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5 Stochastic Calculus
5.1 Itô Integral for a Simple Integrand
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The Itô integral problem

Definition
Let W be a Brownian motion defined on a probability space
(Ω,F , P). A process ∆(s, ω), a function of s ≥ 0 and ω ∈ Ω, is
adapted if the dependence of ∆(s, ω) on ω is as a function of the
initial path fragment W (u, ω), 0 ≤ u ≤ s. In particular, ∆(s) is
independent of W (t) − W (s) whenever 0 ≤ s ≤ t.

We want to make sense of
∫ t

0
∆(s) dW (s), 0 ≤ t ≤ T .

Remark
If g(s) is a differentiable function, then we can define

∫ t

0
∆(s) dg(s) =

∫ t

0
∆(u)g ′(s) ds.

This won’t work for Brownian motion, however, because the paths
of Brownian motion are not differentiable.
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Simple Integrand

Let Π = {t0, t1, . . . , tn} be a partition of [0, T ], i.e.,

0 = t0 ≤ t1 ≤ · · · ≤ tn = T .

Assume that ∆(s) is constant in s on each subinterval [tk , tk+1).
We call such a ∆ a simple process.

t1 t2 t3 t4 s

One path of ∆

Example

∆(s) = W (tk), tk ≤ s < tk+1
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Interpretation of Simple Integrand

◮ Think of W (s) as the price per share of an asset at time s.
◮ Think of t0, t1, . . . , tn−1 as the trading dates in the asset.
◮ Think of ∆(t0), ∆(t1), . . . ,∆(tn−1) as the number of shares

of the asset acquired at each trading date and held to the
next trading date.

Gain from trading.

I (t) = ∆(t0)[W (t) − W (t0)] = ∆(t0)W (t), 0 ≤ t ≤ t1,

I (t) = ∆(t0)[W (t1) − W (t0)] + ∆(t1)[W (t) − W (t1)],

t1 ≤ t ≤ t2,

I (t) = ∆(t0)[W (t1) − W (t0)] + ∆(t1)[W (t2) − W (t1)]

+∆(t2)[W (t) − W (t2)], t2 ≤ t ≤ t3.

The process I is the Itô integral of the simple process ∆, i.e.,

I (t) =

∫ t

0
∆(s) dW (s), 0 ≤ t ≤ T .
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5 Stochastic Calculus
5.2 Properties for Simple Integrands
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Expectation of Itô integral

Theorem
The Itô integral of a simple process has expectation zero.

Proof: By definition

I (T ) =
n−1∑

j=0

∆(tj)
(
W (tj+1) − W (tj)

)
.

Compute expectation term by term. Because ∆(tj) is independent
of W (tj+1) − W (tj), we have

E
[
∆(tj)

(
W (tj+1) − W (tj)

)]
= E∆(tj) · E

[
W (tj+1) − W (tj)

]

= E∆(tj) · 0

= 0.
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Exercise (5.1)

Suppose Y (t), 0 ≤ t ≤ T, is a stochastic process (a function of t
and ω) such that if 0 ≤ s ≤ t, then the increment Y (t) − Y (s) is
independent of the path of Y up to time s and has expectation
zero. Let {∆(s)}0≤s≤T be a simple process adapted to Y , i.e.,
there is a partition Π = {t0, t1, . . . , tn} of [0, T ] such that ∆(s) is
constant in s in each subinterval [tj , tj+1), and for each s ∈ [0, T ],
the random variable ∆(s) depends on ω only through the path of
Y up to time s, and hence ∆(s) is independent of Y (t)− Y (s) for
all t ∈ [s, T ]. Define the Itô integral

I (T ) =

n−1∑

j=0

∆(tj)
(
Y (tj+1) − Y (tj)

)
.

(i) Show that EI (T ) = 0.

