_{N}=2 \sin ^{2} \alpha$

Lift and Drag
Lift $=N \cos \alpha$

$$
C_{L}=\left(2 \sin ^{2} \alpha\right) \cos \alpha
$$

Drag $=N \sin \alpha$
$C_{D}=2 \sin ^{3} \alpha$

Aerodynamic Force Estimation for a Hypersonic Aircraft

Integrate differential normal force over the aircraft surface, accounting for varying surface incidence (i.e., angle) to the flow

$$
\mathbf{f}_{B}=\int_{\text {Surface }}\left[\begin{array}{c}
f_{x} \\
f_{y} \\
f_{z}
\end{array}\right] d x d y d z=\left[\begin{array}{c}
X_{B} \\
Y_{B} \\
Z_{B}
\end{array}\right]
$$

Application of Newtonian Flow

- But where does the airflow go?
- Hypersonic flow (M ~>5)
- Shock wave close to surface (thin shock layer), merging with the boundary layer
- Flow is ~ parallel to the surface
- Separated upper surface flow
- All Mach numbers at high angle of attack
- Separated flow on upper (leeward) surfaces

Historical Factoid

Conversions from Propellers to Jets

Historical Factoid Jets at an Awkward Age

- Performance of first jet aircraft outstripped stability and control technology
- Lacked satisfactory actuators, sensors, and control electronics
- Transistor: 1947, integrated circuit: 1958
- Dramatic dynamic variations over larger flight envelope
- Control mechanisms designed to lighten pilot loads were subject to instability
- Reluctance of designers to embrace change, fearing decreased reliability, increased cost, and higher weight

Mach Number Effects

No Speed

Mach 1

Mach 2 22

Drag Due to Pressure Differential

$$
\begin{aligned}
C_{D_{\text {base }}} & =C_{\text {pressure base }} S_{\text {base }} / S \approx \frac{0.029}{\sqrt{C_{\text {friction }} \frac{S_{\text {wet }}}{S_{\text {base }}}} \frac{S_{\text {base }}}{S} \quad(M<1) \quad \text { [Hoerner] }} \begin{array}{c}
\left.\begin{array}{c}
\text { Blunt base } \\
\text { pressure drag }
\end{array}\right] \\
\\
\end{array}<\frac{2}{\gamma M^{2}}\left(\frac{S_{\text {base }}}{S}\right)(M>2, \quad \gamma=\text { specific heat ratio })
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& C_{D_{\text {wave }}} \approx \frac{C_{D_{\text {incompressible }}}}{\sqrt{1-M^{2}}} \quad(M<1) \\
& \begin{array}{c|c}
\begin{array}{c}
\text { Prandtl } \\
\text { factor }
\end{array} & \approx \frac{C_{D_{\text {compressible }}}}{\sqrt{M^{2}-1}} \quad(M>1) \\
& \approx \frac{C_{D_{M-\sqrt{2}}}}{\sqrt{M^{2}-1}} \quad(M>1)
\end{array}
\end{aligned} \begin{aligned}
&
\end{aligned}
\end{aligned}
$$

Air Compressibility Effect

- Drag rises due to pressure increase across a shock wave
- Subsonic flow
- Local airspeed less than sonic (i.e., speed of sound) everywhere
- Transonic flow
- Airspeed less than sonic at some points, greater than sonic elsewhere
- Supersonic flow
- Local airspeed greater than sonic virtually everywhere

[^0]
Effect of Chord Thickness on Wing Pressure Drag

- Thinner chord sections lead to higher $M_{c r i t}$ or drag-divergence Mach number

Air Compressibility Effect on Wing Drag

Pressure Drag on Wing Depends on Sweep Angle

Hfistorical Factoid

From Straight to Swept Wings

- Straight-wing models were redesigned with swept wings to reduce compressibility effects on drag and increase speed
- Dramatic change in stability, control, and flying qualities

North American FJ-1 and
FJ-4 Fury

Republic F-84B Thunderbird and F-84F Thunderstreak

Grumman F9F-2 Panther and F9F-6 Cougar

Supercritical Wing

- Richard Whitcomb's supercritical airfoil
- Wing upper surface flattened to increase $M_{\text {crit }}$
- Wing thickness can be restored
- Important for structural efficiency, fuel storage, etc.

Subsonic Air Compressibility and Sweep Effects on 3-D Wing Lift Slope

- Subsonic 3-D wing, with sweep effect

Subsonic Air Compressibility Effects on 3-D Wing Lift Slope

Subsonic 3-D wing, sweep $=0$

Subsonic Air Compressibility Effects on 3-D Wing Lift Slope

Subsonic 3-D wing, sweep $=60^{\circ}$
$\operatorname{plot}\left(\right.$ pi $\mathrm{A} /\left(1+\operatorname{sqrt}\left(1+\left(\mathrm{A}^{\wedge} 2\right)\left(1-0.5 \mathrm{M}^{\wedge} 2\right)\right)\right), \mathrm{A}=1$ to $20, \mathrm{M}=0$ to 0.9$)$

Lift-Drag Polar for a Typical Bizjet

- $L / D=$ slope of line drawn from origin
- Single maximum for a given polar
- Two solutions for lower L/D (high and low airspeed)
- Available L/D decreases with Mach number
- Intercept for $L / D_{\text {max }}$ depends only on ε and zero-lift drag

Wing Lift Slope at $\mathrm{M}=1$

Approximation for all wing planforms

$$
C_{L_{\alpha}}=\frac{\pi A R}{2}=2 \pi\left(\frac{A R}{4}\right)
$$

Supersonic Effects on Arbitrary Wing and Wing-Body Lift Slope

- Impinging shock waves
- Discrete areas with differing M and local pressure coefficients, c_{p}
- Areas change with α
- No simple equations for lift slope

