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Radial Basis Function Neural Network 
for Approximation and Estimation of 

Nonlinear Stochastic Dynamic Systems 
Sunil Elanayar V.T. and Yung C. Shin 

Abstruct- This paper presents a means to approximate the 
dynamic and static equations of stochastic nonlinear systems 
and to estimate state variables based on Radial Basis Function 
Neural Network (RBFNN). After a nonparametric approximate 
model of the system is constructed from a priori experiments or 
simulations, a suboptimal filter is designed based on the upper 
bound error in approximating the original unknown plant with 
nonlinear state and output equations. The procedures for both 
training and state estimation are described along with discussions 
on approximation error. Nonlinear systems with linear output 
equations are considered as a special case of the general for- 
mulation. Finally, applications of the proposed RBFNN to the 
state estimation of highly nonlinear systems are presented to 
demonstrate the performance and effectiveness of the method. 

I. INTRODUCTION 

HE PROBLEM of finding an exact or approximate model T for dynamical systems occurs frequently in engineering 
applications. One way of achieving this goal is through system 
identification. In general, identification of nonlinear dynamic 
systems is approached via parametric or nonparametric meth- 
ods. Parametric methods of identification assume problem 
dependent nonlinear functions and then identify the param- 
eters appearing in these functions based on input-output data. 
These models known as prediction error models [l] employ 
least squares or maximum-likelihood means to estimate the 
parameters. Nonparametric Kernel based methods [2] do not 
assume knowledge of the system structure. They are, however, 
unsuitable for control applications. In all of these methods, the 
objective is to determine a model that best describes the input- 
output behavior of the data. Many physical systems, however, 
exhibit distinct plant and sensor characteristics that have to 
be separately modelled. In many cases when it is difficult 
to obtain a model structure for a system, or the available 
model is highly nonlinear so that estimating its states is 
very difficult, generic tools are desired that can approximately 
describe experimental data. Artificial neural networks present 
one possibility for achieving this. Narendra and Parthasarthy 
[3] laid the foundation for system identification and control 
using the globally approximating characteristics of neural net- 

Manuscript received January 16, 1992; revised October 8, 1992. 
The authors are with the School of Mechanical Engineering, Purdue 

IEEE Log Number 9205933. 
University, West Lafayette, IN 47907 USA. 

1045-9227/94$04 

works. They emphasized the need to view static and dynamic 
representations in a unified fashion. 

This paper presents a method to approximately identify 
discrete dynamic systems on the basis of multiple experiments 
using the RBF".  More than one data set is used in order 
to ensure adequate learning by the neural network over the 
domain of interest. A modified recursive least squares training 
algorithm is employed to obtain the weights of the neural 
networks. Once trained, the neural network can be used on-line 
for estimating the states of the unknown nonlinear system. This 
requires the construction of a state estimator (filter) based on 
the neural network. 

The problem of state estimation of a stochastic system based 
on the measurement data has an exact solution only when 
the plant and measurement equations are linear. Then the a 
posteriori density is Gaussian and the conditional mean and 
covariance are described by the well known Kalman filter 
equations. In contrast, most practical solutions to the nonlinear 
filtering problem are approximate in nature. Nonlinear filtering 
has been the subject of intensive research over the past three 
decades and several schemes to this end have been proposed 
and developed such as extended Kalman filters, statistically 
linearized filters, various methods based on global and local 
linearization [4]. Extended Kalman filter methods [51 rely 
on linearized state and output equations (along a nominal 
trajectory) to estimate the state. They, therefore, require exact 
models of underlying nonlinear systems that are in reality 
difficult to obtain in many cases and can lead to divergence 
when modeling error exists [6]. Statistically linearized filters 
were used for developing suitable approximate solutions to 
problems of estimation and control. These yielded better 
results than the Taylor series based extended Kalman filter [7]. 

Direct application of these methods to the neural network 
models, however, would not yield acceptable results or could 
even lead to divergence due to the inaccuracy of the R B F "  in 
representing the true nonlinear plant. In order to overcome this 
difficulty, an upper bound estimate for the covariance matrix 
is used to obtain minimum-variance state estimates in the new 
approach. The upper bound covariance computation explicitly 
includes approximation errors resulting from replacing the 
original systems with a RBF". Based on the upper bound 
error, a suboptimal filter is designed and used to estimate the 
state variables of the system. Derivation of the filter gain is 
an extension of the approach used by Gus& [8]. It is shown 
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through simulations that the constructed filter provides good 
state estimates. 