(ii) A simple arbitrage is a simple process ∆ such that I (T ) ≥ 0
almost surely and P{I (T ) > 0} > 0. Show that there is no
simple arbitrage under the assumptions of this exercise.
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Quadratic Variation of Itô Integral

Theorem
The simple Itô integral

I (t) =

∫ t

0
∆(u) dW (u)

has quadratic variation

[I , I ](T ) =

∫ T

0
∆2(u) du (QV )

and variance

E
[
I 2(T )

]
= E

∫ T

0
∆2(u) du. (VAR)

Remark
Both sides of (QV) are random, but the expressions in (VAR) are
not. (VAR) is called Itô’s Isometry.
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Proof of (QV)

For s ∈ [tj , tj+1], we have ∆(s) = ∆(tj) and

I (s) = I (tj) + ∆(tj)
[

W (s) − W (tj)
]

=
[

I (tj) − ∆(tj)W (tj)
]

+ ∆(tj)W (s).

On this subinterval, quadratic variation of I comes from the
quadratic variation of W , which is scaled by ∆(tj). Therefore

[I , I ](tj+1) − [I , I ](tj) = ∆2(tj)
(

[W , W ](tj+1) − [W , W ](tj)
)

= ∆2(tj)(tj+1 − tj)

=

∫ tj+1

tj

∆2(s) ds.

Summing over subintervals, we obtain

[I , I ](T ) =
n−1∑

j=0

(

[I , I ](tj+1) − [I , I ](tj)
)

=

∫ T

0
∆2(s) ds.
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Proof of (VAR)

I (T ) =
n−1∑

j=0

∆(tj)
(
W (tj+1) − W (tj)

)
.

Squaring and taking expectations, we obtain

E
[
I 2(T

]
) =

n−1∑

k=j

E

[

∆2(tj)
(
W (tj+1) − W (tj)

)2
]

+2
∑

j<k

E
[
∆(tj)∆(tk)

(
W (tj+1) − W (tj)

)(
W (tk+1) − W (tk)

)]
.

We use independence to simplify the pure square terms:

E
[
∆2(tj)

(
W (tj+1) − W (tj)

)2]
= E

[
∆2(tj)

]
· E

[(
W (tj+1) − W (tj)

)2]

= E
[
∆2(tj)

]
· (tj+1 − tj) =

∫ tj+1

tj

E∆2(s) ds.

The sum of the pure square terms is E
∫ T

0 ∆2(s)ds.
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Proof of (VAR) (continued)

It remains to show that the cross-terms have zero expectation. For
j < k , the increment W (tk+1) − W (tk) is independent of

∆(tj)∆(tk)
(

W (tj+1) − W (tj)
)

, and hence

E

[

∆(tj)∆(tk)
(

W (tj+1) − W (tj)
)(

W (tk+1) − W (tk)
)]

= E

[

∆(tj)∆(tk)
(

W (tj+1) − W (tj)
)]

· E
(

W (tk+1) − W (tk)
)

= E

[

∆(tj)∆(tk)
(

W (tj+1) − W (tj)
)]

· 0

= 0.
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5 Stochastic Calculus
5.3 Construction for General Integrands
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Outline of construction for general integrands

◮ Given ∆(s), 0 ≤ s ≤ T , satisfying

E

∫ T

0
∆2(s) ds < ∞,

construct an approximating sequence of simple processes
∆n(s), 0 ≤ s ≤ T , such that

lim
n→∞

E

∫ T

0

(
∆(s) − ∆n(s)

)2
ds = 0.

◮ Set In(T ) =
∫ T

0 ∆n(s) dW (s). Itô’s isometry implies that

E
[(

In(T ) − Im(T ))2
]

= E

∫ T

0

(
∆n(s) − ∆m(s)

)2
ds.

◮ Because the sequence {∆n}
∞
n=1 converges in

L2(Ω × [0, T ],F ⊗ Borel([0, T ]), P × Lebesgue), it is Cauchy
in this space. Therefore, {In(T )}∞n=1 is Cauchy in L2(Ω,F , P).
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Outline of construction (continued)

◮ L2(Ω,F , P) is complete, and so the sequence {In(T )}∞n=1 has
a limit I (T ) in this space.

