Lecture Five
Stochastic Calculus

by

Steven E．Shreve
Department of Mathematical Sciences
Carnegie Mellon University
for the
MAA Short Course
＂Financial Mathematics＂
August 4－5， 2009
Portland，Oregon

5 Stochastic Calculus
5．1 Itô Integral for a Simple Integrand
5．2 Properties for Simple Integrands
5．3 Construction for General Integrands
5．4 Example of an Itô Integral
5.5 Itô＇s Formula for One Process

5．6 Solution to Exercise

5 Stochastic Calculus

5．1 Itô Integral for a Simple Integrand

The Itô integral problem
Definition
Let W be a Brownian motion defined on a probability space
$(\Omega, \mathcal{F}, \mathbb{P})$ ．A process $\Delta(s, \omega)$ ，a function of $s \geq 0$ and $\omega \in \Omega$ ，is adapted if the dependence of $\Delta(s, \omega)$ on ω is as a function of the initial path fragment $W(u, \omega), 0 \leq u \leq s$ ．In particular，$\Delta(s)$ is independent of $W(t)-W(s)$ whenever $0 \leq s \leq t$ ．
We want to make sense of

$$
\int_{0}^{t} \Delta(s) d W(s), \quad 0 \leq t \leq T
$$

Remark
If $g(s)$ is a differentiable function，then we can define

$$
\int_{0}^{t} \Delta(s) d g(s)=\int_{0}^{t} \Delta(u) g^{\prime}(s) d s
$$

This won＇t work for Brownian motion，however，because the paths of Brownian motion are not differentiable．

Simple Integrand

Let $\Pi=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[0, T]$, i.e.,

$$
0=t_{0} \leq t_{1} \leq \cdots \leq t_{n}=T
$$

Assume that $\Delta(s)$ is constant in s on each subinterval $\left[t_{k}, t_{k+1}\right)$. We call such a Δ a simple process.

One path of Δ
Example

$$
\Delta(s)=W\left(t_{k}\right), \quad t_{k} \leq s<t_{k+1}
$$

5 Stochastic Calculus

5.2 Properties for Simple Integrands

Interpretation of Simple Integrand

- Think of $W(s)$ as the price per share of an asset at time s.
- Think of $t_{0}, t_{1}, \ldots, t_{n-1}$ as the trading dates in the asset.
- Think of $\Delta\left(t_{0}\right), \Delta\left(t_{1}\right), \ldots, \Delta\left(t_{n-1}\right)$ as the number of shares of the asset acquired at each trading date and held to the next trading date.
Gain from trading.

$$
\begin{aligned}
I(t)= & \Delta\left(t_{0}\right)\left[W(t)-W\left(t_{0}\right)\right]=\Delta\left(t_{0}\right) W(t), \quad 0 \leq t \leq t_{1}, \\
I(t)= & \Delta\left(t_{0}\right)\left[W\left(t_{1}\right)-W\left(t_{0}\right)\right]+\Delta\left(t_{1}\right)\left[W(t)-W\left(t_{1}\right)\right] \\
& t_{1} \leq t \leq t_{2}, \\
I(t)= & \Delta\left(t_{0}\right)\left[W\left(t_{1}\right)-W\left(t_{0}\right)\right]+\Delta\left(t_{1}\right)\left[W\left(t_{2}\right)-W\left(t_{1}\right)\right] \\
& +\Delta\left(t_{2}\right)\left[W(t)-W\left(t_{2}\right)\right], \quad t_{2} \leq t \leq t_{3} .
\end{aligned}
$$

The process I is the Itô integral of the simple process Δ, i.e.,

$$
I(t)=\int_{0}^{t} \Delta(s) d W(s), \quad 0 \leq t \leq T
$$

Expectation of Itô integral

Theorem
The Itô integral of a simple process has expectation zero.
Proof: By definition

$$
I(T)=\sum_{j=0}^{n-1} \Delta\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)
$$

Compute expectation term by term. Because $\Delta\left(t_{j}\right)$ is independent of $W\left(t_{j+1}\right)-W\left(t_{j}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left[\Delta\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] & =\mathbb{E} \Delta\left(t_{j}\right) \cdot \mathbb{E}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right] \\
& =\mathbb{E} \Delta\left(t_{j}\right) \cdot 0 \\
& =0
\end{aligned}
$$