The remainder of this paper is organized in the following 
way. First, the underlying problem is defined in a rigorous 
manner. In the following section, the architecture of the 
RBFNN is defined and then the training algorithm for the 
R B F "  is described. Section IV describes the procedure for 
the state estimation of nonlinear systems by using the trained 
RBF". Finally, Section V demonstrates application of the 
proposed R B F "  to the state estimation of selected highly 
nonlinear models. 

11. STATEMENT OF THE PROBLEM 

Consider a nonlinear discrete state-space model with un- 
known structural functions. Let the plant dynamics be as 
follows 

zk+l = f ( z k r  uk) + wk 

yk = h(zk) + 211, for k = 0,1 ,2 , .  . . . 

(1) 

and the measurement equations given by 

(2) 

The state vector Xk = ( q k ,  . . . , z n k )  is n-dimensional and the 
output vector denoted by yk is m-dimensional. For simplicity, 
inputuk is assumed to be a scalar. However, the results 
obtained are equally valid for multi-input systems. State and 
measurement noise vectors wk and vk are assumed to be 
independent, Gaussian white processes with zero mean such 
that E[w~w?]  = W S k j  and E[wkw?] = V S k j .  In addition, 
the initial first and second moments are given by E[Q] = 

The objective is to obtain an approximate model for the 
plant dynamic and static equations (1) and (2), which is 
referred to as the training stage. Then the trained model is 
to be used for estimating the states of the original unknown 
plant. In order to further develop the approach, the following 
assumptions are required: 

PO,E[(XO - PO)(.O - PoYI = PO. 

The states and input remain bounded in an open domain 
of Wn+' denoted by D, i.e., 

( Z k , U k ) E D  Vk 
Note that this assumption is more constraining than 
bounded input-bounded output (BIBO) stability. 
The functions f(., .) and h(.) are unknown vector func- 
tions that are assumed to satisfy global continuity con- 
ditions on D. 

F :  { f  : llf(. + Sz, .) - f ( z ,  .)It 5 ~ f l l ~ z l l l  
{f : llf(., U + 6,) - f(., .)I1 I KJl lSU l l>  

{ h  : llh(. + 6) - h(.>ll 5 &LllSll> (3) 

where X,Z + Sz,u,u + S, belong to the domain of 
definition of the functions. 
During training, all the state variables are assumed to be 
measurable with additive noise. This would correspond 
to the stage when experiments are performed on the 
system or simulations are carried out to obtain an 
approximate model of the system. 

4) The covariance matrices of the process and measurement 

5) The input is assumed to be exactly measurable at all 

Certain additional assumptions are required in achieving 
proper convergence of the weights of the RBF". This aspect 
will be addressed in the next section. 

noises are assumed known. 

times. 

111. NON-PARAMETRIC APPROXIMATION OF THE MODEL 

For the nonlinear dynamical systems represented by (1) 
and (2), the goal is to obtain a general non- parametric 
approximation over the domain D. This approximation is to be 
global over the region D. As mentioned above, it is assumed 
that explicit expressions for the state transition functions and 
output equations are unavailable. The static and dynamic 
equations are replaced by generic approximating functions. 
This section develops a constructive method for achieving 
this based on multiple experiments. Let us first consider the 
problem of approximating f ( . ,  .). It is known that for nonlinear 
dynamic systems, the determination of a sequence {uk} for 
the plant to have a desired trajectory is a difficult task even 
when the function f(.,  .) is known and all states are accessible 
[3]. Hence, to achieve global approximations over D, multiple 
experiments (with possible variations in the input sequences) 
are assumed to be available. Another reason for the use of 
multiple experiments is to account for variations in initial 
conditions. 

The vector functions f̂ (. , .) and k( .) are used in the sequel . .  to 
denote the approximations. In addition, define X i  = [xC;, U;] 

as the n+ 1 vector of states appended with the input for the ith 
experiment. Then, the problem of approximately identifying 
f(., .) can be stated in terms of minimizing a least squares 
criterion. Given N sequential observations from each of M 
different experiments {E; : i = 1, .. . , M } ,  and associated 
observations { z ; ,  z:, . . . , z,"}, Z; = X; + G, it is desired to 
obtain an approximated model, such that 

is minimized. The vector function f(., .) is required to be 
globally approximating over region D. Additive noise in 
observing xC; is interpreted as the error in approximating 
f ( . , . ) .  In this paper, the vector functions are chosen to be 
represented in terms of radial basis functions. 