◮ We define
∫ T

0
∆(s) dW (s) = I (T ) = lim

n→∞
In(T ).

This limit does not depend on the approximating sequence
{∆n}

∞
n=1.

◮ By choosing approximating sequences that converge rapidly,
we can in fact make the convergence of In(T ) to I (T ) be
almost sure (almost everywhere with respect to P) rather than
in L2.

◮ With additional work, one can choose the approximating
sequence so that the paths of In(t), 0 ≤ t ≤ T , converge
uniformly in t ∈ [0, T ] almost surely. This guarantees that
there is a limit I (t), 0 ≤ t ≤ T , that is a continuous function
of t ∈ [0, T ] for P-almost every ω.
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Theorem
Under the assumption E[

∫ T

0 ∆2(s) ds] < ∞, the Itô integral

I (t) =

∫ t

0
∆(s) dW (s), 0 ≤ t ≤ T ,

is defined and continuous in t ∈ [0, T ]. We have

EI (t) = 0, 0 ≤ t ≤ T .

The quadratic variation of the Itô integral is

[I , I ](t) =

∫ t

0
∆2(s) ds, 0 ≤ t ≤ T ,

and the Itô integral satisfies Itô’s Isometry

Var[I (t)] = E
[
I 2(t)

]
= E

[∫ t

0
∆2(s) ds

]

, 0 ≤ t ≤ T .
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5 Stochastic Calculus
5.4 Example of an Itô Integral
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∫ T

0 W (s) dW (s)

Divide [0, T ] into n equal subintervals. Define

∆n(s) = W

(
jT

n

)

for
jT

n
≤ s <

(j + 1)T

n
.

t1 t2 t3 t4 = T s

One path of W (s) and ∆4(s)
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By definition,

∫ T

0
W (s) dW (s)

= lim
n→∞

n−1∑

j=0

W

(
jT

n

) [

W

(
(j + 1)T

n

)

− W

(
jT

n

)]

.

To simplify notation, we denote Wj = W
(

jT
n

)

. Then

W0 = W (0) = 0, Wn = W (T ), and

∫ T

0
W (s) dW (s) = lim

n→∞

n−1∑

j=0

Wj(Wj+1 − Wj).
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1

2

n−1∑

j=0

(Wj+1 − Wj)
2 =

1

2

n−1∑

j=0

W 2
j+1 −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2

n∑

k=1

W 2
k −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2
W 2

n +
1

2

n−1∑

k=0

W 2
k −

n−1∑

j=0

WjWj+1 +
1

2

n−1∑

j=0

W 2
j

=
1

2
W 2

n +
n−1∑

j=0

W 2
j −

n−1∑

j=0

WjWj+1

=
1

2
W 2

n +
n−1∑

j=0

Wj(Wj − Wj+1).

n−1∑

j=0

Wj(Wj+1 − Wj) =
1

2
W 2

n −
1

2

n−1∑

j=0

(Wj+1 − Wj)
2
.
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From the previous page, we have

n−1∑

j=0

Wj(Wj+1 − Wj) =
1

2
W 2

n −
1

2

n−1∑

j=0

(Wj+1 − Wj)
2
.

Letting n → ∞, we get

∫ T

0
W (s) dW (s) =

1

2
W 2(T ) −

1

2
[W , W ](T ) =

1

2
W 2(T ) −

1

2
T .

Remark
If g is a differentiable function with g(0) = 0, then

∫ T

0
g(s) dg(s) =

∫ T

0
g(s)g ′(s) ds =

1

2
g2(s)

∣
∣
∣

T

0
=

1

2
g2(T ).

