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RefresheR 

 

Figure 1.1: Soy ice cream flavor preferences 

 

 



2 
The Shape of Data 

 

Figure 2.1: Frequency distribution of number of carburetors in mtcars dataset 
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Figure 2.2: Daily temperature measurements from May to September in NYC 

 

Figure 2.3: A normal distribution 
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Figure 2.4a: A negatively skewed distribution 

 

Figure 2.4b: A positively skewed distribution 

 

Figure 2.5: three distributions with the same mean and median 
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Figure 2.6a: Probability mass function of number of carburetors 

 

Figure 2.6b: Probability mass function of daily temperature measurements from May to September in NY 
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Figure 2.7: Three distributions with the same mean and median 

 

Figure 2.8: PDF with highlighted interval 
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Figure 2.9: Three different bandwidths used on the same data. 

 

Figure 2.10: Three PDFs with the same mean, median, and standard deviation 
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Figure 2.11: Frequency distribution of the number of carburetors 

 

Figure 2.12: With color and label modification 
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Figure 2.13: Histogram of temperature data 

 

Figure 2.14: PDF of temperature data 
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Figure 2.15: Figure 2.14 with modifications 



3 
Describing Relationships 

 

Figure 3.1: A box-and-whisker plot depicting the relationship between the petal lengths of the different iris species in iris 

dataset 
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Figure 3.2: The anatomy of a box plot 

 

Figure 3.3: A Box plot of NYC temperatures across months (May to September) 
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Figure 3.4: Scatterplot of women's heights and weights 

 

Figure 3.5: Scatterplot of y=x + 100 with regression line. r and rho are both 1 
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Figure 3.6: Scatterplot of  =  3 with regression line. r is .92, but rho is 1 
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Figure 3.8: Scatterplot of the relationship between wind speed and temperature 

 

Figure 3.9: Overlapping density plot of petal length of iris flowers across species 
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Figure 3.10: A mosaic plot of the UCBAdmissions dataset (across all departments) 

 

Figure 3.11: A mosaic plot of the UCBAdmissions dataset for department A 
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Figure 3.12: A scatterplot of the relationship between the weight of a car, and its miles per gallon, and a trend-line 

smoothed with LOESS 
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Figure 3.13: A corrgram of the iris data set's continuous variables 
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Figure 3.14: Another corrgram of the iris data set's continuous variables 



4 
Probability 

 

Figure 4.1: Probability distribution of outcomes of a die roll 



 2 

 

Figure 4.2: A binomial distribution (n=30, p=0.5) 

 

Figure 4.3: Normal distributions with different parameters 
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Figure 4.4: Normal distributions with different parameters 

 

Figure 4.5: Area under the curve of the height distribution from 70 inches to positive infinity 
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Figure 4.6: The three-sigma rule 



5 
Using Data to Reason About 

The World 

 

Figure 5.1: Accuracy of sample means as a function of sample size 
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Figure 5.2: The variability of sample means as a function of sample size 

 

 

Figure 5.3: The sampling distribution of sample means 

This frequency distribution is called a sampling distribution. In particular, since we used 

sample means as the value of interest, this is called the sampling distribution of the 
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sample means (whew!!). You can create a sampling distribution of any statistic (median, 

variance, and so on), but when we refer to sampling distributions throughout this chapter,  

 

Figure 5.4: Estimated sampling distribution of sample means based on one sample 
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Figure 5.5:The 95% confidence interval of our estimate of the sample mean (64.085 to 66.31) covers 95% of the area in the 

our estimated sampling distribution 

 

Figure 5.6: The normal distribution, and two t-distributions with different degrees of freedom 
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Testing Hypotheses 

 

Figure 6.1: The sampling distribution of our coin-flip test statistic (the number of heads) 
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Figure 6.2: The three panels, from left to right, depict the critical regions of the left ("lesser") one-tailed, two-tailed, and 

right ("greater") alternative hypotheses. The dashed horizontal line is meant to show that, for the two-tailed tests, the 

critical region starts below p=.025, because it is being split between two tails. For the one-tailed tests, the critical region is 

below the dashed horizontal line at p=.05. 

