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Abstract

From the first generation, 1G, to the fourth generation, 4G, the development and
technological advancements in telecommunications network systems have been
remarkable. Faster and better connections have opened up for new markets, ideas
and possibilities, to that extent that there now is a demand that surpasses the sup-
ply. Despite all these advancements made in the mobile communications field
most of the concept of how the technology works and its infrastructure has re-
mained the same. This however, is about to change with the introduction of the
fifth generation (5G) mobile communication.

With the introduction of 5G much of the technology introduced will be differ-
ent from that of previous generations. This change extends to include the entire
infrastructure of the mobile communications system. With these major changes,
many of the tools available today for telecommunications network evaluation do
not really suffice to include the 5G network standard. For this reason, there is
a need to develop a new kind of tool that will be able to include the changes
brought by this new network standard.

In this thesis a simulation framework adapted for the next generation telecom-
munication standard 5G is set to be developed. This framework should include
many of the characteristics that set 5G aside from previous generations.
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1
Introduction

With the first-generation (1G) mobile communication network came the possi-
bilities to make the first mobile phone calls. Then came the second-generation
(2G) mobile network that enabled text messaging services like SMS and MMS. Af-
ter that the third-generation (3G) mobile network introduced light weight video
streaming and enabled video calling to the public. The fourth-generation (4G)
mobile network then brought us high definition video streaming services and is,
at the time of writing, the current standard. (Qualcomm, 2014)

The next step is the fifth-generation (5G) mobile network which is expected to
push the limits of mobile communication. Alongside the introduction of this new
network technology are many new features to address the shortcomings of today’s
mobile communication solution. These shortcomings have emerged as a result of
our changing habits and increased demand on wireless mobile communication.
(Nordrum, 2017)

Until now the idea of the cellular infrastructure has been to build few, but
powerful, cell towers to provide cellular coverage over large areas. This approach
has worked well for the comparably limited connected mobile devices and their
intended use. However, providing sufficient coverage and ensuring stable connec-
tions with low latencies are some of the many challenges facing the infrastructure
today. Emergence of these challenges are due to several reasons:

• A dramatic increase of connected mobile devices.
• A demand for higher bandwidths to support more data transfer.
• A constant demand for higher connections speeds.
• A demand for reduced latency of connections.
• Metropolitan areas getting more densely populated.

(Nordrum, 2017)

1



2 1 Introduction

1.1 The 5G network

5G is the first telecommunication standard to use frequencies in the 24-86 GHz
range (Medbo and Zaidi, no date). With the use of higher unused frequencies of
the radio spectrum will introduce problems were signals have difficulties pene-
trating obstacles. These obstacles can be buildings trees or even the atmosphere.
(André-Jönsson, 2018)

To solve this a new approach of having several smaller cellular towers is be-
ing implemented, together with advanced technologies like beamforming and
massive Multiple-Input Multiple-Output (MIMO). These technologies combined
are expected to increase efficiency of the cellular towers and enable higher band-
widths, faster connections and lower latencies to the vast number of devices being
connected. (IMT Vision, 2015)

In Figure 1.1, a depiction of the differences between previous technologies
and 5G technology can be seen.

Figure 1.1: A picture of (a) the current standard of mobile communication
infrastructure, with few but powerful cell towers and (b) the future infras-
tructure with the deployment of the 5G network. Source: Junior Asante
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Along with the expanded features that will be available for mobile commu-
nication, machine-type communication (MTC) is one of the new utilities that is
developed with 5G. MTC demands, depending on the function, a different set of
requirements than conventional mobile communication. Some of the functions
and applications that MTC provide are for:

• Metering of for example electric power or gas.
• Control systems and monitoring like real-time systems (RTS) for industries

and homes.
• Security systems like surveillance.

Metering devices will be large in numbers and will meter for example, electric
power in homes and businesses. This will require high coverage to support even
the most remote devices. Meanwhile industry and surveillance might have to
meet RTS requirements such as low latency, high reliability and high mobility.

The new technology enables us to use ad-hoc and point-to-point networks.
Traditionally there are several drawbacks identified for using these types of net-
works for MTC, but with the separation of MTC into several different types, these
drawbacks might not be as severe, or it might be that the possible pros outweigh
the cons (André-Jönsson, 2018). There is however a major drawback of using
these types of networks; they use unlicensed frequencies that are more prone
to interference. Therefore, the links are more unreliable compared to licensed
frequencies. (Shariatmadari et al., 2015)

From previously using the mobile network, mainly for voice calls, (1G, 2G)
the trend has now shifted towards data transfer (3G, 4G) and, with that, a mix-
ture of different demands and requirements. Examples of these requirements can
come from:

• Consumers that demand high bandwidth with reliable connections for mul-
timedia streaming services.

• Industries that may depend on high bandwidth, reliable connection and
low latency for their business.

• Internet of things (IoT) and MTCs, with their ever-increasing numbers, that
require everything from low bandwidth, latency insensitive connections to
high bandwidth, highly reliable connections.

Planning an infrastructure to meet all these demands and avoid compromises
is not an easy task for the world’s telecom companies. Because of this having
the right tools for the development of a mobile communication infrastructure is
essential.
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1.2 Motivation

It is not a new phenomenon to use modern computers as aid, not only the plan-
ning and development but also the testing of new technologies. A computer sim-
ulations ability to rapidly calculate the results of different parameters make them
invaluable to many developers, engineers and scientists. They help provide vital
data about the environment being simulated, thus forming the base of many im-
portant design decisions. There are many reasons for a simulator to be utilized
before taking any major design decisions. The most prominent of them being
cost savings. Design flaws can be a costly mistake when it comes to establishing a
complex system. Anything that can help reduce the risk of incorrect estimations
is therefore highly valued.

Of course, simulation software for data networks already exist. However, with
the increased demands and the development of 5G, many fail to capture all the
important aspects of modern network planning. Because of that, a new kind of
simulator is needed.
Our task is to build such a simulator, for trying to understand the impact on the
radio access network (RAN) when consequences like dynamic back haul links or
multi path protocols are introduced. How does this affect the RAN services and
identified RAN traffic types and how does it impact RAN robustness and relia-
bility. It should also aim to show how different networks behave given different
parameters like data load, data distribution, costs and more.

1.2.1 What is needed in a new simulator?

One of the major aspects that needs to be considered today is the importance
of differentiating between different types of data. For instance, some network
users may require low latency as primary priority for their network. By using
a connected RTS with time critical data, they might depend on fast response
times. Others, on the other hand, might prioritize cost savings over latency. For
these consumers, having data that eventually reaches its destination, regardless
of latency, will be satisfactory. Furthermore, while some users may require a
very large chunk of data every now and then, like downloading a movie or a
music album for offline consumption. Others will require a constant stream of
data, valuing a reliable connection over bandwidth. Providing a high speed, high
bandwidth, low latency and super stable connection to everyone would be an
ideal solution to ensure total satisfaction. Due to costs, however, this is not a
feasible solution. Therefore, to meet these demands and at the same time, keep
the costs down, a preferred solution is to provide just the services required to
meet each individual demand. The difficult task is to figure out what kind of
hardware is needed where to ensure that the demands are met while at the same
time being the most cost-effective solution.
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1.3 Purpose

The shift in mobile communication from a few powerful cell towers to many
smaller cell towers requires a different approach when planning the network in-
frastructure. Increasingly more complex networks will be created with a multi-
tude of nodes and connections between these nodes. Without the proper tools it
will be hard, if not impossible, to predict the behavior of this kind of network,
due to its complexity.

The lower latencies and higher throughput in the radio access network might
allow an operator to use techniques like self back-hauling and multi path deliver-
ies to improve robustness and reliability for certain types of traffic.
(André-Jönsson, 2018)

In this thesis a simulator for data flow through a network will be implemented
and a focus area will be to analyze different frameworks that can be used to re-
alize this. Besides building the core that will be responsible for the simulation
calculations, the surrounding environment needs to be built too. This includes
units like the graphical user interface and other supporting functionality. Be-
cause of this the simulator and its entire solution will here on be referred to as
the Network Simulator System (NSS).

A simulator like the NSS will be especially important when planning the es-
tablishment of networks in for instance major capital cities or other densely pop-
ulated regions. In these regions the requirement for the number of cell towers,
or “nodes”, as they can be referred to, will be the highest, creating the most com-
plex networks. A simulation of such a network would then be able to provide
important data of key factors. These key factors could be anything from load
distribution and data latency to cost estimation and much more.
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1.4 Problem Statements

The NSS will be aimed to be used by engineers at Ericsson and should therefore fit
the purpose and requirements stated by these engineers. One important aspect of
this is to make it adaptable to their current model of systems. Building a system
of this scale and for this purpose presents a lot of challenges and raises questions
that need to be answered. One important preparational task is to identify some
of the more extensive and important challenges and questions to focus on. The
identified questions are as follows:

• How can the complex model of data traffic load in a sophisticated large-
scale network be depicted in such a way that it is easy to comprehend?

• How can such a complex system be designed in a detailed enough level to
be useful for its purpose while still preventing excessive use of hardware
resources?

• What are some of the tools that can be used to ease the development of such
a system and what design choices should be taken?

• What are the most important features that need to be implemented into the
NSS for it to be useful for its intended use?

1.5 Limitations

During development of any system it is important not to get side tracked, spend-
ing too much time overdeveloping less important parts. This is particularly true
if the time spent doing that is at the cost of the development of main core func-
tionality. To help keep this focus during advancement some restrictions and lim-
itations will be applied.

One restriction will be the graphical aspects of the NSS. The main feature of
a simulation software will be to provide important and relevant data to the user
in an easy to understand manner. For this, less can sometimes be more, espe-
cially when it comes to the presentation of data. Therefore, little effort will be
put on the aesthetics of the software. The graphics that will be provided will,
at best, be on a basic level and is mainly intended to represent data in compre-
hendible form. This means no elaborated animations or special effects will be
added. This restriction comes with the added benefit of reduced constraints on
computational resources, which is favorable, as simulations often are quite com-
putationally heavy to begin with.

The next major restriction that will be applied will be the finding and imple-
menting of the algorithms used to route data in individual nodes. For this project,
only basic calculations will be implemented. The user will instead be given the
option to decide whether to implement their own preferred algorithms or use the
built-in. This enables simulation scenarios that can be modified after the user’s
preferences, allowing for countless simulations possibilities.



1.5 Limitations 7

Another major restriction imposed will be that focus will mainly be on the
lower levels (Media Layer) of the Open Systems Interconnection model (OSI model).
It is assumed that building a simulator that can simulate the loads of network
nodes under different network settings will not require the level of detail that the
higher levels of OSI model would provide. This means that simulations will only
regard the flow of data in physical networks rather than on the actual data rout-
ing. This compromise will help further reduce the load on hardware resources
and improve simulation performance. See Table 1.1 for a depiction of the OSI
model.

Table 1.1: Table of the OSI model showing all the different layers of network
communication. Source: (OSI model, no date)





2
Background

Ericsson is a provider of information and communications technology (ICT) to
service providers around the world. With an estimated 40% of the worlds mobile
traffic carried through their networks, it is safe to say that they are a major player
when it comes to mobile communication networks (Ericsson, no date). With the
development of the next generation mobile communications standard, 5G, com-
panies like Ericsson need to update and develop new tools adapted for this new
technology. This is the foundation for the two theses that together make up this
entire thesis.

This thesis is based on two separate theses combined into one. The first thesis
focuses on a framework that simulates network activity and data flow through
a network. The framework should be able to handle parameters like latency,
throughput limitation, capacity, storage and network nodes in a meshed network
to base the simulations on. The purpose of the framework is to give visual repre-
sentation of these simulations. The second thesis focuses on expanding the NSS
with a more sophisticated traffic load generator. This load generator should be
user specified and based on some mathematical models that represent load data
usage on real networks.