Exercise（5．1）
Suppose $Y(t), 0 \leq t \leq T$ ，is a stochastic process（a function of t and ω ）such that if $0 \leq s \leq t$ ，then the increment $Y(t)-Y(s)$ is independent of the path of Y up to time s and has expectation zero．Let $\{\Delta(s)\}_{0 \leq s \leq T}$ be a simple process adapted to Y ，i．e．， there is a partition $\Pi=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[0, T]$ such that $\Delta(s)$ is constant in s in each subinterval $\left[t_{j}, t_{j+1}\right)$ ，and for each $s \in[0, T]$ ， the random variable $\Delta(s)$ depends on ω only through the path of Y up to time s ，and hence $\Delta(s)$ is independent of $Y(t)-Y(s)$ for all $t \in[s, T]$ ．Define the Itô integral

$$
I(T)=\sum_{j=0}^{n-1} \Delta\left(t_{j}\right)\left(Y\left(t_{j+1}\right)-Y\left(t_{j}\right)\right)
$$

（i）Show that $\mathbb{E} I(T)=0$ ．
（ii）A simple arbitrage is a simple process Δ such that $I(T) \geq 0$ almost surely and $\mathbb{P}\{I(T)>0\}>0$ ．Show that there is no simple arbitrage under the assumptions of this exercise．

Proof of（QV）

For $s \in\left[t_{j}, t_{j+1}\right]$ ，we have $\Delta(s)=\Delta\left(t_{j}\right)$ and

$$
\begin{aligned}
I(s) & =I\left(t_{j}\right)+\Delta\left(t_{j}\right)\left[W(s)-W\left(t_{j}\right)\right] \\
& =\left[I\left(t_{j}\right)-\Delta\left(t_{j}\right) W\left(t_{j}\right)\right]+\Delta\left(t_{j}\right) W(s)
\end{aligned}
$$

On this subinterval，quadratic variation of I comes from the quadratic variation of W ，which is scaled by $\Delta\left(t_{j}\right)$ ．Therefore

$$
\begin{aligned}
{[I, I]\left(t_{j+1}\right)-[I, I]\left(t_{j}\right) } & =\Delta^{2}\left(t_{j}\right)\left([W, W]\left(t_{j+1}\right)-[W, W]\left(t_{j}\right)\right) \\
& =\Delta^{2}\left(t_{j}\right)\left(t_{j+1}-t_{j}\right) \\
& =\int_{t_{j}}^{t_{j+1}} \Delta^{2}(s) d s .
\end{aligned}
$$

Summing over subintervals，we obtain

$$
[I, I](T)=\sum_{j=0}^{n-1}\left([I, I]\left(t_{j+1}\right)-[I, I]\left(t_{j}\right)\right)=\int_{0}^{T} \Delta^{2}(s) d s
$$

Quadratic Variation of Itô Integral

Theorem
The simple ltô integral

$$
I(t)=\int_{0}^{t} \Delta(u) d W(u)
$$

has quadratic variation

$$
\begin{equation*}
[I, I](T)=\int_{0}^{T} \Delta^{2}(u) d u \tag{QV}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\mathbb{E}\left[I^{2}(T)\right]=\mathbb{E} \int_{0}^{T} \Delta^{2}(u) d u . \tag{VAR}
\end{equation*}
$$

Remark
Both sides of（QV）are random，but the expressions in（VAR）are not．（VAR）is called ltô＇s Isometry．

Proof of（VAR）

$$
I(T)=\sum_{j=0}^{n-1} \Delta\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)
$$

Squaring and taking expectations，we obtain

$$
\begin{gathered}
\mathbb{E}\left[I^{2}(T]\right)=\sum_{k=j}^{n-1} \mathbb{E}\left[\Delta^{2}\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right] \\
+2 \sum_{j<k} \mathbb{E}\left[\Delta\left(t_{j}\right) \Delta\left(t_{k}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\left(W\left(t_{k+1}\right)-W\left(t_{k}\right)\right)\right] .
\end{gathered}
$$

We use independence to simplify the pure square terms：

$$
\begin{gathered}
\mathbb{E}\left[\Delta^{2}\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right]=\mathbb{E}\left[\Delta^{2}\left(t_{j}\right)\right] \cdot \mathbb{E}\left[\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}\right] \\
=\mathbb{E}\left[\Delta^{2}\left(t_{j}\right)\right] \cdot\left(t_{j+1}-t_{j}\right)=\int_{t_{j}}^{t_{j+1}} \mathbb{E} \Delta^{2}(s) d s
\end{gathered}
$$