$m=\tan \gamma / \tan \mu \quad$ Schlicting \& Truckenbrodt, 1979
$\gamma, \mu=$ sweep angles of shock and leading edge, from x axis

Supersonic Compressibility Effects on Triangular Wing Lift Slope
 Supersonic delta (triangular) wing

Supersonic leading edge
$C_{L_{\alpha}}=\frac{4}{\sqrt{M^{2}-1}}$

$\Lambda_{L E}=$ sweep angle of leading edge, from y axis

Historical Factoid

Fighter Jets of the 1950s: "Century Series"

- Emphasis on supersonic speed

Transonic Drag Rise and the Area Rule

- Richard Whitcomb (NASA Langley) and Wallace Hayes (Princeton)
- YF-102A (left) could not break speed of sound in level flight; F-102A (right) could

Transonic Drag Rise and the Area Rule

Cross-sectional area of total configuration should gradually increase and decrease to minimize transonic drag

Secondary Wing Structures

- Vortex generators, fences, vortilons, notched or dog-toothed wing leading edges
- Boundary layer control
- Maintain attached flow with increasing a
- Avoid tip stall

Leading-Edge Extensions

- Strakes or leading edge extensions
- Maintain lift at high a
- Reduce c.p. shift at high Mach number

Wingtip Design

- Winglets, rake, and Hoerner tip reduce induced drag by controlling the tip vortices
- End plate, wingtip fence straightens flow, increasing apparent aspect ratio (L/D)
- Chamfer produces favorable roll w/ sideslip

Next Time:
 Aerodynamic Moments (i.e., Torques)

Reading:
Flight Dynamics
Aerodynamic Coefficients, 96-118
Airplane Dynamics and Control
Chapter 6

Learning Objectives

Expressions for aerodynamic balance and moment
Concepts of aerodynamic center, center of pressure, and static margin
Configuration and angle-of-attack effects on pitching moment and stability
Calculate configuration and sideslip-angle effects on lateraldirectional (i.e., rolling and yawing) aerodynamic moments Tail design effects on airplane aerodynamics

Straight, Swept, and Tapered Wings

- Straight at the quarter chord
- Swept at the quarter chord
- Progression of separated flow from trailing edge with increasing angle of attack

P-51 Mustang

P-51 Mustang Example

$$
\begin{array}{ll}
C_{L_{\alpha}}=\frac{\pi A R}{\left[1+\sqrt{1+\left(\frac{A R}{2}\right)^{2}}\right]}=4.49 \text { per rad (wing only) } \\
e & \\
e=0.947 & C_{D_{i}}=\varepsilon C_{L}^{2}=\frac{C_{L}^{2}}{\pi e A R}=\frac{C_{L}^{2}(1+\delta)}{\pi A R} \\
\delta=0.0557 \\
\varepsilon=0.0576
\end{array}
$$

http://www.youtube.com/watch?v=WEOsr4vmZtU

Design for Satisfactory Stalls

- Marked by noticeable, uncommanded changes in pitch, yaw, or roll and/or by a marked increase in buffet
- Stall must be detectable
- Aircraft must pitch down when it occurs
Up to the stall break, ailerons and rudder should operate properly
- Inboard stall strips to prevent tip stall and loss of roll control before the stall
- Strakes for improved high-a flight

Spanwise Lift Distribution of 3-D Wings

- Wing does not have to have a geometrically elliptical planform to have a nearly elliptical lift distribution
- Sweep moves lift distribution toward tips

Transonic Sweep Effects on 3-D Wing Lift Slope

Subsonic 3-D wing, $M=0.85$

```
plot(pi A / (1+sqrt(1 + ((A / 2 cos(L)) ^2) (1 - cos(L) 0.85^2))), A=1 to 20,
L = 0 to (pi / 3))
```


Sweep Reduces Subsonic Lift Slope

Swept Wing

Triangular Wing

$$
\begin{aligned}
& C_{L_{\alpha}}=\frac{2 \pi^{2} \cot \Lambda_{L E}}{(\pi+\lambda)} \\
& \text { where } \quad \lambda=m\left(0.38+2.26 m-0.86 m^{2}\right) \\
& \quad m=\cot \Lambda_{L E} / \cot \sigma \\
& \quad \Lambda_{L E}, \sigma: \text { measured from } y \text { axis } \\
& \hline
\end{aligned}
$$

Low Aspect Ratio Configurations

- Typical for supersonic aircraft

Variable Aspect Ratio Configurations

Aerodynamic efficiency at sub- and supersonic speeds

Sweep Effect on Thickness Ratio

Fig. 1.18 Effect of sweep on relative thickness of wing sections.
from Asselin

Reconnaissance Aircraft

$V_{\text {cruise }}=375 \mathrm{kt}$
$h_{\text {cruise }}=70 \mathrm{kft}$

- Subsonic, high-altitude flight

- Supersonic, high-altitude flight

Supersonic Biplane

- Concept of Adolf Busemann (1935)
- Shock wave cancellation at one specific Mach number
- 2-D wing
http://en.wikipedia.org/wiki/Adolf_Busemann
- Kazuhiro Kusunose et al, Tohoku U (PAS, 47, 2011, 53-87)
- Adjustable flaps
- Tapered, variably spaced 3-D wings
- Fuselage added

Supersonic Transport Concept

- Rui Hu, Qiqi Wang (MIT), Antony Jameson (Texas A\&M), AIAA-2011-1248
- Optimization of biplane aerodynamics
- Sketch of possible configuration

[^0]: - Critical Mach number
 - Mach number at which local flow first becomes sonic
 - Onset of drag-divergence
 - $M_{\text {crit }} \sim 0.7$ to 0.85