9





3
Theory

3.1 Introduction

In Velten, 2009 the word simulation is defined as following: “Simulation is the
application of a model with the objective to derive strategies that help solve a
problem or answer a question pertaining to a system”. This definition goes very
well with the intended use and purpose of the resulting software of this project.
The theory will be divided into the following sections:

• Cellular Network.
• 5G Network Layout.
• Simulation Framework.
• Statistical Distributions.
• Programming Languages.
• Game Engines.
• Software Platforms.
• System Architecture.

11
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3.2 Cellular Network

As a theoretical introduction to this thesis, some basic concepts in cellular com-
munication will be described (see Figure 3.1 for a basic depiction). The main
topics that are going to be described are:

• Core Network.
• User equipment.
• Radio Access Network.

3.2.1 Core Network

A core network (CN) has the purpose to provide the user with the means to send
and receive telephone calls and data. As a part of the internet backbone the CN
provides paths for data exchange between sub nodes. The CN is made up of
a series of routers and switches with the latter being the most common. (Core
Network - Definition from Techopedia, no date; Faulkner and Harmer, 1999)

3.2.2 User Equipment

A user equipment (UE) is what the end-user uses to communicate with the cellu-
lar network. A UE can either be a computer, mobile phone or any device that has
a cellular antenna. (Kasera and Narang, 2004)

3.2.3 Radio Access Network

The Radio Access Network (RAN) has the radio functionality of the network. In
2G the RAN was comprised of two main components; Base Transceiver Stations
(BTS) and Base Station Controller (BSC). To ensure good coverage, multiple BTS
must often be used to cover an area. Each BTS has a specific area that the antennas
cover called cell site. The names macro, micro and pico are used to describe the
size of area covered by the cell sites. (Cellular Fundamentals – Radio Access
Network (RAN), 2014)

In 3G the RAN structure was changed to NodeB (NB) and Radio Network
Controller (RNC). The NB corresponds to the BTS in the 2G RAN and the RNC
correspond to the BSC. The instructions that the NB execute are provided by the
RNC. (Kasera and Narang, 2004)

In 4G the structure was changed quite significantly. The NB was exchanged
to the eNodeB (eNB) and the NC’s functions was splitted, where some functions
was moved into the 4G CN and some functions was moved to the eNB. The result
is that the 4G RAN only consist of interconnected eNBs. Since the eNBs that
are interconnected together, mobility is handled directly between eNBs. There
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are also features taking advantage of this interconnection, e.g. Elastic RAN that
enables several eNBs to send data to the same UE to achieve higher throughput.
(Khan, 2009; Ericsson Elastic RAN, 2016)

Figure 3.1: Basic depiction of the interconnection between UE, RAN and the
CN. Source: Junior Asante

3.3 5G Network Layout

In the 5G of telecommunication, old as well as new concepts are used to meet
the demands of mobile broadband and MTC. One of the new concepts that will
be developed in the 5G is a new type of dynamic system which will adapt to
the network demand. For example, an area might need high data load and low
latency, therefore this area will be targeted with more resources to meet these
demands. Some of the main concepts that will enable this type of functionalities
are:

• Device-to-device (D2D) communication.
• A more flexible Frequency Division Duplex (FDD) and Time Division Du-

plex (TDD).
• Massive Multiple-Input Multiple-Output (MIMO).

(Ericsson, 2016)

D2D communication is available in 4G but will have extended functionality
when it comes to 5G. For example, D2D in 5G makes it possible to share data
directly between devices to use these devices to extend coverage for other users.
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This can lead to reduced load on the NB/eNB but also increase the efficiency of
the network. (Tseng et al., 2017)

To avoid interference in areas where the mobile broadband traffic is dense, the
available spectrum must be used efficiently. FDD and TDD are techniques that
have been used in Long-Term Evolution (LTE) for duplex communication. (Yun
et al., 2007)

In 5G, FDD will be used as the major technique to transmit and receive data
on the lower frequency bands. TDD will have an important role in dense deploy-
ments and in high frequencies (above 10 GHz). TDD will also be implemented
differently in 5G compared to previous standards (TDD LTE). Uplink and down-
link have restrictions on how they can be configured in TDD LTE. In 5G, TDD
will be able to dynamically assign transmission resources and be more flexible
than previous implementations. (Ericsson, 2016)

Massive MIMO was proposed in (Marzetta, 2010) and has since been adopted
to be one of the core features of 5G. However, massive MIMO must be modified
to utilize higher frequencies that will be used in 5G. These frequencies are called
millimeter wave (mmWave) and range above 24 GHz (Medbo and Zaidi, no date).

Since 5G will use higher frequencies than previous technologies, the wave-
length will be shorter, therefore the antennas will be smaller. Each 5G RAN can,
because of this, be equipped with hundreds more antennas than in previous tech-
nologies (Swindlehurst et al., 2014; Van Chien, Björnson and Larsson, 2018).

In 5G, the receivers and transmitters will use beamforming to increase the sig-
nal strength and with that, either reduce the interference or increase the range be-
tween different transmissions (André-Jönsson, 2018). Beamforming also makes it
possible to, more effectively, target regions which are subjected to poor coverage
due to limitations in previous technologies (Ericsson, 2016).

3.4 Simulation Framework

The two major parts in a simulation framework is the model and the simulator.
The model is the depiction of a system or a process that exists while the simulator
is the actuator of the framework. The simulator takes a set of input data through
the model. The model then produces an output using the input data. (Topçu et
al., no date)

3.4.1 Model

A model of a system is a simplified depiction of said system that can provide
enough relevant information to answer a given question. According to Velten,
2009 everybody uses mathematical models of some sort, even if unaware of it.
An example is for instance a car. Most people have a simplified model of how a
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car works. Knowing you must turn the key to turn on the car, shift in the right
gear, press the gas pedal to move forward and turn the steering wheel to turn the
car. In this simplified model none of the complexity of the engine e.g. pistons, oil,
generator, sparkplugs etc. is counted for. The knowledge of these are simply not
needed for the intended purpose of the model. This model is sufficient until the
car stops or breaks down for an unknown reason. When this happens, the model
needs to be updated with more complexity to sufficiently represent the system.
Does the car have enough fuel? Or is the battery charged? When creating a
model for a system it is recommended to start with smallest possible model with
the lowest level of complexity of the system and add complexity as it is needed.
(Velten, 2009)

Models can have various meaning and levels of complexity. The goal is not
to create a perfect copy of reality, but rather to create a sufficient enough model
for the problem that the model is trying to present. Arguably the best model is
the least complex one still able to present answers to problems. By taking the
essentials and basic concepts of the given system, parts of the system will be
described in the model and parts will be left out. This is also called abstract.
(Banks, Nelson and Nicol, no date; Topçu et al., no date; Siegfried, 2014)

3.4.2 Simulator

The simulator is the unit that takes a set of inputs through the given model and
produces an output. These computations can be done in a continuous time or a
discrete-event manner. The prior case is often described with a set of differential
equations, and the latter makes computation on the model at discrete timestamps.
When using continuous time computations, the state of the system changes con-
tinuously with time which is different to discrete-event computations where the
state of the system only changes at discrete points in time. (Banks, Nelson and
Nicol, 2005)

In (Velten, 2009) the term simulation for a discrete event simulation is de-
scribed as “the imitation of operation of a real-world process of a system over
time”.

Simulation Model

When describing a model of a system it can either be described physically or
mathematically. The mathematical model of a system is a set of equations that
describe the system theoretically. A simulation model is a sub-category to math-
ematical models. Simulation models can further be divided into a set of subcate-
gories when describing how the input data will be processed:

• Static or dynamic.
• Deterministic or stochastic.
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• Discrete or continuous.

(Banks, Nelson and Nicol, no date)

Simulation on static models respond to different inputs while the model of
this system maintains a specific state from a certain time instant. Meanwhile, a
dynamic model will change over time and will not keep the same state during the
simulation. A Monte Carlo simulation is an example of a static simulation, while
the number of people in a food store is a dynamic simulation model. Simulation
models that are deterministic have no random variable affecting the system. Ev-
ery input is known and will produce an output. A stochastic simulation model on
the other hand, will have one or more inputs that will be randomly determined
before being used in the model. (Banks, Nelson and Nicol, no date)

Continuous simulation model uses a continuous function to simulate the given
model, see Figure 3.2. The model will change the output continuously.
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Figure 3.2: Example of how the mathematical representation of a continuous
simulation model. Source: Joel Olsson

A discrete model of a system has time discrete instants, where a new compu-
tation is made for the system i.e. the state of the system will only change when a
new time instant arrives. See Figure 3.3 for an example of a discrete system.

3.5 Statistical Distributions

A powerful tool for simulations is the use of mathematical models, more precisely,
statistical distributions, or probability distributions. Probability distributions
can for instance be used to describe different scenarios with fairly high accuracy.
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Figure 3.3: Example of how the mathematical representation of a discrete
model of a system could be defined. Source: Joel Olsson

These mathematical models attempt to describe different types of distribu-
tions across a spectrum, like time. In probability distributions the probability of
the next outcome is usually more interesting than which single output is most
likely. The better these distributions can describe these scenarios the more ac-
curate the simulation will be. However, having accurate mathematical models
usually means having to count for a lot of variables or unknowns, which in turn
increases the complexity of the calculations. This will in the end lead to longer
calculation times and increased demand for resources (Velten, 2009).

3.5.1 Exponential Distribution

The exponential distribution is a probabilistic mathematical model that can be
used to describe the time elapsed between two separate events. This can be any-
thing from when the next customer may enter a shop to when the next phone call
will occur to a call center. (Exponential distribution, no date)

The probability distribution of the stochastic variable X can be described as:

fx(x) =
{
λe−λx, if x < 0

0, if x ≤ 0
(3.1)

(Forbes, 2011)

3.5.2 Uniform Distribution

Uniform distribution or, continuous uniform distribution is a distribution model
where the probability of getting a sample is constant within the sample space (the
probability density function (PDF) is constant). (Forbes, 2011)
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The continuous uniform distribution is described in Equation 3.2, where F(x)
is the cumulative distribution function (CDF).

F(x) =


0, if x ≤ a

x − a
b − a

, if a < x < b

1, if x ≥ b
(3.2)

(Forbes, 2011)

3.6 Programming Languages and Libraries

A study of programming languages, different libraries and software platforms
have been conducted to find a suitable language for this thesis. The approach
used to examine these languages was to look at two factors. Which simulation
libraries exist and what tools could be used to develop a Graphical User Interface
(GUI). Following this chapter will be a chapter about different libraries available
for the different programming languages.

3.6.1 Programming Languages

The main programming languages that have been studied are C/C++, C#, Java
and Python. A small description of each of the languages will be given in this
section.

C/C++

C++ Is a strongly typed language that compiles directly to a machines native
language. Being strongly typed means that it is expected of the programmer to
know what he or she is doing. The compilation to native machine language makes
it one of the fastest languages available, if optimized. Being built of C language it
is compatible with C code, with a few exceptions and can use all C libraries with
little to no modification at all. (Albatross, no date)

Some available simulation libraries in C/C++, amongst many are:

• Sim.
• Advanced simulation library.
• Objective Modular Network Testbed in C++ (OMNet++).