The sum of the pure square terms is $\mathbb{E} \int_{0}^{T} \Delta^{2}(s) d s$ ．

Proof of (VAR) (continued)

It remains to show that the cross-terms have zero expectation. For $j<k$, the increment $W\left(t_{k+1}\right)-W\left(t_{k}\right)$ is independent of $\Delta\left(t_{j}\right) \Delta\left(t_{k}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)$, and hence
$\mathbb{E}\left[\Delta\left(t_{j}\right) \Delta\left(t_{k}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\left(W\left(t_{k+1}\right)-W\left(t_{k}\right)\right)\right]$
$=\mathbb{E}\left[\Delta\left(t_{j}\right) \Delta\left(t_{k}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \cdot \mathbb{E}\left(W\left(t_{k+1}\right)-W\left(t_{k}\right)\right)$
$=\mathbb{E}\left[\Delta\left(t_{j}\right) \Delta\left(t_{k}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)\right] \cdot 0$
$=0$.

5 Stochastic Calculus

5.3 Construction for General Integrands

Outline of construction for general integrands

- Given $\Delta(s), 0 \leq s \leq T$, satisfying

$$
\mathbb{E} \int_{0}^{T} \Delta^{2}(s) d s<\infty
$$

construct an approximating sequence of simple processes $\Delta_{n}(s), 0 \leq s \leq T$, such that

$$
\lim _{n \rightarrow \infty} \mathbb{E} \int_{0}^{T}\left(\Delta(s)-\Delta_{n}(s)\right)^{2} d s=0
$$

- Set $I_{n}(T)=\int_{0}^{T} \Delta_{n}(s) d W(s)$. Itô's isometry implies that

$$
\mathbb{E}\left[\left(I_{n}(T)-I_{m}(T)\right)^{2}\right]=\mathbb{E} \int_{0}^{T}\left(\Delta_{n}(s)-\Delta_{m}(s)\right)^{2} d s
$$

- Because the sequence $\left\{\Delta_{n}\right\}_{n=1}^{\infty}$ converges in
$L_{2}(\Omega \times[0, T], \mathcal{F} \otimes \operatorname{Borel}([0, T]), \mathbb{P} \times$ Lebesgue $)$, it is Cauchy in this space. Therefore, $\left\{I_{n}(T)\right\}_{n=1}^{\infty}$ is Cauchy in $L_{2}(\Omega, \mathcal{F}, \mathbb{P})$.

Outline of construction (continued)

- $L_{2}(\Omega, \mathcal{F}, \mathbb{P})$ is complete, and so the sequence $\left\{I_{n}(T)\right\}_{n=1}^{\infty}$ has a limit $I(T)$ in this space.
- We define

$$
\int_{0}^{T} \Delta(s) d W(s)=I(T)=\lim _{n \rightarrow \infty} I_{n}(T)
$$

This limit does not depend on the approximating sequence $\left\{\Delta_{n}\right\}_{n=1}^{\infty}$.

- By choosing approximating sequences that converge rapidly, we can in fact make the convergence of $I_{n}(T)$ to $I(T)$ be almost sure (almost everywhere with respect to \mathbb{P}) rather than in L_{2}.
- With additional work, one can choose the approximating sequence so that the paths of $I_{n}(t), 0 \leq t \leq T$, converge uniformly in $t \in[0, T]$ almost surely. This guarantees that there is a limit $I(t), 0 \leq t \leq T$, that is a continuous function of $t \in[0, T]$ for \mathbb{P}-almost every ω.

Theorem
Under the assumption $\mathbb{E}\left[\int_{0}^{T} \Delta^{2}(s) d s\right]<\infty$, the Itô integral

$$
I(t)=\int_{0}^{t} \Delta(s) d W(s), \quad 0 \leq t \leq T
$$

is defined and continuous in $t \in[0, T]$. We have

$$
\mathbb{E} /(t)=0, \quad 0 \leq t \leq T
$$

5 Stochastic Calculus

5.4 Example of an Itô Integral

The quadratic variation of the Itô integral is

$$
[I, I](t)=\int_{0}^{t} \Delta^{2}(s) d s, \quad 0 \leq t \leq T
$$

and the Itô integral satisfies Itô's Isometry

$$
\operatorname{Var}[I(t)]=\mathbb{E}\left[I^{2}(t)\right]=\mathbb{E}\left[\int_{0}^{t} \Delta^{2}(s) d s\right], \quad 0 \leq t \leq T
$$

