5th Grade Math Notes Common Core

Adding \& Subtracting with UNLIKE Denominators

$$
\frac{1}{2}+\frac{2}{3}
$$

1. Find the least common multiple (LCM) by listing the multiples of each denominator in the problem. Circle the least common multiple and use it as your common denominator. (Ex: the LCM of 2 and 3 is 6 . Use 6 as your common denominator.)

2: $2,4,6$,
3: 3,6
2. Rename the fractions using the new common denominator.

$$
\frac{1}{2}=\frac{3}{6} \quad \frac{2}{3}=\frac{4}{6}
$$

3. Perform the operation \& keep the new denominator.

$$
\frac{3}{6}+\frac{4}{6}=\frac{7}{6}
$$

4. Write the answer in simplest form.

~ Draw a picture to represent the first fraction and draw a picture beneath that to represent the second fraction.
~ Draw a line where the second fraction ends and that fraction has a new denominator.
~ See how many squares on the bottom picture match the top picture and that is the new fraction.

Multiplying Fractions

~ Multiply the numerator by the numerator. ~ Multiply the denominator by the denominator.

Ex.

$$
\frac{3}{4} \times \frac{2}{6}=\frac{6}{24}
$$

*HINT: remember to simplify your answer.

$$
\text { Ex. } \frac{6}{24} \quad \frac{1}{4}
$$

Geometry Formulas
$P=$ perimeter (The distance around a figure.) $A=$ area (The measure, in square units, of the inside of a plane figure.)
$V=$ volume (The number of cubic units a space of a solid figure takes up, count the cubes needed to fill a fiqure.)

$V=1 \times w \times h$
$V=6 \times 6 \times 6$
$V=216$ in. 3
$V=$ area of the base \times height $V=B \times h$

$$
V=I \times w \times h
$$

$$
V=2 \times 2 \times 10
$$

$$
V=40 \mathrm{ft}^{3}
$$

5th Grade Math Notes Common Core

Operations With Decimals Adding Decimals:

1. Line up the decimal points and add as usual.
2. Drag the decimal straight down.

Subtracting Decimals:

1. Line up the decimal points and subtract as usual.
2. Drag the decimal point straight down.

Multiplying Decimals:

1. Multiply as usual.
2. Count the digits behind the decimals.
3. Place your decimal point in the product (answer). Make sure the product and the original problem have the same number of digits behind the decimal.

Dividing Decimals:

1. Move the decimal in the divisor so it is a whole number. Move the decimal in the dividend the same number of spaces.
2. Divide as usual.
3. In your answer, place the decimal directly above the decimal in the dividend.

Measurement

Metric System
three basic units

- gram measures weight
- meter measures length
- liter measures capacity

n 0 0 n 0 \vdots 7	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \frac{0}{0} \\ & 0 \\ & \frac{1}{c} \\ & \hline \end{aligned}$	$$				
1,000	100	10	1	0.1	0.01	0.001
$\cdots 0^{\prime}$	$r^{c^{c^{0^{\prime}}}}$	$8^{c^{0} 0^{\prime}}$	meter	$2^{8 c^{c}}$	$c^{0 e^{\text {x }}}$	产
			gram liter			

A millimeter is about how thick a dime is.
A centimeter is how wide one of your fingers is.

A kilometer is a little more than half a mile.

Measurement Conversions

12 inches $=1$ foot
3 feet = 1 yard
1,760 yard $=1$ mile
5,280 feet $=1$ mile

1 kilometer $=1,000$ meters

1 gallon = 4 quarts
1 quart $=2$ pints
1 pint $=2$ cups
1 cup $=8$ ounces
$16 \mathrm{oz} .=1 \mathrm{lb}$.
$8 \mathrm{oz} .=\frac{1}{2} \mathrm{lb}$.
$4 \mathrm{oz}=\frac{1}{4} \mathrm{lb}$.

Measurement

Gallon Land

Division Strategies Partial Quotient	Division Strategies Dealing Out
$\begin{array}{ccc} \begin{array}{c} 156 \div 5 \\ 20 \times 5=100 \\ 10 \times 5=50 \\ 1 \times 5=5 \end{array} & \begin{array}{r} 156 \\ \\ \hline \end{array} & \begin{array}{c} -100 \\ 56 \\ \hline \end{array} \\ & \begin{array}{c} -50 \\ 6 \\ \\ \hline \end{array} & 10 \\ \hline \end{array}$	$135 \div 4$
Division Strategies Breaking the Dividend into Multiples of the divisor $\begin{aligned} 80 \div 4 & =20 \\ 4 \div 4 & =1 \end{aligned} \quad 20+1=21$ $135 \div 4$ $\begin{aligned} 80 \div 4 & =20 \\ 40 \div 4 & =10 \\ 12 \div 4 & =\frac{3}{33 r_{3}} \end{aligned}$	Division Strategies Breaking Dividend Apart $\begin{array}{r} 100 \div 4=25 \\ 30 \div 4=7 r 2 \\ 5 \div 4=1 r 1 \\ \frac{43 r 3}{33} \end{array}$

5th Grade Math Notes Common Core

Comparing

$$
\begin{array}{ll}
0.207 & (2 \times 0.1)+(0 \times .01)+(7 \times 0.001) \\
0.26 & (2 \times 0.1)+(6 \times 0.1)
\end{array}
$$

The digit 6 in the hundredths place is larger than the o digit.

Adding Decimals Model

$1.25+0.40+0.75$

Subtracting Decimals with Models

$$
4-0.3
$$

5th Grade Math Notes Common Core

Multiplying Decimals

Students should be able to describe the partial products displayed by the area model.
For example,
" $3 / 10$ times $4 / 10$ is $12 / 100$.
$3 / 10$ times 2 is $6 / 10$ or $60 / 100$.
1 group of $4 / 10$ is $4 / 10$ or $40 / 100$.
1 group of 2 is 2 ."

Divide Decimals

Example of division: finding the number in each group or share.
Students should be encouraged to apply a fair sharing model separating decimal values into equal parts such as $2.4 \div 4=0.6$

Example of division: finding the number of groups.
Students could draw a segment to represent 1.6 meters. In doing so, s/he would count in tenths to identify the 6 tenths, and be able identify the number of 2 tenths within the 6 tenths. The student can then extend the idea of counting by tenths to divide the one meter into tenths and determine that there are 5 more groups of 2 tenths.

5th Grade Math Notes Common Core

(3×2) represented by first layer
$(3 \times 2) \times 5$ represented by number of

Students will extend their work with the area of composite figures into the context of volume. Students will break apart (decompose) 3-dimensional figures into right rectangular prisms in order to find the volume of the entire 3-dimensional figure.

decomposed figure

5th Grade Math Notes Common Core

Multiplying Fractions Models

$$
\begin{aligned}
& \frac{\frac{4}{5}}{\frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5}} \\
& \frac{2}{3} \times \frac{4}{5}
\end{aligned}
$$

$\frac{2}{3} \times 7$ is less than 7 because 7 is multiplied by a factor less than 1 so the product must be less than 7.