(Faraz Fallahi, 2014)
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Java

Java is another popular programming language that is platform independent due
to it being run from Java Virtual Machine (JVM). JVM interprets the executed
java program for the native operating system meaning that any machine with
JVM installed can run Java programs. (Java Essentials, Part 1, no date)

Java is a typical high-level object-oriented programming (OOP) language which
is designed to be simple to learn and use, if the concept of OOP is understood. It
is also considered to be more dynamic than for instance C/C++ as it is designed
to adapt to an evolving environment. (Java Overview, no date)

C#

C# is a high-level, general-purpose, OOP language developed by Microsoft and
can be seen as a combination of Java and C/C++. The language is very much
based on C/C++ programming language but with a strong resemblance with Java.
It is designed for Common Language Infra-structure (CLI), which means it has
a runtime environment that the executable code is run on. This allows the use
of various high-level languages to be run on different computer platforms and
architectures. (C# Overview, no date)

Python

Python is yet another high-level interpreted programming language with effi-
cient high-level data structures. Having a simple syntax, dynamic typing and
being interpreted makes it versatile language for many areas and platforms. The
interpreter can be extended with new functions and data types implemented in
other languages like C/C++ which further increases its versatility. (The Python
Tutorial - Python 3.6.5 documentation, no date)

3.6.2 Potential Libraries

Writing any extensive software can be a daunting task which is why the use of
libraries is common practice. The library support for a programming language is
an important factor which is why most languages market the amount of library
support that exist for that language. Many libraries however, are so popular that
they exist for several different languages which is why libraries are placed in its
own chapter. In this chapter some interesting libraries will be brought up and
information about some of their key abilities will be presented. The libraries that
will be brought up are:

• Sim.
• Advanced Simulation.
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• Crazy Eddie’s GUI System.
• DESMO-J
• SSJ.
• JavaFX.
• SimPy.
• Enaml.

Sim

Sim is a C++ library for discrete event simulation. It supports event driven and
process driven simulation. It will execute and calculate a new output at a certain
point in time and will during that time change the state of the system. (Bolier-
Anton and Ens, 1994)

Advanced Simulation

Advanced simulation library is an open source library platform for simulating
and solving partial differential equations. The computations are made in OpenCL,
with a C++ Application Programming Interface (API) available to use for imple-
mentation of math expressions. (‘Advanced Simulation Library Expanding soft-
ware ecosystem for the DSP/FPGA/GPU market’, 2015)

Crazy Eddie’s GUI System

Crazy Eddie’s GUI (CEGUI) is a library mainly for creating a graphical interface.
It provides windowing and widgets for graphics APIs and engines where func-
tionality of these are missing. The library is object oriented and written in C++
and is targeted at game developers. (Paul D Turner, no date)

DESMO-J

DESMO-J stands for Discrete-Event Simulation and Modelling in Java and is writ-
ten in Java to model systems in a discrete-event fashion. Amongst other features,
DESMO-J is equipped with features such as stochastic distributions, scheduler,
simulation clock and report generation. DESMO-J is used to develop simulation
systems both in academia and in the industry. (DESMO-J, no date) (van Staden,
2012)

SSJ

SSJ is a simulation library which is organized in sets of packages to aid simulation
programming in the Java language. SSJ extends the Java language with tools
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to help implement complex models. A simulation project can be divided into
several tasks ranging from modeling to implementation. Support is also added
for implementation and validation of simulation. (SSJ: SSJ User’s Guide., no date)

JavaFX

JavaFX is one of the available graphical tools and libraries that complements Java.
A feature of JavaFX is the use of F-Extensible Markup Language (FXML) to build
an interface. With this support, it is possible to separate the back-end of the
system from the front-end. The graphics can be built by coding FXML or using
Scene Builder, which is a drag-and-drop tool for building a GUI. (What Is JavaFX?
| JavaFX 2.0 Tutorials and Documentation, 2013)

SimPy

SimPy is one of the simulation libraries for Python based on a discrete-event
simulation framework. The library has the functionality to run a simulation by
manually stepping each simulation step or by executing the simulation as fast
as possible (Team SimPY, 2016). SimPy is used in different domains to build a
discrete event simulator to for example, model a supply chain for a forest (Pinho,
Coelho and Boaventura-Cunha, 2016).

Enaml

One of the many existing graphical libraries for Python is Enaml. With Enaml
it is possible to create a user interface on platforms that can run Python and Qt
(Welcome to Enaml - Enaml 0.10.2 documentation, no date).

3.6.3 Platforms and Frameworks

This section will bring up different frameworks and platforms that are of interest.
Platform and frameworks are a slightly higher form of abstraction than individ-
ual languages and libraries and usually provide generic functionality. (Rich Moy,
2017)

OMNet++

OMNeT++ is a popular network simulation platform in the scientific community
and in the industrial settings. It provides a component architecture for models
that can be programmed and assembled together. OMNeT++ offers the following
components:
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• Simulation kernel library.
• NED topology description language.
• OMNeT++ IDE based on the Eclipse platform.
• GUI for simulation execution, links into simulation executable (Tkenv).
• Command-line user interface for simulation execution (Cmdenv).
• Utilities (makefile creation tool, etc.).
• Documentation, sample simulations, etc.

(Heidemann and Isi, 2002)

Qt

Qt is a cross-platform development framework. It comes with its own IDE called
Qt Creator and like many other IDEs, it offers intelligent code completion, syntax
highlighting, debugging capabilities and more. Qt abstracts GUI programming
by offering widget modules, which enables GUIs to be written directly in C++.
Another option for GUI creation offered by Qt is with the QtQuick module which
enables GUIs to be written in Qt Modeling Language (QML). QML integrates
JavaScript and is a declarative object description language. (About Qt - Qt Wiki,
no date)

3.6.4 Game Engines

Another approach for developing a simulator-like system is to use a game en-
gine. Game engines are software solutions created to help ease the development
of multimedia and cross platform content, primarily video games. With a main
feature of providing abstraction from certain daunting tasks, usually platform de-
pendent details of commonalities, these software suits help reduce development
overhead. Some of the many commonalities a game engine could help abstract
includes physics, graphics, input and computer Artificial Intelligence (AI). With
less time spent on adapting such tasks, more time can be spent on the intended
software and its unique features. (Game engine, 2018)

There are many different game engines available, like: CryEngine, REDengine
Cocos2D-X and so on. Many of them focuses on different areas and are based on
different programming languages (List of game engines, 2018). For this research
only two engines where focused on as they, at the time, seemed to be the two most
popular, according to multiple ranking sites visited like (10 Best Video Game
Engines (Rankings & Reviews), 2018).

Unity

Unity is one of the most popular 3rd party game engines, especially for mobile
games, on the market. It is estimated that 34% of the top 1000 free games are
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made in unity and that unity is somehow included in over 770 million games
around the world (Unity - Fast Facts, no date).

Unity comes with an extensible editor with a vast range of included features
and functions. Some of these features are:

• Physics engines to take advantage of Boc2D and Nvidia PhysX support.
• Ability to use Timeline, Anima2D, Particles for animation.
• Support for both 2D and 3D development.
• In-editor creation tools to allow prototype, 2D level design and support for

3rd party design tools.
• Access to unity Asset store where off-the-shelf content can be either bought

or downloaded for free.
• Advanced profiling tools to determine if your software is CPU or GPU-

bound.
• Platform support on over 25 different platforms including Android, iOS,

Linux, Windows, XBOX, Gear VR and more.

The programming language in Unity is based on C# and Unity is free to use
for beginners, students and hobbyists but range from $35 per month to $125 per
month for serious and professional creators (Unity - Products, no date).

Unreal Engine

Unreal Engine is developed by Epic Games, which also happens to be responsible
for popular game titles like Gears of War, Unreal Tournament and Fortnite (Epic
Games | About, no date). Currently, Unreal Engine 4 (UE4) is the latest release
and there are a few similarities between UE4 and Unity. Just like Unity, UE4
comes with a broad variety of features and tools in the domain of graphics, sound,
networking, optimization etc. to help ease development. Accompanying these
tools is the extensive documentation found on their site as well as the support
community available online. UE4 also features an e-commerce platform known
as Marketplace which is equivalent to Unity’s Asset store. Here developers can
get both purchasable and free, game-ready content and code (Epic Games, no
date).

The most notable difference between Unity and UE4 is the programming lan-
guage. UE4 is a C++ coding environment and offers a feature called Blueprint
that allows for a node-based scripting method that can be used for developing
games and other software without even having to write any code. Being a high-
end set of tools UE4 does require a mid-to-high-tier machine to work properly
due to its resource demands. The platform support for UE4 is also quite exten-
sive, including Windows, Mac, Linux, XBoxOne, PS4, HTML5, iOS and more.

UE4 is free of charge given the condition that a released software made with
UE4 makes less than $3000 per calendar quarter. After that Epic requires a roy-
alty of 5% of the gross revenue. (Epic Games, no date)
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3.7 Software Platforms

Using complete systems or software platforms was also an idea that seemed vi-
able. Many simulation platforms available can be tweaked or modified to fit the
intended use. How extensive these modifications need to be is of course depen-
dent on the platform and its intended use. Out of the available platforms on the
market, two were chosen as an example for the sake of comparison. These were
MATLAB’s Simulink and IBM’s Node-Red.

3.7.1 MATLAB/Simulink

Simulink® is a model and simulation software environment integrated with MAT-
LAB. It uses block diagram for model-based design and multidomain simulations.
Some of the supported features are:

• System-level design.
• Simulation.
• Automatic code generation.
• And continuous test and verification of embedded systems.

Thanks to the integration, MATLAB functions and algorithms can be incor-
porated into models and results can be exported to MATLAB for further analy-
sis. Simulink primarily simulate behavior of system components over time by
keeping a clock and determining the order in which blocks are to be simulated.
(Create Simple Model - MATLAB Simulink - MathWorks Nordic, no date)

3.7.2 Node-Red

Node-Red (NR) is an open source node-based tool for wiring together hardware
devices, API’s and online services to create so called “flows”. Its browser-based
editor makes it easy to create flows by connecting a wide range of nodes. Its
built-in library also allows for templates, functions or flows to be re-used. Over
225,000 modules are included in Node’s package repository which allows for a
great deal of functionality expansion of the nodes. The capabilities of nodes can
be expanded even further with the use of JavaScript code that can be coded di-
rectly within the editor. (Node-RED, no date)

3.8 System Architecture

When coding any complex project, it is recognized as good practice to organize
the software structure in a certain way. An architecture of a system can be seen as
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the foundation of which the system is built upon. A good software architecture
takes into consideration:

• How the users interact with the software.
• How the application will be managed.
• What the required quality attributes for the application might be.
• How the application will be flexible and maintainable over time.
• What future trends that might affect the application.

The purpose of an architecture in a system is to reduce the business risks asso-
ciated with complex technical builds. Taking in the above stated considerations a
good architecture should bridge both the business requirements of a system with
the technical requirements. Through the offering of good flexibility, future drifts
in hardware and software technology, as well as user scenarios and requirements
can be handled. (MSDN, 2014)

3.8.1 Architectural Patterns

An architectural pattern, sometimes referred to as an architectural style or archi-
tectural model, is a set of design principles that shape the framework that makes
the system. It promotes the reuse of design by providing solution to problems
that are frequently recurring. The key architectural styles can be seen in Table
3.1.

Architectural style Description
Client/Server. Separates the system in two, where clients make re-

quests to servers.
Component based. Splits application design to reusable functional or

logical components with well-defined communica-
tion interfaces.

Domain Driven Design. Object-oriented style for modeling a business do-
main and defining objects based on entities within
the business domain.

Layered Architecture. Application concerns are partitioned into stacked
layers.

N-Tier/3-Tier. Functionality is separated into segments with each
segment being a tier located on a physically sepa-
rated computer.

Object Oriented. Division of responsibilities into reusable individual
objects. These objects are also self-sufficient contain-
ing data relevant to the object.

Table 3.1: Key architectural styles and a small description of them.
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More architectural patterns are available and it is not uncommon to combine
several styles in a system. In fact, it is unusual not to combine several styles
as the complexity and demands of the system grows. One might start adopting
the Model-View-Controller (MVC) layer style model but can later be forced to
combine it with the 3-tier approach due to security concerns. (Meier et al., 2009)

Client/Server

With the client/server architectural style the system separates the user (client)
and the application (server). The client sends requests with specific tasks that the
client wants executed, while the server makes the proper response to the client’s
requests. Some of the main pros of this architectural style are:

• The data security is often higher since all the used data is stored on a server,
which in most cases is more secure than the client’s.

• Data is centralized, which makes data access and updates available for
clients easier to maintain and control.