$\int_{0}^{T} W(s) d W(s)$
Divide $[0, T]$ into n equal subintervals. Define

$$
\Delta_{n}(s)=W\left(\frac{j T}{n}\right) \text { for } \frac{j T}{n} \leq s<\frac{(j+1) T}{n}
$$

One path of $W(s)$ and $\Delta_{4}(s)$

$$
\begin{aligned}
\frac{1}{2} \sum_{j=0}^{n-1}\left(W_{j+1}-W_{j}\right)^{2} & =\frac{1}{2} \sum_{j=0}^{n-1} W_{j+1}^{2}-\sum_{j=0}^{n-1} W_{j} W_{j+1}+\frac{1}{2} \sum_{j=0}^{n-1} W_{j}^{2} \\
& =\frac{1}{2} \sum_{k=1}^{n} W_{k}^{2}-\sum_{j=0}^{n-1} W_{j} W_{j+1}+\frac{1}{2} \sum_{j=0}^{n-1} W_{j}^{2} \\
& =\frac{1}{2} W_{n}^{2}+\frac{1}{2} \sum_{k=0}^{n-1} W_{k}^{2}-\sum_{j=0}^{n-1} W_{j} W_{j+1}+\frac{1}{2} \sum_{j=0}^{n-1} W_{j}^{2} \\
& =\frac{1}{2} W_{n}^{2}+\sum_{j=0}^{n-1} W_{j}^{2}-\sum_{j=0}^{n-1} W_{j} W_{j+1} \\
& =\frac{1}{2} W_{n}^{2}+\sum_{j=0}^{n-1} W_{j}\left(W_{j}-W_{j+1}\right) . \\
\sum_{j=0}^{n-1} W_{j}\left(W_{j+1}\right. & \left.-W_{j}\right)=\frac{1}{2} W_{n}^{2}-\frac{1}{2} \sum_{j=0}^{n-1}\left(W_{j+1}-W_{j}\right)^{2} .
\end{aligned}
$$

Exercise (5.2)
Show that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} W\left(\frac{(j+1) T}{n}\right)\left[W\left(\frac{(j+1) T}{n}\right)-W\left(\frac{j T}{n}\right)\right] \\
=\frac{1}{2} W^{2}(T)+\frac{1}{2} T
\end{gathered}
$$

From the previous page, we have

$$
\sum_{j=0}^{n-1} W_{j}\left(W_{j+1}-W_{j}\right)=\frac{1}{2} W_{n}^{2}-\frac{1}{2} \sum_{j=0}^{n-1}\left(W_{j+1}-W_{j}\right)^{2}
$$

Letting $n \rightarrow \infty$, we get
$\int_{0}^{T} W(s) d W(s)=\frac{1}{2} W^{2}(T)-\frac{1}{2}[W, W](T)=\frac{1}{2} W^{2}(T)-\frac{1}{2} T$.
Remark
If g is a differentiable function with $g(0)=0$, then

$$
\int_{0}^{T} g(s) d g(s)=\int_{0}^{T} g(s) g^{\prime}(s) d s=\left.\frac{1}{2} g^{2}(s)\right|_{0} ^{T}=\frac{1}{2} g^{2}(T)
$$

The extra term $\frac{1}{2} T$ in $\int_{0}^{T} W(s) d W(s)$ comes from the nonzero quadratic variation of Brownian motion.

5 Stochastic Calculus

5.5 Itô's Formula for One Process

Along the path of a Brownian motion，we want to＂differentiate＂ $f(W(t))$ ，where $f(x)$ is a differentiable function．If the path of the Brownian motion $W(t)$ could be differentiated with respect to t ， then the ordinary chain rule would give

$$
\frac{d}{d t} f(W(t))=f^{\prime}(W(t)) W^{\prime}(t)
$$

which could be written in differential notation as

$$
d f(W(t))=f^{\prime}(W(t)) W^{\prime}(t) d t=f^{\prime}(W(t)) d W(t)
$$

Because W has nonzero quadratic variation，the correct formula has an extra term，namely，

$$
d f(W(t))=f^{\prime}(W(t)) d W(t)+\frac{1}{2} f^{\prime \prime}(W(t)) \underbrace{d t}_{d W(t) d W(t)}
$$