 

Figure 6.3: The sampling distribution of the t-statistic 
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Figure 6.4: The t-distribution with 69 degrees of freedom. The t-statistic of our sample is shown as the dashed line 

 

Figure 6.5: The previous figure with the critical region for non-directional hypothesis highlighted 
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Figure 6.6: figure 6.4 with directional critical region highlighted 

 

Figure 6.7: Boxplot of the miles per gallon ratings for automatic cars and cars with manual transmission 
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Figure 6.8: Boxplot of weight lost in week 2 of trial for three groups: control, diet, and diet & exercise 

 

Figure 6.9: A QQ-plot of the mile per gallon vector in mtcars 



7 
Bayesian Methods 

 

Figure 7.1: The likelihood function of theta for 20 out of 30 successful Bernoulli trials. 
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Figure 7.2: A flat prior on the value of theta. This beta distribution, with alpha and beta = 1 confers an equal level of 

credibility to all possible values of theta, our parameter of interest. 

 

Figure 7.3: A skeptic’s prior 
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Figure 7.4: The result of the Bayesian update of the evidence and prior #1. The interval depicts the 95% credible interval 

(the densest 95% of the area under the posterior distribution). This interval overlaps slightly with theta = 0.5. 

 

Figure 7.5: Posterior distribution of theta using prior #2 
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Figure 7.6: The posterior distributions from prior #1 and #2 
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Figure 7.7: The posterior distributions from prior #1 and #2 with more evidence 



 6 

 

Figure 7.8: The posterior distributions from prior #1 and #2 with even more evidence 
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Figure 7.9: The posterior distribution of the effectiveness of my recommendations using a uniform prior 

 

Figure 7.10: A bivariate normal distribution 
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Figure 7.11: Output plots from the MCMC results. The top is a trace plot of theta values along the chain’s length. The 
bottom is a bar plot depicting the relative credibility of different theta values. 

 

Figure 7.12: Density plot of the posterior distribution. Note that the x-axis starts here at 0.6 
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Figure 7.13: Output plots from the MCMC result of fitting a normal curve to the built-in precipitation data set. 

 

Figure 7.14: Marginal distribution of posterior for parameter ‘mu’. Dashed line shows hypothetical population mean within 
95% credible interval 
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Figure 7.15: Contour plot of the joint posterior distribution. The purple contour corresponds to the region with the highest 

probability density. 

 

Figure 7.16: Credible values for the difference in means of the gas mileage between automatic and manual cars. The 

dashed line is at a difference of zero. 

 



8 
Predicting Continuous 

Variables 

 

Figure 8.1: (left) A scatterplot of diameters and circumferences of No Scone Unturned's cookies; (right) the same plot with 

a best fit regression line plotted over the data points 
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Figure 8.2: (left) A scatterplot of areas and grams of raisins in No Scone Unturned's cookies with a best-fit regression line; 

(right) the same plot with highlighted residuals. 
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Figure 8.3: Two regression lines that do not minimize the RSS 
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Figure 8.4: The result of plotting output from lm 
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Figure 8.5: Linear models (from left to right) with �2s of 0.75, 0.33, and 0.92 

 

Figure 8.6: Four datasets with identical means, standard deviations, regression coefficients, and �2 
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Figure 8.7: The difference between linear regression fit with OLS and a robust linear regression fitted with IWLS 

 