• The administration of the system is controlled by updating the server sys-
tem, which separates clients from maintenance and updates of the system’s
infrastructure.

Although the client/server comes with the benefit of being easy to maintain
and control, the architectural style comes with some downsides. Some of the cons
with a client/server architecture could be:

• Problems with scalability, since system logic and application data combined
on a server system could cause problems with scaling the system.

• Reliability, the clients using the the system is dependent on the server work-
ing.

(Meier et al., 2009a)

Component based

A component based architectural style separates the system functions and system
logic into multiple subtasks. This makes the functions reusable since the system
functionality is defined into separate functions. Furthermore, this makes func-
tions independent from each other since there is low dependency. Some of the
pros with a component based architectural structure:

• The development of features can be done independently from each other
since the functions have low dependency.

• Parts of the system can be reused since they are implemented separate from
the other functionality of the system.
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• Third-party functions can be implemented which can reduce the cost of the
development.

Some of the drawback with a component based architectural style can be:

• If a new technology is implemented into an existing system, a component
based architecture is of no use since all components are outdated.

• Problems with migration to other system and compatibility with other plat-
forms.

(Meier et al., 2009a; Sharma, Kumar and Agarwal, 2015)

Domain Driven Design

In a domain driven design, the architecture of the software will be adapted to the
business that it is supposed to be used in. To implement this type of architecture,
the developers need good knowledge of the business or have resources that have
expertise in the particular domain. With a domain driven design, some of the
benefits are:

• The same technical language can be used in the whole development team
since the domain specifies the language.

• The system is easy to update and adapt, since the domain model is often
flexible.

With a domain driven design architecture some of drawbacks could be:

• The design could become costly since the architecture forces the design to
be specific to the domain.

• Should only be used in systems that can benefit on the domain’s complexity.

(Meier et al., 2009a)

Layered Architecture

In a layered architecture the system is built with multiple layers where each layer
have a specific functionality. The system can communicate between the different
layers but it must be done explicitly. Some of the pros of using a layered architec-
ture:

• Since the layers are isolated from each other, changes in individual layers
has minor effect on the rest of the system.
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• Testing can be done to individual layers, which also makes it possible to
have multiple implementations that can be exchanged and tested in the
system.

• Reusability of for example the controller in a MVC structure where it could
be used to different views.

The layered architecture comes with some drawbacks:

• It can be hard to define the correct layer to implement certain functionality.
• Since the layers are separated from the rest of the system, the implementa-

tions could be generic and can lead to low flexibility.

(Meier et al., 2009a; Sharma, Kumar and Agarwal, 2015)

N-Tier/3-Tier

Similar to the layered architecture is n-tier/3-tier, where the layers are instead
tiers. The difference is that in the tier architecture each tier run on a separate
computer. Some of the pros of tier architecture are that:

• It can easily be maintained since the system is divided into separate tiers
that can be changed independently.

• The system can be scaled on each tier separate from the other tiers in the
system.

Some of the cons with tier architecture are:

• Since different parts of the system can be run on different machines, the
system could be dependent on remote servers.

• Run time of the system could be dependent on the network traffic if the
different tiers are at remote locations.

(Meier et al., 2009a; Sharma, Kumar and Agarwal, 2015)

Object Oriented

In the object oriented architecture the main focus is to divide the system in to
separate objects. Each object is working independently from the other objects in
the system. The objects exchange data with each other by calling functions or to
access attributes in the particular object. Some of the pros with an object oriented
architecture:

• Objects are easily reused.
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• The encapsulation of objects enables testing of individual objects.
• The system can get a high level of consistency by maintaining related func-

tions and attributes connected to the objects.

Some of the cons with a object oriented architecture:

• It could be inefficient where limitations on the hardware is of concern.
• Low maintenance of the code base could lead to unnecessary code existing

in the system.

(Pros and Cons of Object Oriented Programming | Green Garage, no date; Meier
et al., 2009a)
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Method

4.1 Introduction

In this chapter the method used to develop the NSS will be described.

4.2 Prestudy

When investigating the different programming languages/platforms to develop
the NSS on, the main points that were under consideration were the following:

• Backward compatibility and interoperability.
• Flexibility.
• Portability.
• User interaction.
• Licensing terms and agreements.

Our assessment of the previous points made us list the most important parts
that the programming languages/platforms must be capable of handling to ease
the implementation of the NSS. Our choice of programming language/platform
was based on these points:

• It should be equipped with a simulation library/framework.
• GUI development should be abstracted to reduce the workload required to

design a simple GUI.
• Portability.
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• If any new skills are needed, the learning curve for that skill should not be
too steep (previous knowledge in the programming language/platform is
favorable).

Based on these requirements, the choices of preferred languages/platform
were narrowed down to four main choices and the selection process of these will
be further discussed next. In Table 4.1, pros and cons are displayed for some of
the different software that was included in the prestudy.

Language/Software
package

Pros Cons

C/C++. Experience of lan-
guage, large commu-
nity.

Lower level language
than other languages.
No GUI experience.

Python. High-level language,
previous experience
in programming and
GUI, big community.

Less experience than
other languages, like
Java.

Java. Previous experience
in programming and
GUI, large community
and high-level.

Less extensive simu-
lator framework than
for instance C++.

Unity. High-level, big com-
munity, suite includes
lots of helpful tools for
abstraction.

No previous experi-
ence in C#, Licensing
terms, costs money for
commercial use.

UE4. Big community, exten-
sive set of tools for
many abstractions.

Licensing terms, costs
money for commercial
use.

Table 4.1: Pros and cons for the studied software languages/platforms.

4.3 Choice of Language

After the prestudy four main options were prioritized as the most viable. These
were Unity with C#, Unreal Engine with C++, Java and Python. The reason for
the selection of the game engines (Unity and UE4) was due to the complete set
of tools they provide and the extensive support community that exists around
them. Both Unity and UE4 were perceived as excessive for the task of building a
simulator since none of the advanced features like 3D graphics and the physics
engines were expected to be utilized. Nevertheless, the point of selecting them
was to ease the development of the GUI part of the NSS. Since the GUI part was
one of the greater concerns of the system, any tools that would help reduce the
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burden were preferred. However, after a discussion with our supervisors it was
concluded that Unity and UE4 would be excluded due to the licensing terms.

Having narrowed down the choices further to either Python, with the SimPy
framework, or Java, with the DESMO-J framework, Java was eventually chosen.
Before this decision was made a small test program in both Python and Java was
written to try them both out. This was to see how easy it was to get started with
either of the frameworks and get a feel for their extensiveness.

Alongside this, another important aspect we looked for was the documenta-
tion for the frameworks. Both SimPy and DESMO-J came with simulation exam-
ples, good documentation and source codes. They were both easy to set up and
we managed to have working simulations within a day or two by following ex-
amples given by the documentation. In Figure 4.1 a test simulation with console
output in SimPy is shown.

Figure 4.1: The output result of the simulation run of the test program writ-
ten with SimPy. Source: Junior Asante

Because of difficulties distinguishing any major differences that might impact
on future development, we eventually decided both SimPy and DESMO-J to be
equally suitable for this thesis. The choice then landed on Java on the basis that
we felt that we had more experience in Java than we did in Python.
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4.4 Resources

While conducting this thesis, different resources were available to our disposal.
Since this thesis was conducted at Ericsson most of the resources available to us
were provided by the company.

4.4.1 Hardware

The hardware given to us for this thesis was an HP EliteBook 820 G3 laptop, each,
with the following specs:

• Intel core i5-6300U processor @ 2,4 GHz – 3GHz.
• 4GB of RAM.
• Windows 7 64bit OS.
• 250 GB of disk space.

As can be seen from the specifications, this is far from the most high-end hard-
ware available on the market. Nonetheless we had this laptop as a limiting factor
for the NSS which would force us to be conservative with hardware resources.

4.4.2 Software

Due to security and licensing reasons, not all software packages are suitable to
be used for Ericsson work. This was important to take into consideration when
choosing a software package, like an Integrated Development Environment (IDE).
Many of the widely available “free” software on the internet usually comes with
conditions concerning the use of that software for commercial use. Licensing
concerns were, for instance one of the main reasons Java was chosen over other
development alternatives, like Unity and Unreal Engine.

To work with Java programming, the development environment chosen was
Eclipse IDE. Eclipse is a free complete suite popular for Java development as well
as development of other languages. Eclipse was downloaded from the Eclipse
foundation page together with some extensions added to the IDE.

To ease the development of the graphical interface, an addon to JavaFX was
used called Scene Builder. In Scene Builder a GUI can be built with a drag-and-
drop interface that creates the core graphical elements used in the NSS. Scene
Builder then creates an XML-file that can be used to control what should be dis-
played in the different containers and menus etc. Figure 4.2 shows the interface
of Scene Builder.
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Figure 4.2: Scene Builder interface where each graphical element can be
edited and placed. Source: Joel Olsson

4.4.3 Experienced Staff

At the site where this thesis was conducted there are around 800 people of vary-
ing expertise and background working together to develop products for Ericsson.
This is an immense source of knowledge and we were encouraged to gather all
the information we needed from these people.

4.5 Choice of Architecture

As mentioned before there are a few architectural styles to choose from and re-
gardless of choice, the resulting architecture is expected to be a combination of
several styles. Despite this, having an architectural pattern to start with is a good
idea to maintain consistency across the system. To meet the requirements of flex-
ibility and portability, the main idea was to separate the graphical part of the
system from the simulation core. These were identified as the largest separate
segments of the NSS.

This division of the NSS might resemble the client server style architecture.
However, because the segmentation will be within the same application rather
than split on different applications it is more of a layered architecture style. Un-
der this style the Model, View, Controller (MVC) architectural pattern seemed
like a suitable pattern for the NSS. The MVC model is not an unfamiliar model
to us and because of our previous experience of using this architectural style it
was chosen as the architectural pattern to base the NSS on. Further explanation



36 4 Method

of the MVC model will be given next.

4.5.1 MVC Model

The initial point of model used when coding the NSS was the MVC architectural
model. The idea with this architectural model is to have well separated intercon-
necting parts. This will in turn allow for modifications on one part independent
from any other.

Model

The model in MVC consists of the main functionality of the application. Here
lies the actual simulation core and all the source code used to run and perform
the actual simulation. The DESMO-J framework that is used for the NSS resides
mostly in this part of MVC. The model part of MVC can be run without the need
of the view part because of the structure of the application. This also means
that certain changes and modifications can be done to the core functionality of
the application without having to restructure the view part. In Figure 4.3 is a
depiction of the MVC model.

User

Model ControllerView

User sees

Manipulates

Figure 4.3: MVC model that illustrates the user interaction with the appli-
cation. Source Junior Asante

View

The view part includes everything that relates to the Graphical User Interface
(GUI). This includes all the code that describes everything from window size to
button positions and all the visual effects. The GUI is written independently from
the model and is connected to the model through the exchange of different key
variables. This means that the view can be run without the model part and vice
versa.
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Controller

The controller works in-between the model and the view and communicates with
both. The purpose of the controller is to act as a translator between the model
and the view. Having this part further increases the independence of the model
and view parts.

4.6 System Structure

After deciding on the system architecture, the next step was to decide how the
structure of the NSS should be composed. It was clear from the beginning that the
NSS would be separated between GUI and the actual simulation core. However,
now with the MVC model architecture in mind the idea was to segregate the
NSS into three main layers. For the view we had GUI, for the model we had the
simulation core and for the controller, everything that should process the user
input. This is essentially the link between the GUI and simulation core. Although
a bit loose and unspecific, these decisions should help when it comes to decide
where to place different Java classes and parts of the program.

Using an IDE, like Eclipse, helped greatly with the structure planning and
modifications of the structure, thanks to its included set of tools. However in
spite the use of an IDE and an architectural model to follow, the difficulties of
separating certain instances while at the same time keeping the consistency of the
NSS were realized early in the development. This was recognized when doubts of
where to place new components and functions arose due to dependencies to mul-
tiple parts of the NSS. Further explanation will follow under 4.9 Major Design
Changes.