This is Itô＇s formula in differential form．

Application of Itô＇s Formula

Consider $f(x)=\frac{1}{2} x^{2}$ ，so that

$$
f^{\prime}(x)=x, \quad f^{\prime \prime}(x)=1
$$

Itô＇s formula in integral form
$f(W(T))-f(W(0))=\int_{0}^{T} f^{\prime}(W(s)) d W(s)+\frac{1}{2} \int_{0}^{T} f^{\prime \prime}(W(s)) d s$
becomes
$\frac{1}{2} W^{2}(T)=\int_{0}^{T} W(s) d W(s)+\frac{1}{2} \int_{0}^{T} 1 d s=\int_{0}^{T} W(s) d W(s)+\frac{1}{2} T$,
or equivalently，

$$
\int_{0}^{T} W(u) d W(u)=\frac{1}{2} W^{2}(T)-\frac{1}{2} T
$$

Remark
The mathematically meaningful form of Itô＇s formula is Itô＇s formula in integral form：
$f(W(T))-f(W(0))=\int_{0}^{t} f^{\prime}(W(t)) d W(t)+\frac{1}{2} \int_{0}^{T} f^{\prime \prime}(W(t)) d t$.
This is because we have definitions for both integrals appearing on the right－hand side．The first，

$$
\int_{0}^{T} f^{\prime}(W(t)) d W(t)
$$

is an ltô integral．The second

$$
\int_{0}^{T} f^{\prime \prime}(W(t)) d t
$$

is a Riemann integral with respect to time，computed path by path．

Derivation of Itô＇s Formula

Consider $f(x)=\frac{1}{2} x^{2}$ ，so that

$$
f^{\prime}(x)=x, \quad f^{\prime \prime}(x)=1
$$

Let x_{j+1} and x_{j} be numbers．Taylor＇s formula implies

$$
f\left(x_{j+1}\right)-f\left(x_{j}\right)=\left(x_{j+1}-x_{j}\right) f^{\prime}\left(x_{j}\right)+\frac{1}{2}\left(x_{j+1}-x_{j}\right)^{2} f^{\prime \prime}\left(x_{j}\right) .
$$

In this case，Taylor＇s formula to second order is exact because f is a quadratic function．

In the general case，the above equation is only approximate， and the error is of the order of $\left(x_{k+1}-x_{k}\right)^{3}$ ．The total error will have limit zero in the last step of the following argument（see Exercise 4．6（iii）of Lecture 4）．

Fix $T>0$ and let $\Pi=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[0, T]$ $f(W(T))-f(W(0))$
$=\sum_{j=0}^{n-1}\left[f\left(W\left(t_{j+1}\right)\right)-f\left(W\left(t_{j}\right)\right)\right]$
$=\sum_{j=0}^{n-1}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right] f^{\prime}\left(W\left(t_{j}\right)\right)$
$+\frac{1}{2} \sum_{j=0}^{n-1}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]^{2} f^{\prime \prime}\left(W\left(t_{j}\right)\right)$
$=\sum_{j=0}^{n-1} W\left(t_{j}\right)\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]+\frac{1}{2} \sum_{j=0}^{n-1}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]^{2}$.

$$
\begin{aligned}
f\left(W\left(t_{j+1}\right)\right)-f\left(W\left(t_{j}\right)\right)= & f^{\prime}\left(W\left(t_{j}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right) \\
& + \text { Small Error } \\
f\left(W\left(t_{j+1}\right)\right)-f\left(W\left(t_{j}\right)\right)= & f^{\prime}\left(W\left(t_{j}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right) \\
& +\frac{1}{2} f^{\prime \prime}\left(W\left(t_{j}\right)\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2} \\
& + \text { Smaller Error }
\end{aligned}
$$

We need the higher accuracy before summing. Otherwise, the accumulated small errors do not vanish as the step-size goes to zero.