Radial basis functions have been used as a technique for 
multivariate scattered data interpolation and recently attracted 
attention in the neural network community [9], [lo], [ 111. Sim- 
ilar to backpropagation neural networks, radial basis functions 
possess the properties of approximating nonlinear functions 
of several variables. Unlike the former, radial basis function 
expansions have a "linear in the parameters" representation. 
As a result, convergence properties of the parameters can be 
guaranteed. Although the original applications of radial basis 
functions was in interpolation, a definition in the context of 
approximation is introduced here [ 121 : 
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Fig. 1. Schematic diagram of radical basis function expansion. 

Definition: Given a continuous function F : R+ -+ W, and 
points { X J  : j = 1, . . . , p } ,  X,' E W+, which become dense in 
the open region D of R+, there exists a sequence offunctions 

P 

t p ( X )  = x;@(llx - x;ll) + g x  
,=1 

and some bounded open domain on which 

ItP(X) - F(X)I 0 
as p + 00 , where 1.1 is the Euclidean norm. Thefunctions @(.) 
are termed radial basis functions, and the prototypical points X: 
are referred to as the centers of the basisfunctions. The argument 
of the basis functions is a scalar given by 

The radial basis function approach constructs an approxi- 
mation based on the locations of the data points. In typical 
applications, they are used to approximate a continuous func- 
tion F(.)  based on scattered sampling pairs ( X j ,  F ( X j ) ) ,  
where Xj E D. A linear term with the parameters XO has 
been added based on simulation experiences of the authors. 
Note that, addition of the linear term does not affect the 
convergence proofs given by [12]. Different types of functions 
@( .) satisfy the requirements of this definition. Some choices 
found in the literature include thin plate splines ( @ ( r )  = 
r 2 1 0 g r )  by Dunchon [13], Hardy multiquadratics (a(.) = 
d m )  by Hardy [14], @ ( T )  = T' (1 an odd integer) [15], 
@(r)  = exp(-r2) by Schagen [16], etc. Regardless of the 
choice of the radial basis function, the approximated model 
assumes a linear form in terms of parameters Xp's, if it 
is assumed that the centers of the basis functions are fixed 
beforehand. Based on these basis (activation) functions and 
parameters (weights), the paradigm "Radial Basis Function 
Neural Network (RBF")" can be constructed to provide a 
mapping in domain D as shown in Fig. 1. In this paradigm, 
neurons are represented by radial basis functions with the 
centers X t ,  which are interconnected by weights. With a 
prespecified choice of centers, the structure resembles a single 
layered neural network, where each node of the hidden layer 
performs a nonlinear transformation specified by the basis 
function. There are p + 1 nodes in the hidden layer, p of 
which are assigned a center and have an activation function 
given by @(.). One node of unity activation is used to denote 
the linear term. One of the inherent properties of radial basis 
functions in interpolation is that the parameters are uniquely 
defined if the coefficient matrix 

I I X ,  - X,' I I. 

In the present work, we have chosen the Hardy multi- 
quadratics (MQ) @(.) = d z ,  c > 0 due to the additional 
flexibility provided by a choice of the constant c. In usual 
practice, c is chosen to be of the same order as the spacing 
between the independent data points. The MQ basis functions 
can be considered as solutions of Laplace equations. Therefore, 
when scattered data are fitted by a linear combination of these 
functions, the resulting equations are amenable to iterative 
solution techniques if certain finite difference approximations 
to the iterated Laplacian are applied [17]. One remarkable 
property of the MQ method is that if data points are sufficiently 
scattered, the coefficient matrix A in (5) is always nonsingular 
for all positive integers p and n [18], thereby guaranteeing 
uniqueness of solution. Additional useful properties of ra- 
dial basis functions in general are that no assumptions are 
made regarding spacing of the independent variable data. It 
is possible to construct sufficiently smooth approximations 
by additional polynomial terms, and hence enhance noise 
rejection capabilities. Further details and convergence proofs 
are available in the literature ([12], [18], and [19]). Based 
on the above discussion, it is assumed that a true set of 
parameters, and a given number of basis functions (p) exist that 
will completely approximate f( ., .) and h( .) in the domain D. 