4.7 Simulator Design

Little was decided about the NSS beforehand, apart from its intended use. Even
its functions were more of a concept with a lot of features being desired rather
than demanded. This meant countless possible approaches for how the NSS could
be constructed and how it could end up as a finished product. Regardless, there
still needed to be a plan on how to work on this project and so a first step was to
divide the work between us.

4.7.1 Division of work

Being two people working on this thesis we needed to divide the work to be able
to work independently without risking our work overlapping. The division was
simple, one person starts working on the GUI to get familiar with it and the other
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person starts developing the simulator core.

4.7.2 The GUI

The intention was to create the GUI using the same kind of layered style as the
rest of the system. This was expected to result in an increased flexibility for the
GUI. With this design pattern, the visual aspect of the graphics can be changed
while the functionality remains the same.

4.7.3 Simulation Core

The design of the NSS was quite dynamic with several improvements and changes.
It was therefore far from clear how the end product would look like or even be-
have beforehand. Not knowing every detail of the simulator to build poses some
challenges in the design phase, as much is unclear in the beginning and every
decision taken is followed by some uncertainty over the end result.

The simulation core was derived from the test simulation program constructed
during the pre-study phase. Having a simple simulator to start from, the work
progressed by adding more complex features to it.

4.8 Adding Features

Shortly after the development of the NSS started a list of requested features and
functionality was received from our supervisor. This list can be viewed in Ap-
pendix B. The list was used as criteria for what the NSS end product should con-
tain as a finished product. However, at first, not too much attention was given
to the list since our focus was aimed at developing the GUI and the core of the
simulation, meaning the class packages that allowed for an actual simulation to
be conducted. Both the GUI and the core were essential for the NSS to even be
considered as a useable simulator and due to their complexity, they required a
great deal of development hours. Once these were developed to the point that
the user interface could be used to initiate a simulation the work of implement-
ing features from the previously stated feature list could begin.

The requested features were not sorted in any kind of prioritized order, but it
was still possible to conclude that some features were more important or useful
to have than others. Also noticeable was the fact that some features depended on
others to be useful. For instance, the usefulness of being able to plot the results
of a load on a link is greatly reduced if the simulated load created by the nodes
are fixed and cannot be changed.



4.8 Adding Features 39

4.8.1 Implicit Features

Aside from the requested features, there were some missing functionality that
was realized to be, at least as important as the assumed important features. This
included functionality like: being able to reset a simulation without having to
open a new instance of the NSS and being able to have more than one data gener-
ating node in the same network. Because of the limited time resources, the risk of
not being able to implement all features was quite evident and so a prioritization
of features was needed to decide what to focus on. The resulting list was:

• Enable reset of simulation.
• Thread simulation to avoid GUI freeze during simulation.
• Enable data flows to be added to nodes.
• Enable multiple data generating nodes in the same network.
• Add import and export capabilities.
• Allow for graphical visualization of simulation progress.
• Add name tags to nodes.

Despite the complexity of most of the above listed features they were picked
as they were believed to add the most value to the NSS, in terms of user experi-
ence and simulation usefulness. The implementation challenges varied consid-
erably between features and a more in-depth explanation will be given in the
following chapter.

4.8.2 Complex Features

While some features could be implemented by merely adding another parameter
and connect it to a method, others required quite a lot more work to function.
The more complex features, to mention a few were:

• The ability to add data flows.
• The ability to use different algorithms to decide how a node should behave.
• The ability to have multiple data generation nodes on the same network.

Because these were all challenging features that required alteration of the sim-
ulation core to work, implementing these features meant a great deal of changes
to the state of the NSS. When implemented, these changes usually ended up
breaking other parts of the system, adding even more work to the workload. The
process of adding a complex feature, like any of the ones stated above, usually
started with figuring out how to implement the feature with minimal changes to
the NSS core. After that the necessary changes were made. Lastly, tests were done
to try and find broken parts and if any were found, they were repaired. During
extreme cases some of these features required an entire rewrite of large portions
of the NSS and these will be further addressed in the next chapter.



40 4 Method

4.9 Major Design Changes

Throughout the development of the NSS, countless changes and updates of both
the functionality and graphics have been made. The cause for these changes can
be anything ranging from optimization of different features to the need to adapt
parts for features to work with other, newly developed or updated, functions.
Further down the most important changes made to the NSS will be brought up
and described more.

4.9.1 System Structure Changes

The structure of the NSS was in the beginning built with the MVC model in
mind. This created a layered style structure that was separated into the follow-
ing main packages: system_large_simulation_core, view, application
and graphics_node_handler. Each of these layers handle multiple function-
alities that can be tied to that specific layer. Within each layer all source files
could be found associated with that layer. The problem that was realized with
this structure was that individual features of the NSS were harder to isolate and
modify. This reduced the flexibility of the system considerably and we realized
that a different structure was needed.

Upon some further investigation a page was found that suggested the “pack-
age by feature” approach over the “package by layer” that was currently imple-
mented. Essentially this meant that each feature of the NSS should be in its own
package for easy separation and modification. This approach sounded much bet-
ter than the layer approach, specifically for larger projects that needs to maintain
flexibility. The structure was therefore changed across the entire system and the
previous layers were further split into several packages of features. Our aim was
not to abandon the MVC layer style but rather extend it and use it as a basis
for further improvement with added flexibility. This meant that anything still
associated with GUI would still reside within the view category and anything as-
sociated with the simulation core, in the model category and so on. In Figure 4.4
the two different approaches can be seen.
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Figure 4.4: Shows an example of the early, layer style structure (to the left)
of the NSS project that was later changed to a "package by feature" style
structure (to the right). Source: Junior Asante
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4.9.2 Feature Modifications

Because of the loose descriptions given to most features, the creation and imple-
mentation of a new feature started off as realization of a vague idea and was often
modified several times during the development of the NSS. Many times, the mod-
ifications were minor and mostly needed to adapt the feature to the current devel-
oped stage of the NSS. However, the data load feature and the find path feature
have been modified so extensively that they can be considered as rewritten.

The data load feature is responsible for simulating the load on the network.
This is one of the most important features of the NSS and also one of the most
challenging parts to get right due to the many variables to account for.

The first implementation of the data load feature comprised of a global re-
quest list and data load objects. A node created a request for data by randomiz-
ing a load value using a suitable distribution model. This value was then added
to the global load list. A special data generation node, that represented a fixed
connection to the CN, produced as many data objects as the sum of requests on
the global list. These objects were then, with the help of a path list, sent down the
path required to reach each node. Each node in the path received its own amount
of requested data objects and the objects for all descending nodes. When data
objects were received the node would subtract the amount of data it requested by
destroying an equal number of objects, remove its request, add its latency to the
data packet objects and send the remaining objects to the next node in the chain.
A depiction of how this implementation of the data load was handled can be seen
in Figure 4.5.

For this method to work the entire network and how it was connected needed
to be known beforehand. A strict path was chosen for each simulation run, mean-
ing paths could not be changed for the entire simulation and only one generator
node was supported.
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Figure 4.5: Shows how data load is handled. A node requests data that is
added to the global data list. A generator node (G0) then creates the total
amount of data objects that is requested during that time instant and uses
the path list to distribute the objects. Each node then extracts its amount of
data object and passes down the remaining objects. Source: Junior Asante.

This approach worked well for smaller networks (< 10 nodes) and helped
push the development of the NSS further by being able to simulate simple net-
works. Once the network size increased, meaning an increase of nodes in the
network, the amount of data objects needed to be created increased too. This
could lead to considerable overhead on calculations for large networks.

Due to the limited main memory of our hardware it was difficult to estimate
the true impact of the NSS during runtime. This was because the main memory
of four gigabyte was more or less fully utilized (> 90%) even before a simulation
run was initiated. Nevertheless, the likelihood of a scalability problem convinced
us that the load feature had to be redone. This was somewhat expected from
the beginning but the reason for its development was its simplicity and that we
needed something to simulate load early on in the development.

The second approach to the load generating feature was to create a load object
that represented the total load of a node. This meant that only one load object
was created per node rather than the requested amount. The load amount was
then instead a value held within the load object. Another major difference was
that the load object now was created by the requesting node and passed on to the
previous node in the path until the data generating node was reached. Even for
this approach, a path was needed for the node to know where to pass on the data
object. Each node that received an object added the load value of the load object
to an accumulated load variable to show the total load on that current node.

This approach worked well but had two major flaws. There was no way to
distinguish between different types of data loads and the entire load of a node
was forced to take one path to reach its destination. Because of this another redo
of the load feature was required to support multiple load streams with different
priorities.
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The third and current iteration of the load feature was created to add multiple
stream and priority functionality as this was one of the requested requirements.
These issues were handled by adding methods and some rewriting of the second
iteration. Each data load was created to be an object, which created a separation
between each load. This could then be utilized to observe each data load instead
of the accumulated load on a node or link.

Along with this, each data load was integrated to be part of a data flow object.
The data flow extends the functionality of the data load. Instead of individual
data loads loading nodes and links in the system, each data load is part of a flow
that contains data loads. With this approach, the observed load in the system
switched from arbitrary values to data flow objects. Furthermore, the data flows
added the functionality for the user to extended changes to the data loads created
within each data flow.

4.9.3 Find Path Feature

One of the limitations stated for this thesis was that no data routing algorithms
would be required to be implemented in the NSS. Instead that was left to the
user to implement. However, having no routing algorithm at all meant that it
would be impossible to test and verify that the NSS would work as intended.
Because of this a simple form of routing was needed. The simplest one we could
come up with was having a predetermined path the NSS could follow to route
data. This lead to the development of a “find path” feature, that brute force all
paths by iterating through the entire network. During this iteration it finds every
possible path from every node in the network to a data generating node. For each
node and link in the path the corresponding latency was added. This produced
a multi-dimensional array list with all nodes and their every possible path to a
data generating node. This list could then be sorted after number of hops (nodes
in path), nominal latency or any other key value. The list was then used to direct
each node of where to send data load objects to eventually reach a data generating
node.

This feature proved more useful than previously anticipated. It was only ex-
pected to be needed before each run of a simulation to create a map of the net-
work. Each node therefore incorporated this feature within the node itself and
was called only once during a simulation. However, with additional features be-
ing added, like dynamic path choices during simulation run. It was realized that
this feature needed to be extended. It was therefore removed from the node info
object and implemented as its own class.
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Results

5.1 Introduction

The results that was achieved when developing the NSS will be presented in this
chapter.

5.2 System Structure

The NSS is built on the following three main packages: application, simu-
lator and view. The application package contains the main class that is
used to start the NSS. The simulator package holds several subpackages that
are divided by function. This package also contains the source code to the core
simulator as well as the code for the majority of the features. The view package
contains all the different graphical subsystems. Like the simulator package,
the content inside the view package is also divided into several subpackages af-
ter feature.

The resulting structure have lead to further independence and readability in
the NSS. Most classes are now packaged with dependent files and classes. Each
package includes the functionality for one specific context, e.g. all the classes
that control the node behavior and attributes is in one package and similarly for
the links etc. Removing a feature is now a matter of deleting a package rather
than having to track down all dependencies in the system.

45
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5.3 Design Decisions

During the course of the development there have been some important design
decisions. These have been taken due to factors like increased understanding
of a particular problem or function, unwanted results from implementation or
realization of a problem. Some of the more extensive decisions made will follow.

An example of a design decision was the single link decision. We decided
to only allow one link between two nodes. This restriction meant that a link
between two nodes only can have one set of attributes.

Another design decision was to reduce the system complexity to ease the tran-
sition of development to other developers. This lead to the structural changes
of the system mentioned earlier (see 4.9.1 System Structure Changes). Another
result of this decision was an increased amount of comments in the source code
to help ease the understanding of the various classes and methods.