The extra term 1
2T in

∫ T

0 W (s)dW (s) comes from the nonzero
quadratic variation of Brownian motion.
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Exercise (5.2)

Show that

lim
n→∞

n−1∑

j=0

W

(
(j + 1)T

n

)[

W

(
(j + 1)T

n

)

− W

(
jT

n

)]

=
1

2
W 2(T ) +

1

2
T .
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5 Stochastic Calculus
5.5 Itô’s Formula for One Process
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Along the path of a Brownian motion, we want to “differentiate”
f (W (t)), where f (x) is a differentiable function. If the path of the
Brownian motion W (t) could be differentiated with respect to t,
then the ordinary chain rule would give

d

dt
f (W (t)) = f ′(W (t))W ′(t),

which could be written in differential notation as

df (W (t)) = f ′(W (t))W ′(t) dt = f ′(W (t)) dW (t).

Because W has nonzero quadratic variation, the correct formula
has an extra term, namely,

df (W (t)) = f ′(W (t)) dW (t) +
1

2
f ′′(W (t)) dt

︸︷︷︸

dW (t)dW (t)

.

This is Itô’s formula in differential form.
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Remark
The mathematically meaningful form of Itô’s formula is Itô’s
formula in integral form:

f (W (T )) − f (W (0)) =

∫ t

0
f ′(W (t)) dW (t) +

1

2

∫ T

0
f ′′(W (t)) dt.

This is because we have definitions for both integrals appearing on
the right-hand side. The first,

∫ T

0
f ′(W (t)) dW (t)

is an Itô integral. The second

∫ T

0
f ′′(W (t)) dt

is a Riemann integral with respect to time, computed path by path.
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Application of Itô’s Formula

Consider f (x) = 1
2x2, so that

f ′(x) = x , f ′′(x) = 1.

Itô’s formula in integral form

f
(
W (T )

)
−f

(
W (0)

)
=

∫ T

0
f ′

(
W (s)

)
dW (s)+

1

2

∫ T

0
f ′′

(
W (s)

)
ds

becomes

1

2
W 2(T ) =

∫ T

0
W (s) dW (s)+

1

2

∫ T

0
1 ds =

∫ T

0
W (s) dW (s)+

1

2
T ,

or equivalently,

∫ T

0
W (u) dW (u) =

1

2
W 2(T ) −

1

2
T .
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Derivation of Itô’s Formula

Consider f (x) = 1
2x2, so that

f ′(x) = x , f ′′(x) = 1.

Let xj+1 and xj be numbers. Taylor’s formula implies

f (xj+1) − f (xj) = (xj+1 − xj)f
′(xj) +

1

2
(xj+1 − xj)

2f ′′(xj).

In this case, Taylor’s formula to second order is exact because f is
a quadratic function.

In the general case, the above equation is only approximate,
and the error is of the order of (xk+1 − xk)3. The total error will
have limit zero in the last step of the following argument (see
Exercise 4.6(iii) of Lecture 4).
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Fix T > 0 and let Π = {t0, t1, . . . , tn} be a partition of [0, T ].

f (W (T )) − f (W (0))

=
n−1∑

j=0

[

f (W (tj+1)) − f (W (tj))

]

=

n−1∑

j=0

[

W (tj+1) − W (tj)

]

f ′(W (tj))

+
1

2

n−1∑

j=0

[

W (tj+1) − W (tj)

]2

f ′′(W (tj))

=
n−1∑

j=0

W (tj)

[

W (tj+1) − W (tj)

]

+
1

2

n−1∑

j=0

[

W (tj+1) − W (tj)

]2

.
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From the previous page, we have

f (W (T )) − f (W (0))

=
n−1∑

j=0

W (tj)

[

W (tj+1) − W (tj)

]

+
1

2

n−1∑

k=0

[

W (tj+1) − W (tj)

]2

.