Figure 8.8: The prediction region that is formed by a two-predictor linear model is a plane 
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Figure 8.9: The two extremes of the bias-variance tradeoff. (left) a (complicated) model with essentially zero bias (on 

training data) but enormous variance. (right) a simple model with high bias but virtually no variance 
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Figure 8.10: As model complexity/flexibility increases, training error (bias) tends to be reduced. Up to a certain point, the 

cross-validation error decreases as well. After that point, the cross-validation error starts to go up again, even as the model's 

bias continues to decrease. After this point, the model is too flexible and overfits. 
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Figure 8.11: The top two panels show the first and second relationships of Anscombe's quartet, respectively. The bottom 

two panels depict each top panel's respective residual-fitted plot 
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Figure 8.12: The first and the fourth Anscombe relationships and their respective residual-fitted plots. 
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Figure 8.13: A paradigmatic depiction of the residual-fitted plot of a regression model for which the assumption of 

homogeneity of variance is violated 



9 
Predicting Categorical 

Variables 

 

Figure 9.1: Two points on a Cartesian plane. Their Euclidean distance is 5. Their Manhattan distance is 3+4=7 
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Figure 9.2: The species classification regions of the iris data set using 1-NN. 
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Figure 9.3: The species classification regions of the iris data set using 15-NN. The boundaries between the classification 

regions are now smoother and less overfit 
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Figure 9.4: A plot illustrating test set error, cross-validated error, and training set error as a function of k in k-NN. After 

about k=15, the test and CV error doesn’t appear to change much. 
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Figure 9.5: A plot illustrating test set error, cross-validated error, and training set error and a function of k in k-NN up to 

k=200. Notice how error increases as the number of neighbors becomes too large and causes the classifier to overfit. 
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Figure 9.6: The logistic function 
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Figure 9.7: A simple and illustrative decision tree that classifies motor vehicles into either motorcycles, golf carts, and 

sedans 
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Figure 9.8: An unpruned and complex decision tree 
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Figure 9.9: A plot cross-validated misclassification error as a function of tree size. Observe that tree of size one performs 

terribly, and that the error rate steeply declines before rising slightly as the tree is overfit and large sizes 
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Figure 9.10: Simpler decision tree with the same testing set performance as the tree in Figure 9.8 
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Figure 9.11: A plot depicting the class patterns of our four illustrative and contrived data sets 
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Figure 9.12: A plot of the decision boundaries of our four classifiers on our first contrived dataset. 
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Figure 9.13: A plot of the decision boundaries of our four classifiers on our second contrived dataset. 
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Figure 9.14: A plot of the decision boundaries of our four classifiers on our third contrived dataset. 
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Figure 9.15: A plot of the decision boundaries of our four classifiers on our fourth contrived dataset. 
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Figure 9.16: A second-order (quadratic) logistic regression decision boundary 



10 
Sources of Data 

No pictures in this chapter 



11 
Dealing with Messy Data 

 

Figure 11.1: The output of VIM's visual aggregation of missing data. The left plot shows the proportion on missing values 

for each column. The right plot depicts the prevalence of row-wise missing data patterns, like md.pattern 
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Figure 11.2: Multiple imputation in a nutshell 
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Figure 11.3: A subset of the trace plots produced by plotting an object returned by a mice imputation 
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Figure 11.4: Density plots of all the imputed values for mpg, drat, wt, and qsec. Each imputation has its own 

density curve in each quadrant 
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Dealing with Large Data 

 

Figure 12.1: diagram of the parallelization and the resultant reduced time to completion 
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Figure 12.2: The running times for the average-distance-between-all-airports task at different sample sizes for 1, 2, 4, 8, 

and 16 cores. For reference, the dashed line is the 4 core performance curve, the top most curve is the single core 

performance curve, and the bottom most curve is the 16 core curve. 



13 
Reproducibility and Best 

Practices 

 

Figure 13.1: RStudio's four-panel interface in Mac OS X (version 0.99.486) 
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Figure 13.2: A sample file/folder hierarchy for an R analysis project 

 

Figure 13.3: A sample file/folder hierarchy for a multiscript R analysis project 
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Figure 13.4: An excerpt from the output of Compile Notebook on our example script 
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Figure 13.5: An excerpt from the output of Knit HTML on our example R Markdown document. 