A. Dynamic System Modeling by Radial 
Basis Function Neural Network 

During training, the dynamic portion of the nonlinear state 
space model given in (1) and (2) can now be represented using 
the R B F "  as, including a noise term (for approximation 
error), 

2; = x; + C; (6) 

where the superscript i denotes the experiment index. It is 
assumed that the initial conditions x i  belong to the domain 
D. Note that XI, contains the state variables and input, 
and * ( X i )  = [ @ l ( X i ) ,  . . , QP(Xf) ]*  contains the basis 
functions corresponding to p centers. Each row of the matrices 
A and A0 correspond to an element of the vector functionf(.). 
Fig. 2 shows a schematic diagram for approximating the 
complete dynamic stochastic system given by (1) and (2). If 
the vector er ,  j = 1, . . . , n, is used to denote the j th  row of 
the matrix [A Ao], (6) can be rewritten as: 

I .  . I I .  I 

l o  ... 0 

for i = l , . . . , ~ .  The notation q\kik A[qT(x;) XFIT is 
used in the above. Further simplification of the notation using 
0 = [8182- . .0 , ]* ,  and combining all M experiments, a 
system with Mn state variables and np parameters 

(8) qk+l = & ( q k ,  u k ) @  + wk 
Aij = Q(llXi - Xjll)  ( 5 )  with measurements 

is nonsingular. ?k = 7)k f Ck (9) 
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Fig. 2. Schematic of the R B F "  for dynamic nonlinear systems. 

is obtained, where 77: = [ x i k ,  z fk , .  . . , ICE,  x i k ,  . . . ,221. In 
the following, knowledge of the statistical properties of <k is 
not assumed. The matrix 

("") 0 ... 0 

0 ... : 0 (i?) : 

K 4 K  

G K  

is of dimension Mn x np. 

B.  Training of the RBFNN 

1) Since r)k is not exactly measurable, replace the matrix 

2) An instrumental variable step of replacing 
c k - l ( v k - 1 ,  u k - 1 )  with ~ k - l ( ' % - l , U k - l ) .  

by 
ensures consistent estimates of the parameter 0. As a 
result, the estimation rule (12) can be rewritten as 

It is known [20] that the convergence of the least squares al- 
gorithm (ON + 0 in probability) depends on the satisfaction 
of two additional conditions, namely, 

and 

Once the structural functions of the plant (1) have been 
replaced with an equivalent system of radial basis functions, 
the training algorithm for the R B F "  is formulated as one of 
parameter identification. Identification of systems in the form 
of (8) and (9) is well known in control theory. Note that, as a 
result of combining the M experiments, the objective function 
in (4) can be written as 

N 

J = x [ % - c k - l ( % - l ,  ~ k - l ) ~ ] T [ ' l ' k - ~ k - l ( 7 7 k - l , ~ k - l ) 0 ]  
k= l  

(1 1) 
Equating the gradient with respect to 0 to zero gives the least 
squares estimation rule 

However, the strict validity of (12) for parameter identification 
of nonlinear systems cannot be uniformly guaranteed. Here, 
additive noise terms in both state and output measurements are 
considered. In order to improve convergence of the parameter 
estimation, the algorithm outlined by Knapp and Pal [20] is 
adopted here: 

These conditions are difficult to verify for a general matrix 
&, but they will be assumed to be true. The validity of these 
assumptions will be further investigated through simulation 
analysis presented in a later section. The recursive version of 
algorithm (13) is written as follows: 

where 

Faster convergence of the training algorithm is obtained by 
choosing Ro = 01, with a sufficiently large value of U.  

Approximation of the static output equations can be carried 
out in an analogous fashion. 