We let ‖Π‖ → 0, to obtain

f (W (T )) − f (W (0))

=

∫ T

0
W (s) dW (s) +

1

2
[W , W ](T )
︸ ︷︷ ︸

T

=

∫ T

0
f ′(W (s)) dW (s) +

1

2

∫ T

0
f ′′(W (s))
︸ ︷︷ ︸

1

ds.

This is Itô’s formula in integral form for the special case

f (x) =
1

2
x2

.
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W (tj) W (tj+1)

f ′(W (tj))(W (tj+1) − W (tj))

y = f (x)

f
(
W (tj+1)

)
− f

(
W (tj)

)
= f ′

(
W (tj)

)(
W (tj+1) − W (tj)

)

+ Small Error

f
(
W (tj+1)

)
− f

(
W (tj)

)
= f ′

(
W (tj)

)(
W (tj+1) − W (tj)

)

+
1

2
f ′′

(
W (tj)

)(
W (tj+1) − W (tj)

)2

+ Smaller Error

We need the higher accuracy before summing. Otherwise, the
accumulated small errors do not vanish as the step-size goes to
zero.
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Exercise (5.3)

Let u ∈ R be constant and define f (x) = eux . Use Itô’s formula
applied to f (W (t)) to obtain the moment-generating function
formula

EeuW (T ) = e
1
2
u2T

.

(Compare with Exercise 4.4 of Lecture 4.)

Exercise (5.4)

Let f (x) = x4. Use Itô’s formula applied to f (W (t)) to obtain the
fourth-moment formula

EW 4(T ) = 3T 2
.

(Compare with Exercise 4.5 of Lecture 4.)
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5 Stochastic Calculus
5.7 Solution to Exercise
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Solution to Exercise 5.1

(i) As in the proof of the theorem preceding the exercise, we use
independence to compute EI (T ) term by term:

E
[
∆(tj)

(
Y (tj+1) − Y (tj)

)]
= E∆(tj) · E

[
Y (tj+1) − Y (tj)

]

= E∆(tj) · 0 = 0.

(ii) If I (T ) ≥ 0 almost surely and P{I (T ) > 0} > 0, then
EI (T ) > 0. This contradicts part (i).
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Solution to Exercise 5.2

Let tj = jT
n

. The quadratic variation result for Brownian motion is

lim
n→∞

n−1∑

j=0

(
W (tj+1) − W (tj)

)2
= T .

The Example shows that

lim
n→∞

n−1∑

j=0

W (tj)(W (tj+1) − W (tj)
)

=
1

2
W 2(T ) −

1

2
T .

Adding these two equations, we obtain

lim
n→∞

n−1∑

j=0

W (tj+1)
(
W (tj+1) − W (tj)

)
=

1

2
W 2(T ) +

1

2
T .

This is the desired result.
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Solution to Exercise 5.3
We have f ′(x) = uf (x) and f ′′(x) = u2f (x). Therefore, Itô’s
formula becomes

euW (T ) = euW (0) + u

∫ T

0
euW (t) dW (t) +

1

2
u2

∫ T

0
euW (t) dt.

Taking expectations and using the fact that the expectation of the
Itô integral is zero, we obtain

EeuW (T ) = 1 +
1

2
u2

∫ T

0
EeuW (t) dt.

We differentiate both sides with respect to T to obtain

d

dT
EeuW (T ) =

1

2
u2

EeuW (T )
.

The unique solution to this ordinary differential equation satisfying
EeuW (0) = 1 is

EeuW (T ) = e
1
2
u2T

.
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Exercise 5.4

With f (x) = x4, we have f ′(x) = 4x3 and f ′′(x) = 12x2.
Therefore, Itô’s formula becomes

W 4(T ) = 4

∫ T

0
W 3(t) dW (t) + 6

∫ T

0
W 2(t) dt.

Taking expectations of both sides and using the fact that the Itô
integral has expectation zero, we obtain

EW 4(T ) = 6

∫ T

0
EW 2(t) dt

= 6

∫ T

0
t dt

= 3T 2
.
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