Yet another example of a design decision was that no cacheable nodes will be
implemented. The ability to simulate cached data in a node to change behavior of
a network was one of the requested features on the feature list. However, the com-
plexity of such a feature was evident even at an early stage of this thesis. It was
eventually decided that the time resources would not allow for a development of
such a feature and so the feature was disregarded.

5.4 Application

The application package only consists of the NSS main file, which is the file
where the program runs from when started.

5.5 Simulator

The simulator package is the package that contains all the packages that con-
trol the simulation in the NSS.

5.5.1 Core

The core package contains all the controllers for the NSS. It constructs the model
of the NSS and works as a bridge from the core of the NSS to the graphics.
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5.5.2 Stats

The stats-package handles all the sampling of the data during a simulation.
The class the that executes this is SimulatorContoller. At each new time unit
in a simulation, the simulation time along with the current loads and flows that
load each node and link is stored. This is done until the end of the simulation.

5.5.3 Node

What kind of properties the node has and how the node behaves when a simula-
tion runs is controlled by the node itself. With this structure, changes must be
done directly to the node to change how the node responds to the system. This
includes, for example, the static attributes, the load that the node has during sim-
ulation and how the load should be routed. The package that contains all the
functions for a node is called node.

CellNode

The CellNode is the core object when a node is created. All the simulation
functionality and attributes that is associated to a node is stored in the CellNode
object. Further more, the attributes are stored in the NodeInfo class to increase
the readability. See appendix A section 1.1 for the attributes and methods of the
CellNode class.

NodeInfo

All the attributes (see appendix A section 1.2) for a node is contained in the
NodeInfo class. The attributes that is set for a NodeInfo object are the set
up that is then used during simulation. There is one attribute that determines if
the node is a regular node or a DataGenNode. The DataGenNode works as data
generators for the regular nodes. This means that when a regular node requests
data, they must get it from a DataGenNode. At least one DataGenNode must
exist in the setup for the NSS to be able to run.

5.5.4 NodePaths

The package NodePaths is the part of the NSS that find the different paths be-
tween existing nodes in the system. The paths consist of possible paths between
regular nodes and a DataGenNode nodes. To find these paths, a method is used
to iterate the neighbors of each node in the system and investigating if there is
a connection to a DataGenNode from the existing neighbors. The method have
four input parameters:
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• Source node.
• Destination node.
• Visited nodes.
• Visited links.

The method to investigating this works in the following order:

1. Take one node from the network and one DataGenNode as destination.

2. Iterate the links of the node.

a. Get the adjacent node that the link is connected to.

b. Add node to visited nodes. (To ensure that no loops occur).

c. Check if adjacent node is equal to destination.

i) If true, add adjacent node to path.

ii) If false, add adjacent node to visited nodes. Recursive call with adjacent
node and the visited nodes.

This method is repeated until all regular nodes and DataGenNode combi-
nations have been checked. Figure 5.1 shows a flowchart of the path finding
algorithm.
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5.5.5 Link

Like the node, changes to the link must be done directly to the link itself. A
link cannot be created without at least two nodes existing in the network. The
package that contains all the functions for a link is called link, it contains the
following Java classes:

• DataLink.
• DataLinkInfo.

DataLink

DataLink controls the behavior of a link during simulation. All the static at-
tributes that the link contains are stored in a DataLinkInfo object in DataLink.

DataLinkInfo

The DataLinkInfo class contains all the attributes for a link. Other than the at-
tributes, the class determines whether a link already exists between two nodes.

5.5.6 Flow

The flow package is the part of the NSS that takes a new sample from the statis-
tical model that is used for the flow and load the links and nodes in the system.
How each generated flow generates loads to links and nodes in the network is
determined in each flow. The classes that construct the flows are:

• DataFlow.
• DataFlowInfo.

DataFlow

During the setup of a node, the user can create DataFlow objects. The objects
will contain all the attributes that the flow can influence in the network, for ex-
ample it will contain the CellNodes and the DataLinks that the DataFlow is
connected to.

DataFlowInfo

The DataFlowInfo object holds all the user defined attributes that is connected
to a flow.
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5.6 View

All the user input to the NSS is controlled graphically. This includes creation of
nodes and links, attribute changes etc. All graphics are part of the view-package.

5.6.1 Windows

This is the main frame that displays the different parts of the NSS. Each window
has a specific function. For example, one window displays all the nodes and
links that have been created, another window displays simulation results and
one enable the user to edit a link or node. This separates the different parts of the
graphics depending on how the user interacts with the system.

Each window has a controller that puts functionality to the graphical ele-
ments in the window. This makes it possible to, for example, display a node when
created or save the changes that are made to a node while editing its attributes.

5.6.2 Node

Each node has its own graphical element and has a controller connected to it. To
detect when the user interacts with the node, a listener is connected to the graph-
ical element. When an interaction is detected, the controller executes the corre-
sponding action depending on what input it has received. For example, when
the user drags a node, the controller changes the x and y coordinates in the corre-
sponding coordinate system that the node is connected to.

5.6.3 Link

The link differs a bit from the node’s graphical structure. For example, a link
cannot be dragged. The position and magnitude of the link is entirely dependent
on the two nodes that the link is connected to. Hence, if one of the nodes changes
position the magnitude and the direction of the link changes. In Figure 5.2 is a
depiction of some nodes linked together.

5.7 The Simulator

Only a discrete event simulation is available with the NSS and the simulations
are handled by the DESMO-J library. When a simulation is started, parameters
like simulation time, number of nodes, node properties etc. are set. The sim-
ulation environment, called experiment, is then initiated and a schedule list is
set up to handle all the events. The events, in this case, consists of CellNodes,
DataLinks, DataFlows and a SimulatorController. These are placed in
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the schedule and for the very first run all the events are scheduled at time instant
0. The simulator then goes through each event on the schedule list and performs
the calculations associated with that specific event. When the calculations on an
event is finished the event is assigned a new time instant of activation and chrono-
logically placed on the schedule list. The assigned time instant is decided either
by random or by a fixed time step. When an event is done it is passivated, which
means that the event will be passive until the simulation reaches the time instant
of that event. When all events for time instant 0.0 are finished the simulation
time is increased to the next time instant decided by the next event on the sched-
ule. This continues until the simulation eventually reaches the stop time set by
the user and the simulation is halted.

During the entire simulation the SimulatorController event is used to
sample data from the simulation. This event is set to be reactivated at a fixed
time instant and collects key data value from all other events that is later used to
display statistics of load on both nodes and links.

5.7.1 Main Window

When starting the NSS, the user is presented with a minimalistic window divided
in a toolbar for simulation controls and five main sections. In figure 5.3 a screen
shot of the window is shown. The left topmost section is known as the simulation
stats section and it displays statistical information about simulations done. This
includes, number of simulation runs, current simulation time and number of
simulation resets. The section right below is the nodes and links information
section. Here, information concerning node and link properties, like latency and
throughput are shown. The middle section is the Main workspace area which is
where the network, to be simulated, is built. On the right side of the window two
more sections are found. The upper section is currently unused and can be seen
as a resource space for future development of the software. The lower section is
the console window, where important information like simulation status, debug
information and error messages are displayed.

5.7.2 Creating a Network

There are three main building blocks to use when creating a network in the NSS.
These are regular nodes, data generation nodes and data links. Regular nodes
are the primary objects for creating networks. These objects contain all the con-
figurations that decides how the routing of data flows should behave. A data
generation node represents an entry point of internet access to the network and
is needed to enable any kind of simulation. The DataGenNode will mainly act as
a resource point and will not route any data in the network. Lastly there are links
that are used to connect nodes with each other. Links possess some properties
like capacity and latency that will affect the data flows going through them. All
these objects can be seen in figure 5.2.
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5.7.3 Simulation runs

When a network has been created and all necessary parameters have been set
a simulation can be run by pressing the “Start simulation” button. During a
simulation, some visual cues of the status of the simulation will be given. There
is a low usage of resources indicator, which indicates if a link or a regular node
is underutilized by changing color of that object to yellow. Another visual cue
is the node disabled indicator. Which turns a node and its connecting links red
when a node is disabled. This can help to indicate fail rate of nodes and may
force a reroute of data flows depending on the network structure. En example of
a disabled node can be seen in 5.4 where node0 is deactivated during simulation.

5.7.4 Visualization of Results

During the early stages of the development, all results of a simulation was printed
in the terminal. This was of course unsuitable as an end product solution. For
this reason a histogram feature was implemented that plot the results of a sim-
ulation on a graph. For the histogram feature to work a special event called
SimulationController was used to repeatedly sample data from an ongoing
simulation. Depending on the sampling rate, the resolution of the graph could
be decided.

During sampling, key data of both nodes and data links are collected and
stored. Some of these data are:

• Current simulation time.
• Current load of node and link.
• Current data capacity limit of node and link.
• Latency for both node and links.

Besides gathering pure data of nodes and links some behavioral patterns of
data is stored too. For instance, when a node switches paths for data delivery
from one possible path to another. Figure 5.5 shows a screen shot of how a plot
looks like after a simulation.

5.8 Important Features

As mentioned earlier there were some requests for some added features and func-
tionality from Ericsson for the NSS. For the full list of requested features see
Appendix B. The features from our prioritized list were all implemented but not
all features from the request list were. Some were realized fully while others
were only partially implemented. The result of the most important features will
be discussed next.
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5.8.1 Import and Export

The Import and export functionality was an important request as it can be quite
cumbersome setting up a desired network. For each node that is added to a net-
work, parameters like node data capacity, node latency, cost etc. need to be set.
These parameters are set to a default value on creation but will most of the time
need to be changed to better fit the testing case. Besides this, data flows need
to be added to simulate the intended load produced by a node. After this, all
links need to be connected to create the network structure. To avoid having to
do all these configurations each time the same test case is to be simulated, one
can export the network. This will create three save files, each containing a spe-
cific set of data. One file contains all the information regarding the nodes and
their properties. The next file will contain the coordinates of these nodes and the
third save file will contain information about the connected links associated with
those nodes. Thanks to this feature a previously set up network can be reused
repeatedly in different instances of the NSS and network created can be shared
with others.

After the import/export functionality was added its usefulness was quickly
realized. This helped speed up testing of the NSS considerably since now test
case networks could be created and stored for later use rather than having to re-
configure all parameters every time. This became even more useful with added
functionality to the NSS since that meant more parameters to set. Another impor-
tant benefit was that test cases could now be shared and multiple tests could be
run on the same network configuration.

5.8.2 JavaScript Engine

Another highly prioritized feature was the ability to easily alter the behavior
of nodes without having to change the source code. The implementation of a
JavaScript engine allows for just that. Combining a scripting language with ac-
cess to all the parameters that are available including all the public methods in
the program allows for highly complex behaviors to be implemented relatively
easy. Furthermore, these scripts can be loaded on to multiple nodes and shared
to others using the NSS.

To enable the JavaScript feature, a special JavaScript setup file needs to be
loaded before behavioral scripts can be utilized. The setup script gathers all the
objects available in the NSS and store key parameter values like current simula-
tion time, or node id of the node calling the script as JavaScript variables. This
increases the abstraction level for the user as the user now only has to use the
predefined JavaScript variables instead of having to figure out how to pull the
values from the system. These values can be manipulated as wished and can
even be used in local and external methods. The results can then be saved in the
same predefined values and once the behavioral script has finished executing, the
setup script updates all system variables with the JavaScript variables.
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5.8.3 Data Flows

The data flow features allow the user to set up multiple data streams from each
node in the network. These streams represent different kinds of data and can be
customized independently. The streams can also be set to take a specific path
in the network to reach a data generation node. This is the part of the NSS that
will load each node and link with data. Each DataFlow will create DataPack-
ets throughout a simulation that corresponds to data requests from a node. The
DataPackets will be active for a certain amount of time, to then be consumed
and removed from the system which will trigger the creation of a new Data-
Packet. This DataPacket will load a set of nodes and links that lead to a
DataGenNode.