C .  Approximation Error Estimation 

In order to use the R B F "  for state estimation, the max- 
imum error in approximation has to be estimated. Define the 
maximum error in approximating f(.,  .) as 

e f  = Ilf(X) - !(X)Ilm, x E D 

where I l e l , . . . , e , l l ,  = M a z { l e l l , . . . , l e n l }  . When the 
process and measurement noises are small, an estimate of 
e f  can be obtained from the M experiments using 

e f  = MaaIlrk - { k - 1 ( Y k - 1 , ? h k - 1 ) 6 1 1  k =  1 , 2 , ' . .  (18) 
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Similarly, the constant eh is defined as the approximation 
error for the output equation. To proceed, let system in (6) 
be rewritten as 

x k + 1  = f ’ ( x k ,  u k )  + F X k  + b u k  + w k  (19) 

where matrix F and vector b are obtained from the matrix h o .  
The approximated output equations can also be rewritten as 

(20) y k  = h ’ ( x k )  + H X k  + v k  

Two Lipschitz constants a and d are defined as 

I l f ’ ( x k ,  u k )  - f ’ ( x k  + bk, u k ) l l o o  5 a l l6k l loo  (21) 

and 

l l h ’ ( x k  + b k )  - h ’ ( x k ) l l o o  5 d l lbk l l cu  (22) 

These constants a and d can also be estimated using the 
training set as was done with the constants e f  and eh. 

The training algorithm for the R B F ”  is summarized as 
follows: 

1) Choose p vectors from among the M training experi- 
ments in a random fashion. For the dynamic portion, 
vectors of dimension n + 1 are chosen at random times 
IC.  

2) Based on the M training experiments, and, using (16) 
and (17), the network parameters for the dynamic and 
static equations are identified. 

3) Upper bound errors of approximation are estimated from 
the training data as given by (18). Lipschitz constants a 
and d are estimated using (21) and (22). 

In the next section, the approximated system given by (19) 
and (20) is used to design a minimum variance filter for on-line 
estimation of state variables. 

IV. STATE ESTIMATION USING THE RBFNN 
To estimate the states of a system represented by the 

RBFNN, a nonlinear filter is to be designed. Performance of 
the filtering system depends on the accuracy of the model 
used. If modeling inaccuracies are not included in the covari- 
ance calculations, the calculated covariance matrix becomes 
unrealistically small, so that undue confidence is placed in the 
estimates [6]. The estimator ignores subsequent measurements 
and this results in large estimation errors. This “divergence” 
problem can be minimized by accounting for modelling errors. 

In order to circumvent this problem, we will use information 
about the maximum approximation errors in the covariance 
calculations. An upper bound covariance matrix is obtained, 
such that minimizing the estimated variance results in mini- 
mizing the true variance. For convenience, the approximated 
system using the RBFNN is rewritten as 

x k + l  = f ’ ( x k ,  u k )  + F X k  + bUk + W k  (23) 
y k  = h ’ ( x k )  + H x k  + v k  (24) 

Consider a state estimator of the following type 

2(k+1)  = f ’ ( P k , 2 1 k ) + F 2 k + b U k + K k [ Y k - h ’ ( i k ) - H 2 k ]  
(25) 

Define the estimation error as $k A X k  - i k  and the error 
i: approximating the system dynamic and static _equations by 

h ’ ( x k )  - H X k .  The true covariance matrix of the system is 
denoted by p k  AE[&i$]. Based on the derivation given in 
the Appendix, a recursive upper bound for the covariance 
matrix is given by the following equation 

P k + l  = 11(F - K k H ) P k ( F  - K k H ) T  + l z I  -t / 3 T T ( ? k ) I  

f A f ( x k , u k )  - f 1 ( x k , u k )  - F X k  - b u k  and h A h ( x k )  - 

+ / 4 K k K :  + / 5 T T ( $ ) K k K :  + w + K k V K :  

(26) 

with 

Po = Po. 

The constants Z 1  - Z5 are as defined in the Appendix, and po is 
the known initial covariance matrix. To obtain the minimum 
variance gain matrix K i  we set the first variation of &+I 

with respect to K k  to 0 [21]. Thus 

- 11 ( F -  K k  H )  HT 6Kf + K k  [ / 4 1 +  / 5 T T  ( P k )  I + v ]  bKf  = 0. 

Since 6 K k  is arbitrary, the optimal gain is given by 

The following theorem based on the results in [8] establishes 
the required properties for the assumed covariance equations. 
In the following, the matrix inequality Q 1  2 Qz is used to 
mean that Q1 - Qz is positive semi-definite (PSD). 