From the previous page, we have

$$
\begin{aligned}
& f(W(T))-f(W(0)) \\
& \quad=\sum_{j=0}^{n-1} W\left(t_{j}\right)\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]+\frac{1}{2} \sum_{k=0}^{n-1}\left[W\left(t_{j+1}\right)-W\left(t_{j}\right)\right]^{2}
\end{aligned}
$$

We let $\|\Pi\| \rightarrow 0$, to obtain

$$
\begin{aligned}
& f(W(T))-f(W(0)) \\
&=\int_{0}^{T} W(s) d W(s)+\frac{1}{2} \underbrace{[W, W](T)}_{T} \\
&=\int_{0}^{T} f^{\prime}(W(s)) d W(s)+\frac{1}{2} \int_{0}^{T} \underbrace{f^{\prime \prime}(W(s))}_{1} d s
\end{aligned}
$$

This is Itô's formula in integral form for the special case

$$
f(x)=\frac{1}{2} x^{2}
$$

Exercise (5.3)

Let $u \in \mathbb{R}$ be constant and define $f(x)=e^{u x}$. Use Itô's formula applied to $f(W(t))$ to obtain the moment-generating function formula

$$
\mathbb{E} e^{u W(T)}=e^{\frac{1}{2} u^{2} T} .
$$

(Compare with Exercise 4.4 of Lecture 4.)
Exercise (5.4)
Let $f(x)=x^{4}$. Use Itô's formula applied to $f(W(t))$ to obtain the fourth-moment formula

$$
\mathbb{E} W^{4}(T)=3 T^{2}
$$

(Compare with Exercise 4.5 of Lecture 4.)

5 Stochastic Calculus

5.7 Solution to Exercise

Solution to Exercise 5.2

Let $t_{j}=\frac{j T}{n}$. The quadratic variation result for Brownian motion is

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1}\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)^{2}=T
$$

The Example shows that

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} W\left(t_{j}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)=\frac{1}{2} W^{2}(T)-\frac{1}{2} T
$$

Adding these two equations, we obtain

$$
\lim _{n \rightarrow \infty} \sum_{j=0}^{n-1} W\left(t_{j+1}\right)\left(W\left(t_{j+1}\right)-W\left(t_{j}\right)\right)=\frac{1}{2} W^{2}(T)+\frac{1}{2} T
$$

This is the desired result.
(i) As in the proof of the theorem preceding the exercise, we use independence to compute $\mathbb{E} I(T)$ term by term:

$$
\begin{aligned}
\mathbb{E}\left[\Delta\left(t_{j}\right)\left(Y\left(t_{j+1}\right)-Y\left(t_{j}\right)\right)\right] & =\mathbb{E} \Delta\left(t_{j}\right) \cdot \mathbb{E}\left[Y\left(t_{j+1}\right)-Y\left(t_{j}\right)\right] \\
& =\mathbb{E} \Delta\left(t_{j}\right) \cdot 0=0
\end{aligned}
$$

(ii) If $I(T) \geq 0$ almost surely and $\mathbb{P}\{I(T)>0\}>0$, then $\mathbb{E} I(T)>0$. This contradicts part (i).

Solution to Exercise 5.3
We have $f^{\prime}(x)=u f(x)$ and $f^{\prime \prime}(x)=u^{2} f(x)$. Therefore, Itô's formula becomes

$$
e^{u W(T)}=e^{u W(0)}+u \int_{0}^{T} e^{u W(t)} d W(t)+\frac{1}{2} u^{2} \int_{0}^{T} e^{u W(t)} d t
$$

Taking expectations and using the fact that the expectation of the Itô integral is zero, we obtain

$$
\mathbb{E} e^{u W(T)}=1+\frac{1}{2} u^{2} \int_{0}^{T} \mathbb{E} e^{u W(t)} d t
$$

We differentiate both sides with respect to T to obtain

$$
\frac{d}{d T} \mathbb{E} e^{u W(T)}=\frac{1}{2} u^{2} \mathbb{E} e^{u W(T)}
$$

The unique solution to this ordinary differential equation satisfying $\mathbb{E} e^{u W(0)}=1$ is

$$
\mathbb{E} e^{u W(T)}=e^{\frac{1}{2} u^{2} T}
$$

Exercise 5.4

With $f(x)=x^{4}$, we have $f^{\prime}(x)=4 x^{3}$ and $f^{\prime \prime}(x)=12 x^{2}$.
Therefore, Itô's formula becomes

$$
W^{4}(T)=4 \int_{0}^{T} W^{3}(t) d W(t)+6 \int_{0}^{T} W^{2}(t) d t
$$

Taking expectations of both sides and using the fact that the Itô integral has expectation zero, we obtain

$$
\begin{aligned}
\mathbb{E} W^{4}(T) & =6 \int_{0}^{T} \mathbb{E} W^{2}(t) d t \\
& =6 \int_{0}^{T} t d t \\
& =3 T^{2}
\end{aligned}
$$