5.9 Data Validation

To validate the simulation data from the NSS, our own simulation logs were com-
pared with the generated trace logs from DESMO-J (see Figure 5.6 ). The process
to validate the data was done in the following steps:

1. Run a simulation with a DataFlow connected to each node in the network
(except the DataGenNodes).

2. Check the prints from the routing algorithm so that:

(a) The DataPacket is loading each node and link in the selected Path.

(b) The result from the DESMO-J trace files are the same as the routing
algorithm.

(c) The accumulatedLoad for each node and link in the path is correctly
calculated with the new load received from the DataPacket.

3. Check the prints from the sampling in SimulationController so that
they check out with the calculated values in Step 2b.

4. Validate that the plots that are displayed for each DataFlow matches the
results from Step 2-3.
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Figure 5.1: Flowchart of path finding algorithm.
The “Add node to visited array”-step ensures that no loops occurs. With the
recursion call, all the possible paths from a given node to the destination are
found. Source: Joel Olsson
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Figure 5.2: Graphics of nodes and links. The blue circles represent regu-
lar nodes (node0, node1, node3), the green circle is a data generating node
(node2) and the dotted green lines are links, connecting nodes together.
Source: Joel Olsson

Simulation stats

Main work space

Console window

Node/link information

Simulation controls

Unused resource space

Figure 5.3: The main window when an instance of the NSS is started. Source:
Junior Asante
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Figure 5.4: A network example where node0 and its connecting links are
disabled blocking any possible routing through that node. Source: Joel Ols-
son

Figure 5.5: The load results of a link after a simulation runtime of 3600
seconds. The upper bar indicates the load capacity limit of the link. Source:
Junior Asante
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Figure 5.6: Figure 13: DESMO-J trace file of a simulation. This file shows all
the events that happens to the SimProcesses in the NSS. The leftmost column
is the simulation time, the middle column is the name of the SimProcesses
and the rightmost column is a description of the event that occurred. Source:
Joel Olsson
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Discussion

In this chapter follows a discussion of the used method and the results of this
thesis.

6.1 Method

The general method used for this thesis worked well. However, there have been
some drawbacks in certain areas. In the following sections each part of the thesis
will be discussed with the method in focus.

6.1.1 Choice of Platform

The first topic to be discussed is the choice of a platform/programming language
to develop the NSS in. It was difficult to get a sense of how well the platform or
language was suited for the development of the proposed system, partly due to
its complexity. Even with some extensive prestudy the choice of platform was far
from given.

One of our main concerns when developing the NSS was the GUI aspect. Hav-
ing some previous experience with GUI-programming meant that we knew this
was going to be a time-consuming part of the NSS. Even with this expectation,
the development associated with the GUI took longer than anticipated. This was
one of the main reasons game engines were viable as a platform of choice for the
development of the NSS.
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6.1.2 Resources

The hardware resources used to develop the NSS were barely sufficient to han-
dle all the applications that were running during development. The small main
memory was one of the biggest bottlenecks considering that over 90% of it was
sometimes utilized even before the IDE was started. However, developing and
running the code still worked surprisingly well.

We were offered to use the remote terminal at Ericsson but after some failed
attempts to set up our work environment, we decided to continue working on our
laptops. In hindsight more effort probably should have been put to getting the
terminal to work.

6.1.3 Choice of Architecture

When picking an architecture for this software system, it was realized early on
that we needed a well thought separation between the graphical part of the sys-
tem and the simulator core. However, other parts of the system were more diffi-
cult to foresee a given architectural structure for. This was most likely the reason
for why the structure of the system had to be changed during the development.

6.1.4 GUI

Since our knowledge concerning GUI development was limited, the GUI became
a source of many problems. Even though the Scene Builder tool helped im-
mensely, it could not help with the process of controlling the interface in the
same extent as it helped create the interface. For example, nodes and links had
the requirement of being dynamically added to the NSS during runtime. This
made an implicit requirement on the graphical part of the links and nodes: they
should be editable while the NSS is running. To be able to have this functionality,
the interaction and creation of nodes and links were written in Java code and not
created through Scene Builder. This made the graphical implementation of the
NSS more complex to understand since some parts are made in Scene Builder and
some parts are written in plain Java.

6.2 Results

When comparing the NSS to the feature list in Appendix B, it can be stated that
the project still is under development. Even though most of the features have
been implemented to some extent, there were still some features we were not
able to implement due to time restraint. A lot of time was spent rewriting parts
of the NSS and this is one area that could have been improved by better under-
standing the complex functions of a network simulator. However, an important
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aspect to consider is that development time have been taken to implement and
improve other features that were not listed. These are features that either im-
proves the functionality of the simulator or increases the user experience of it,
like for instance the ability to pan and zoom the workfield.

6.3 Simulation Results

The simulation results of a simulation can be viewed within the simulator or can
be exported to a text file. However, a different approach that could have been
better is to build a database to store all the simulation data in. With this imple-
mentation, the results could have been more easily utilized by other software, for
example Excel, for analyzing the data.





7
Conclusions

Our time at Ericsson was very pleasant and educational. We faced quite a few
challenges and managed to solve most of them, gaining a lot of valuable experi-
ence along the way. The experience we got from developing the NSS helped us
answer the problem statements mentioned in 1.4 Problem Statements and these
will be answered next.

7.1 Answering the Problem Statements

The first two problem statements were how the complexity of data traffic load
in large scale networks could be modelled in such a way that it was easy to com-
prehend and how such a complex system could be depicted in a detailed enough
level without excessive use of hardware. Since these questions touches the same
area they will be answered together. These were questions with no definitive an-
swers. As mentioned in 3.4.1 Model, the best model should be a model that is as
abstracted and simple as possible from the environment it tries to model while
still providing sufficient data. This idea was applied to the second problem state-
ment as well. One immediate question that arise however is, what is sufficient
data? Since the purpose of the NSS is to simulate general data flow in a network
there might be any number of information a user might want to extract from
such a simulation. To be able to cover every possible data that a user might want
to extract would not be feasible. So regarding the model and abstraction level,
they were kept simple and placed at a high abstraction level in the beginning
and with each new feature added the complexity of the model increased while
the abstraction level of details decreased.
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The next question asked was: What tools can be used to help ease the devel-
opment of the NSS and what are the design choices that should be taken? These
questions are answered in chapters 4.4 Resources and 4.9 Major Design Changes
and therefore a shorter answer will be given here. The most important tool for
us was the IDE, as it helped immensely with the structure of the software. It
also provided suggestions and tool tips during programming which was of great
help. Another major help was the scene builder application which dramatically
decreased the time it took to get the window design we wanted. Thanks to the
drag and drop possibilities of scene builder the results could be seen instantly
rather than having to run the program to see the results.

The final question asked was which features were the most important to im-
plement into the NSS for it to be useful for its intended use. We will disregard
from the simulation core as this is not considered a feature but rather a necessity
for a simulation to be possible. Another important notice is that evaluation of
the most important features will solely be based on the features that attracted
the most attention during the presentation of the software at Ericsson. One of
the features that seemed to be attracting the most attention was the JavaScript
engine. This feature really opened the possibilities since it meant that a user
now had access to every variable and method available in the system. Having a
feature like that meant that users with very special test cases could modify the
behavior of the simulator to fit their need and even add missing features through
a JavaScript.

Another feature that seemed to be appreciated was the import and export
functionality of networks. Many seemed to dread having to recreate complex
networks each time a new instance of the NSS was started. This worry was short
lasted, seeing as how entire networks, including relevant parameters, could be
exported and later imported.

7.2 Future Work

The NSS is very much an early prototype and there is a lot of improvements that
can be done. This was obvious even during the presentation as there were quite a
few improvement suggestions, such as being able to set different icons for nodes
to easily distinguish between them and being able to export simulation data to
a third-party software for data analysis and extensive plot functionality. Besides
the new suggestions there were some features from the requirement list that we
were not quite able to implement. This includes the possibility to cache data on a
node and make it act partially like a data generation node for certain nodes. We
had the intention to implement this feature and therefore some preparations have
been done but the main implementation of the cache function is still missing. An-
other point of interest for continued development is to measure the performance
of the NSS and look for any major performance issues. This is something that has
received very little attention from us and therefore there might be some subopti-



7.2 Future Work 65

mal solutions implemented in the system.
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A
Class attributes

A.1 Node Classes

The attributes and the methods that a node uses in the simulator.

A.1.1 CellNode

Attributes and methods for the CellNode class.

Attributes

In Table A.1 is a complete list of all the attributes that a CellNode has.
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Name Type Explanation
myNodeInfo private NodeInfo NodeInfo object that

stores the user defined
attributes.

accumulatedLoad private double Holds the current ac-
cumulated load for the
node.

currentDataPackets private ArrayList
<DataPacket>

Container that keeps all
the current
DataPackets that load
the node.

currentDataFlows private ArrayList
<DataFlow>

Container that keeps all
the current DataFlows
that load the node

historyDataPackets private
NavigableMap
<Double, ArrayList
<DataPacket> >

Container that saves
the simulation data for
all the DataPackets
that have been loading
the node. Stores an
ArrayList contating
currentDataPackets
as the value of the map
and the simulation time
as key.

historyDataFlows private HashSet
<DataFlow>

Container that saves the
simulation data for all
the DataFlows that have
been loading the node.
Stores all the DataFlows
that has loaded the node
in a HashSet.

Table A.1: CellNode attributes.
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Methods

The CellNode methods will be listed and explained in Table A.2. The getters
and setter for the class are not listed.

Name Input Return type Explanation
lifeCycle void Method implemented by

the DESMO-J library. The
method is used to control
the behaviour the link
during simulation. The
link will be passivated to
await the next activation
and do the corresponding
action.

checkActivation void Method that checks what
object that activated the
node. Gets the acti-
vation ID of the object
that activated the node.
The method will either
remove a DataPacket
should be removed or
route data. Depending on
the setting on the node,
default routing or custom
routing will be used.

defaultRouting DataPacket void Method that will use the
default routing algorithm
for the DataPacket that
was passed to the method.

findFlow int void Method that will be used
to find the DataFlow
that was loading the node,
and then remove the load
from the
accumulatedLoad
attribute.
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jsRouting DataPacket void Method that will be
used to apply custom
routing on the passed
DataPacket. It will
check, from the passed
DataPacket attributes,
if the destination has
been reached and the
node in the path should
be loaded, otherwise
routing will continue.

checkRoutingStatus DataPacket,
boolean

void Help method for the
jsRouting method.
Will check the passed
data from the
DataPacket if the pre-
vious routing got ok or
not. If the routing went
ok, the passed boolean
will be true and the path
will be loaded. Else the
routing will will not be
handled.

loadPath DataPacket void Method that will be used
by the jsRouting to
load the path (both links
and nodes) that the data
routed through.

checkFlows void Method that will activate
all DataFlows that is de-
fined in the node.

newRouteToNode CellNode,
DataFlow

boolean Method that will be used
when default routing
from a node to a specific
dataGenNode is se-
lected. The method will
try to use routePath
method to route from the
passed CellNode to the
dataGenNode . Returns
true if the routing was
successful.
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removeDataFlow Path,
DataFlow

boolean Method that will be used
to remove a DataFlow
from all the links and
nodes in a Path.

routePath Path,
DataFlow

boolean Default routing method.
Will be used to route
a DataPacket , that is
contained in a DataFlow
, data on a Path .

checkPriority DataFlow ArrayList
<DataFlow>

Will return a ArrayList
of DataFlows of the
flows that should be
rerouted, since they are
prioritized lower than
the previously routed
DataFlows.

Table A.2: The CellNode methods.

A.1.2 NodeInfo

All the attributes and methods that are defined in NodeInfo is displayed in this
section.

Attributes

All the attributes of NodeInfo is included in Table A.3.
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A.2 Link Classes

The classes and their corresponding attributes and methods that creates the
links in the NSS.