Theorem I :  Given the existence of an approximated dynamic 
system in (23) and (24) that satisfies approximation error condi- 
tions of (18), and Lipschitzean continuity conditions in (21) and 
(22),  then: 

1) p k  2 p k ;  

2) p k + i ( K k )  2 P k + i ( K : )  2 p k + l ,  where the optimal 

Proofi To prove (l), consider the inequality obtained 
gain is given by (27). 

from (26) and (36): 

P k + 1  - P k + l  2 11(F - K k H ) ( @ k  - p k ) ( F  - K k H ) T  

-k h T T ( P k  - p k ) I  -k k T T ( P k  - p k ) K k K F  

(28) 

Since = PO, and the right hand side of the above inequality 
is PSD, (1) follows by induction. Note that, the right hand side 
of the above inequality is PSD for any gain matrix. Part (2) of 
the theorem follows from the above -argument and derivation 
of the optimal gain by minimizing 9 + 1 .  

The above derivation of a state estimator for the R B F ”  ap- 
plies to very general nonlinear stochastic systems. For a wide 
class of problems encountered in practice, the output equations 
occur in a linear fashion. Furthermore, uncertainties in the 
output equation are usually less severe than in the dynamic 
model equations [22]. For such applications a simplified filter 
can be derived as was done in the more general case. Consider 
an output equation that is linear and known accurately 

(29) y k  = H X k  + v k  
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In this case, the estimator is specified by the equations 

and 

&+I =(2 4 e f ) ( F  - K k f f ) P k ( F  - K k H ) T  

+ a(1 + a + ef)TT(Pk)k)l+ n e f ( l +  e f  + a ) ~  

+ w + KkVK:. (31) 

In this section a state estimator for the R B F "  based on 
the upper bound errors in approximation has been derived. 
Additional terms in the gain equation result from taking into 
account these modelling errors. The next section presents a few 
example applications of the R B F "  to approximate the static 
and dynamic equations and to subsequent state estimation. 

V. EXAMPLE APPLICATIONS 
OF THE R B F "  STATE ESTIMATOR 

In this section, application of the method to three practical 
examples will be demonstrated. It is not possible to compare 
the method with any existing methods because of the nature 
of assumptions made in deriving the estimator. In each of 
the following examples, the number of basis in the R B F "  
was chosen to be 75. Training was carried out until the mean 
squared errors were below a prespecified value. 

Example I: This example considers the estimation of the 
altitude and velocity of a vertically falling body with an 
unknown ballistic coefficient [22]. Radar measurements are 
corrupted with additive Gaussian white noise. The nonlinear 
model and output equations are as shown below: 

The states X I  and x2 denote altitude (Kft) and velocity 
(Kft/sec), respectively. The sampling interval was chosen as 
T = 0.125 sec and variance of the measurement noise is 
V = 0.01(Kft)2. Note that the model is inputless and 
contains no process noise. Five experiments with simulated 
data were used in performing the training of the dynamic 
and static equations. These experiments used initial conditions 
randomly obtained from the intervals 2 1 0  E (297,303) ,  and 
2 2 0  E (14 ,26) .  A value of five was used for the constant 
appearing in the Hardy multiquadrics. The estimated values 
of the constants a, d,  e f ,  eh were 2.006, 7.54, 3.31, and 3.21, 
respectively. After training, the R B F "  states were estimated 
using the initial conditions and initial covariance matrix 

Po = P o  = [: ;] 
Fig. 3 portrays the estimates of x1 and x2 for a single run. It 
demonstrates the accuracy of the state estimation scheme with 
the RBF". It is to be noted that although stability of the 
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Est. x i  
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Eat. x 2  

I 
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Fig. 3. Estimation with initial condition (300,20). 

matrix equation for the upper bound covariance matrix in (26) 
cannot be ensured, the estimator gain matrix was observed 
to converge to a constant matrix in just a few iterations. 
To prevent the covariance matrix from becoming unbounded, 
suitable upper bounds were placed on its elements. Fig. 4 
shows the results of state estimation when the initial conditions 
of the estimator (20) were chosen as (O,O),  while the true 
initial conditions of the system ( X O )  remained unchanged at 
the values given above. 