A.2.1 DataLink

Attributes and methods for the DataLink object.

Attributes

The attributes contained in the DataLink class. In Table A.4 can all attributes
be found.

Methods

The methods implemented in the DataLink class. No getters or setters are
listed. A list of the methods can be seen in Table A.5.

A.2.2 DataLinkInfo

Attributes of DataLinkInfo and methods.

Attributes

The attributes in the DataLinkInfo class can be seen in Table A.6.

Methods

The methods for the DataLinkInfo class are shown in Table A.7.

A.3 Flow Classes

A.3.1 DataFlow

Attributes, classes and methods for the DataFlow object.
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Name Type Explanation
nodeId private int Id for the node.
nodeName private String The name of the node.
nodeUptime private double The percentage of the

time the node is up.
nodeLatency private double The latency of passing

data through the node.
nodeThroughput private int The maximum through-

put of the node.
dataGenNode private boolean Determines if the node is

a dataGenNode or a reg-
ular node. A
dataGenNode generates
data.

nodeCachable private boolean Determines if the node is
capable of caching data.

nodeActive private boolean Determines if the node is
active.

nodeLinkArray private HashSet
<Integer>

Set that keeps all the
neighbouring nodes.

nodePathMap private HashMap
<Integer,
NodePaths>

A map that stores
NodePath objects. Each
pair corresponds to all
the paths that exist to a
dataGenNode.

dataFlowMap private ArrayList
<DataFlow>

List that stores all the
DataFlows that this
node have. This only
includes the DataFlows
that has the correspond-
ing node as start point.

Table A.3: NodeInfo attributes.
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Name Type Explanation
myDataLinkInfo DataLinkInfo The object that holds the

attributes that the user in-
put for link.

accumulatedLoad double The accumulated load
that the node got during
simulation.

historyDataFlows private HashSet
<DataFlow>

Container that stores all
the DataFlows that has
loaded the link during
simulation.

historyDataPackets private
NavigableMap
<Double, ArrayList
<DataPacket»

All the DataPackets
that has loaded the link
during simulation.

currentDataPackets private ArrayList
<DataPacket>

All the DataPackets
that load the link cur-
rently during simulation.

currentDataFlows private HashSet
<DataFlow>

All the DataFlows that
load the link at the spe-
cific simulation time

Table A.4: DataLink attributes.
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Name Input Return type Explanation
lifeCycle void Method implemented by

the DESMO-J library. The
method is used to control the
behaviour the link during
simulation. The link will
be passivated to await the
next activation and do the
corresponding action.

checkActivation void Method that checks what ob-
ject that activated the link.
Gets the activation ID of the
object that activated the link.

findFlow int void Method that checks what
DataFlow that activated
the link with the passed
int. The method will
remove the load from the
accumulatedLoad at-
tribute that the DataFlow
loaded the link with.

Table A.5: DataLink methods.
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Name Type Explanation
dataLinkName private String The name of the link.
linkId private int The id of the link.
linkUptime private double The percentile of the up-

time of the link. For
example, 0.99 will corre-
spond the link having a
99% of being and up and
1% of being offline.

linkLatency private double Latency of passing the
link.

linkThroughput private int The total amount of
throughput that the link
can handle.

linkEnabled private boolean Attribute that determines
if the link is enabled or
not.

linkStability private double Stability of the link.
node0Id private int One of the CellNode IDs

that the link got.
node1Id private int One of the CellNode IDs

that the link got.
linkActive private boolean Attribute that indicates if

the link is active or not.

Table A.6: DataLinkInfo attributes.

Name Input param-
eters

Return type Explanation

addLink int, int boolean Will check if the input pa-
rameters (two node ids) are
connected. Returns true if
connected, false if no connec-
tion is between the nodes.

Table A.7: DataLinkInfo methods.
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Name Type Explanation
cellNode private CellNode The CellNode that

is connected to the
DataFlow.

dataPacket private DataPacket The object that keeps
the DataPacket for
the DataFlow.

dataFlowInfo private DataFlow-
Info

Object that keeps all
the attributes that is
defined by the user for
the DataFlow.

historyDataPackets private ArrayList
<DataPacket>

All the
historyDataPackets
that was created dur-
ing simulation for the
DataFlow

historyDataSampling private
NavigableMap
<Double, DataPacket>

All the data that
DataPackets that was
active and at that times-
tamp they were active.

myLoadGenerator private
LoadGenerator

The load generator for the
DataFlow that will cre-
ate the load for
DataPacket object.

dataFlowDist private
DataFlowDistribution

The data distribution ob-
ject for the DataFlow.

DataPacketStatus enum enum that hold status
of routing of DataPack-
ets.

Table A.8: DataFlow attributes.

Attributes

The attributes contained in the DataFlow class. In Table A.8 can all attributes
be found.

Methods

The methods contained in the DataFlow class. In Table A.9 can the methods be
found.
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Name Input param-
eters

Return type Explanation

lifeCycle void Method that gets imple-
mented from the DESMO-J
library. The flow will acti-
vate itself after a time span
and use the checkFlow to
check what action should be
done for the DataFlow.

checkFlow void Method that will first store
consumed DataPackets,
then remove them
DataPacket from the nodes
and links (by activating
them). A new DataPacket
will then be created, and a
check what kind of routing
that is used by the connected
CellNode, and the routing
will be started.

removeDataPacket void Method that will be used
when a DataPacket is con-
sumed. The method will it-
erate through the nodes and
links and activate them to re-
move the DataPacket.

Table A.9: DataFlow methods.
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DataPacket

The DataPacket class is a help class for the DataFlow object. It will create
data for the DataFlow and hold attributes. In Table A.10 are the attributes for
the DataPacket object.

A.3.2 DataFlowInfo

The attributes for the DataFlowInfo class. The only methods that exists are
getters and setters for the class and they will not be displayed.

Attributes

The attributes for the DataFlowInfo object can be found in Table A.11.

Name Type Explanation
flowId private int The ID of the

DataFlowInfo object.
flowName private String The name of the

DataFlowInfo object.
flowSourceNodeId private int The ID of the

dataGenNode that the
data will route data to.

flowSourceNodeId private int The ID of the CellNode
that the DataFlowInfo
is connected to.

flowDestinationNodeId private int The ID of the CellNode
that the DataFlowInfo
is connected to.

flowAverageThroughput private double The average load that the
DataFlow will create.

flowCachable private
boolean

If the flow should be
cachable.

flowEncodingLatency private double The encoding latency of
the data.

flowDecodingLatency private double The decoding latency of
the data.

flowCost private int Arbitrary value of the cost
of the DataFlow.

flowPriority private int The priority of the
DataFlow.
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flowPath private Path The path that the flow
will route data through,
used with default rout-
ing.

flowLatencyRequirementOk private double Latency requirement of
the flow.

flowLatencyRequirementDeg private double Latency requirement of
the flow.

flowLatencyRequirementNOk private double Latency requirement of
the flow.

flowThroughputRequirementOk private double Throughput requirement
of the flow.

flowThroughputRequirementDeg private double Throughput requirement
of the flow.

flowThroughputRequirementNOk private double Throughput requirement
of the flow.

dataFlowDistributionTypeObject

DistributionTypeObject

Distribution type of the
flow.

Table A.11: The DataFlowInfo attributes.

A.4 NodePaths

Class that will find paths between regular CellNodes and dataGenNodes.
Here is tables of the attributes, methods and classes for the NodePaths.

A.4.1 Attributes

In Table A.12 are all the attributes for NodePaths.

A.4.2 Methods

In Table A.13 are all the methods for NodePaths.

A.4.3 Path

The class Path hold all the attributes connected to a path between a regular
NodeInfo object and a dataGenNode. In Table A.14 are all the attributes for
the Path class.
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Name Type Explanation
nodeIds private LinkedList

<Integer>
Node IDs of the nodes
that the DataPacket is
loading.

linkIds private LinkedList
<Integer>

Link IDs of the links that
the DataPacket is load-
ing.

sourceId private int Id of the dataGenNode
that the node gets data
from.

visitedNodes private LinkedList
<Integer>

The visited nodes, used
while custom routing.

visitedLinks private LinkedList
<Integer>

The visited links, used
while custom routing.

nodesActive private LinkedList
<Boolean>

Used in combination
with visitedNodes
and store if they are
active, used while custom
routing.

linksActive private LinkedList
<Boolean>

Used in combination
with visitedLinks
and store if they are
active, used while custom
routing.

flow private DataFlow The DataFlow that
the DataPacket is
connected to.

load private double The amount of data
that the nodes and links
should be loaded with.

totalLatency private double The total amount of
latency that the Data-
Packet got to reach the
source node.

requestedLoad private double The amount of data that
the DataPacket created.
Attribute is used while
routing and is plotted as
simulation result.

resultedLoad private double The amount of data
that the DataPacket
got through the nodes
and links. Attribute is
used while routing and
is plotted as simulation
result.

Table A.10: DataPacket attributes.
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Name Type Explanation
paths private LinkedList

<Path>
Container for Path ob-
jects.

destinationNodeId private int ID of the dataGenNode
that the Paths goes to.

Table A.12: NodePaths attributes.

Name Input parame-
ters

Return type Explanation

findPaths NodeInfo,
int,
LinkedList
<Integer>,
LinkedList
<Integer>

void Method that will find all
Paths between a NodeInfo
and a ID for a node. The two
LinkedList<Integer>s
are visited nodes and visited
links. The Paths will be
stored in the nodePathMap
in the NodeInfo object that
was passed to the method.

Table A.13: NodePaths methods.

Name Type Explanation
nodeIds private LinkedList

<Integer>
Container that hold all
the IDs for the nodes that
is included in the path.

linkIds private LinkedList
<Integer>

Container that hold all
the IDs for the links that
is included in the path.

totalLatency private double Value that hold the accu-
mulated latency through
all the links and nodes in
the Path.

Table A.14: Path attributes.



B
Requested Features

Appendix of the feature request list presented to us for the development of the
NSS.

B.1 Nodes

• Inputs for receiving packets.
• Outputs for delivering packets.
• A flow should be able to be tracked, e.g. a flow should be able to be set to

a specific output or specifically spread over multiple outputs. Algorithms
for doing this is not included.

• Data for a certain flow should be able to be stored locally on the node (from
the client to the node).

• Flows should be possible to be stored locally (from the node to the source –
alternatively that the source is moved to the node).

• Each flow is affected by a latency when passing through a node.
• One should be able to set up a service up-time for a node based on multi-

connectivity.
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B.2 Connections

• Each connection has a certain maximum throughput.
• Each connection has a certain latency associated.
• A possibility to be able to add costs for certain connections should be en-

abled (to trigger activation of certain connections).
• One should be able to dynamically connect or disconnect connections.
• One should be able to decide where possible connections are.
• Link reliability: Service uptime for a link (e.g. LTE system availability is

99.9%).

B.3 Flows

• A flow should have a starting point and end point.
• Each flow should have a demand on maximum latency that should be ful-

filled. Several levels of this is possible (ok, ok but degraded performance,
not ok).

• Each flow should have a demand for a certain throughput (OK, partially
OK, NOK).

• Each flow should have a priority.
• A flow should be able to be split up if for instance a source is moved to a

node.

B.4 Observability

• One should be able to see how much data is flowing through a link.
• One should be able to see how many flows were handled successfully.
• How many of the flows got OK/partially Ok/NOK performance?
• One should be able to see where the source and destination for each flow is.

B.5 Availability

• One should be able to write an algorithm to decide whether a connection
should be disabled or not.

• One should be able to write an algorithm to decide how many packets that
should be routed.

• One should be able to write an algorithm to decide whether a service should
be moved to a node.

• One should be able to write these algorithms without access to the source
code of the simulator.

• A scenario over a period e.g. a day where different flows are brought up and
closed during different time instants after a mathematical model should be
possible.
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