Next, a Monte Carlo analysis using 50 runs [each with 
different initial conditions uniformly distributed in the range 
(297-303, 14-26)] was performed. For each case the error 
vector ( X k  - &) was generated at all sampling times, and 
the absolute values of the average errors at these times were 
obtained. Fig. 5 shows a plot of the absolute average error 
in estimating both the state variables. The plot shows similar 
but improved results over those obtained by using a second 
order filter from a known model [22]. It is worth pointing out 
that addition of pseudonoise wk in estimation would help in 
further tuning the state estimator. 

For the comparison of the proposed method with an existing 
scheme, the extended Kalman filter technique was used for 
state estimation with the simulated data. Without the knowl- 
edge on the exact model, the filter diverges as shown in Fig. 6. 
The estimation was limited to the first five seconds due to the 
rapid divergence of the estimated state variable. 

Example 2: The second example chosen is that of a non- 
isothermal, non-adiabatic stirred reaction with an irreversible 
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first order reaction [23] .  In this case, the nature of experiments 
that can be performed on the system is assumed to be of a 

Absolute average estimation errors. 
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Fig. 6.  State estimation by an extended Kalman filter. 

restricted type. The second order system is given by: 

with an assumed measurement equation given by yk = 
[0 1 ] z k  + v k ,  such that variance of v k ,  V = 0.001. Here, 
2 1  is the conversion, and 22 is the reactor temperature. The 
sampling interval was chosen to be 0.005 sec. It was assumed 
that only constant inputs could be used in identifying the 
physical process. In this example, five experiments were 
conducted with identical initial conditions of 20 = ( 1 ,  l ) ,  but 
with inputs given by uk = uo+pk .  Nominal inputs of 1.0, 1.5, 
2.0,2.5, and 3.0 were used for U O ,  where p k  is white Gaussian 
noise of variance 0.001. The inputs were chosen so as to span 
the region (1.0,3.0). In this example, the R B F "  training 
was performed to approximate the function over a region in 
( 2 1 , ~ ~ ~  U )  space. The value of the multiquadric constant c was 
chosen as 0.005. During state estimation, the output equation 
was assumed to be known and hence (30) and (31) were used. 
The constants a and e f  were estimated as 2.766 and 0.8967, 
respectively. Fig. 7 depicts the results of the state estimation 
when an input sequence of the form U k  = 2.25 + p k  was 
used. Initial conditions of (1,l) and po = 0.11 were used. The 
results show that state estimation is accurate even for input 
sequences not used during the training stage. 

Example 3 The final example is that of an inverted pen- 
dulum driven by an armature controlled DC motor governed 
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Fig. 7. State estimates 11 and 2 2 .  

by the equations (Walcott et al. [24]): 

] (34) 

where T = 0.01 sec, and output ?Jk = X l k  + V k .  The state 
variables 21 ,  2 2 ,  and 2 3  are in this case angular position, 
velocity, and motor current, respectively. Strength of the 
measurement noise was assumed to be V = 0.001. To train 
the RBF", five experiments were used with initial conditions 
such that 210 E ( (T - 1)/2, (T + 1)/2), and 220 ,  230 = 0. 
During state estimation, numeric values of a = 38.6,ef = 
0.3106, c = 0.01 were used. Fig. 8 shows the results of state 
estimation using the following initial values. 

0.1 0 
P o = P o =  [ g O t l  

Estimation of the states is seen to be highly accurate for all 
three states. As a second variation, the initial conditions of the 
estimator states were assumed to be (O,O,O), while the system 
remained unchanged with the same initial conditions as above. 
Fig. 9 shows that the state estimation performs well even under 
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Fig. 8. Estimation with initial condition (1.57.0,O). 
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Est. x2 Act. x3  Est. x3 
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Fig. 9. 

these conditions. The initial coyariance matrix for this case was 
the same as above, but with Po(1,l) = 1. 

Estimation with initial condition (O,O,O). 
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VI. CONCLUSIONS 
This paper presented an R B F ”  approach to approximately 

represent general nonlinear stochastic systems in prespecified 
domains of the state and input space. Multiple experiments 
are used to train the network. A parameter identification 
approach to training the network has been presented. Since 
the parameters appear linearly in the RBF”,  least squares 
estimation is possible. The trained network can then be used 
to predict states for different input sequences and initial 
conditions than those used during training. 

A state estimator has been designed for use with the 
RBF”. The gain matrix has been derived on the basis of 
an upper bound covariance matrix. Explicit inclusion of the 
approximation error into the estimation algorithm helps in 
minimizing filter divergence. Three applications of the method 
to estimate the states of nonlinear systems have been presented. 
The accuracy of state estimation using the R B F ”  has been 
shown to be very good even when there are uncertainties in 
the knowledge of initial conditions. 

APPENDIX 

A. Derivation of the Upper Bound Covariance Matrix 

system, 
Consider the state estimator applied to the approximated 

? ( k  + 1) = f’(fk,Uk) Fyk + bUk K~,[yk  - h’(fk) - Hyk] 
(35) 

Recall that the approximation error in approximating the 
system was specified by f Af(zk, uk) - f ’ ( x k ,  uk) - Fxk - 
b u k  and h A h(xk) - h’(xk) - Hxk.  Furthermore, let us define 
conditions on the predetermined approximation errors and the 
Lipschitzean continuity of the approximated functions. 

Now, let us construct an upper bound to the true covariance 
matrix on a term by term basis [SI. In order to do so we will 
make use of the matrix inequalities presented in Theorem 2. 
The symbol TT( .) is used to denote the trace of a matrix. 

Theorem 2: Let S and T be square matrices of appropriate 
dimensions. Defrne n-vectors e l ,  e3, and m-vectors e2,  e4 such 
that 

lle1IIw I a’; llezllw I 6’; Ile3llw I c ’ l l ~ k l l w ;  

Ile4llw 5 d ‘ l l ~ k l l w ;  

then the following inequalities hold true: 
1) E[eleT] 5 nd21;E[e2e;] I mb’21 
2) E[ele: + e3eTl 5 a’c’(n + Tr(pk ) ) I  
3) E[SezeT + ele;ST] 5 a’b’(n1 + mSST) 
4) E[eli:ST + SikeT] 5 a ’ ( n ~ +  ~ p k ~ ~ )  
5) E[SeleT + e3eTS’I 5 c ’ a ’ [ ~ r ( p k ) ~  + n s S T ]  
6) EISelIrTT + T&eTST] 5 a’(TpkTT + nSST)  
7 )  E[e3e: + Se4ezST] 5 cr2Tr(pk)I + d’2Tr(pk)SST 
8) E[e3erST + Sese:] 5 c’d’Tr(pk)(l+ S S T )  
9) E[e32:ST + S ~ k e ; ]  5 SpkST + c ’ ~ r ( p k ) ~  
10) E [ S ~ ~ I ; T ~  +~zkeTS’] 5 c ’ [ ~ p k P  +TT(pk)SST] 

Proofi The theorem can be proved on the basis of 
Hirsch’s theorem [25] and elementary matrix manipula- 
tions. Hirsch’s theorem states that for any square complex 
matrix A = (ai j )  of dimension n, the eigenvalues are 
such that lAk l  5 n Max;jla;j( Vlc = l , . . . ,n  . Since 
E[eleT] 5 Amax{E[eleT]}I, and Hirsch’s theorem implies 
that Amax{E[eleT]} 5 nu”, from which (1) follows 
E[eleT] 5 na”I. 

It canbe seen also that E[eaeT] I E[eTe3I] I c ’ ~ ~ ~ ~ ~ ~ ~ I =  
~ ‘ ~ T r ( p k ) I .  Assertions (2) through (10) can be proved by 
simple matrix manipulations. As an example, let us consider 
the proof of (6). Since, (Se1 - a‘T2:k)(Sel - ~ ’ T i k ) ~  2 0, 
it follows that 

Based on the above theorem, the upper bound covariance 
matrix can be given by the following recursive inequality. 

Pk+l 5 l i (F - KkH)Pk(F - K I c H ) ~  + 1 2 1  + hTT(Pk)I 
+ 14KkKr + k , T T ( p k ) K k K r  + w 4- K ~ V K I ,  

(36) 

where 

11 = l + a + d + 2 e f + e h  
12 = nef (2  + a + d + e f  + e h )  

13 = a(a + d + e f  + eh)  

14 = meh(1 + a  + d + e f  + e h )  

l5  = ( U  + d + ad + d2 + e f d  + ehd) .  

Thus, the upper bound covariance matrix can be written as 

A + 1  = 11(F - KkH)&(F - KkH)T + 1 2 1  + 13TT(pk)I 

+ /4KkK: 15T‘f(A)KkKr + w + KkVK; 
Po = Po 
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