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1;ICORPORATION OF THE WESTINGHOUSE MODEL FOR UPPER PLENUM
’ IHJECTION I THE 1981 EVALUATION HODEL WREFLOOD CODE

1. INTRODUCTION.

The original design of tlestinghouse two-1lo0p plants included both
high head ECC injection into the hot legs and high or low head
injection into the cold legs, so that no single failure could
defeat the ECC injection. Later, the hot leg injection was
deleted and lines were re-routed to direct low head injection flow
into the upper plenum, due to the possibility that steam generated
in the core might entrain ECC water injected into the hot leg.

The Westinghouse ECCS -evaluation model for two-loop plants
equipped with UPI originally assumed that water injected into the
upper plenum did not interact with steam and entrained water
rising from the core; the UPI water was therefore modeled as if
delivered through a cold leg injection location. A more elaborate
‘model for upper plenum injection has been described in the letter
NS-TMA-2172 (Reference 1), which forms the basis for the results
reported here.
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' 2. SUMMARY OF MODEL.

escribed in the letter NS-TMA-2172 account for the following

.'Ijhe model and associated FORTRAN coding for upper plenum injection

'physical phenomena:

Vietal-water heat transfer in the upper plenum,
Core heat transfer and steam generation,
Steam condensation,

Entrzinment (horizontal and vertical).

The metal heat release to UPI water from the upper plenum metal
structures is calculated using a lumped thermal capacitance model
for the metal structures. :

The core heat transfer model assunes that the core is divided into

~ two distinct regions, one region covered uniformly by UPI water

and the other having no contact with UPI water. In the region
covered by UPI water, the heat transfer is calculated based on
decay heat removal above the top quench front, and decay heat plus
stored energy removal in the unquenched portion of the core. The
standard WREFLOOD heat transfer calculations are performed for the
region of the core not covered by UPI water.

The steam generation rate from bottom reflood is calculated by
adding the core heat release in the non=UPI region to the’
carryover from bottom reflood. :

If any subcooling remains in the UPI water after core heat is
added, it is used to condense steam. generated from the water
entering through the bottom of the core. Water falling into the
core consists of steam condensed, plus any water entrained by this
steam. The amount of condensation is limited to the total bottom
steam flow in the UPI covered region, i.e., the UPI water is
assuned not to interact with bottom steam in the region of the
core not covered by UPI water.

The amount of water entrained vertically by the steam generated
from the UPI water is calculated using a correlation based on the
injection flow and steam generation rate; horizontal entrainment
is assumed to be a constant 1.67 percent of the injected flow. The
total steam generation due to upper plenum injection consists of
steam generation due to UPI water-core interaction plus vertical
and horizontal entraimment.

The UPI water which is not lost due to steam generation or
entrainment is assumed to fall directly to the lower plenum.

A more detailed discussion of the UPI model utilized in this
analysis is presented in Reference 1.
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) '3, 'SUIMARY OF RESULTS.

The Yestinghouse upper plenun injection (UPI) model and FORTRAN
coding described in letter NS-THMA-2172 (Reference 1) was '

'.:lncorporated in the 1981 Model version of the VJREFLOOD code
(References 2 and 3). This UPI model is intrinsically based on
the mass and energy core model described in the same letter. The
results reported here are also based on the 1981 lodel Version
COCO, SATAN and LOCTA codes (References 2, 4, 5 and 6).

The 1981 evaluation model modified in this manner for upper plenum
injection was used to analyze the effects of UPI on the 0.4 DECLG
LOCA blowdown transient for Point Beach Unit 1. Only the 0.4 CD
break results are considered since this case has historically been
limiting for two-loop plants and since the discharge coefficient
should not greatly influence the comparison of upper plenum
injection results with standard results.

3.1 Base case and non-UPI.

The results of this analysis for the base case (upper plenum
coverage of 30%) are shown in Tables 1-3 and Figures 1-12. A

- comparison of these results with those of the 1981 ECCS model
(unmodified for upper plenum injection) for the same conditions
(shown in Tables 1-3 and Figures 1-12),. shows that the UPI version
predicts a considerable benefit in flooding rate. Despite a 1.63

. second penalty in the UPI case BOC time due.to the assumption in

. the model of not adding top-injected water to the lower plenum

during refill, the 1981 Model version with the UPI modeled
predicts a 151 F benefit in PCT in comparison with results of the
non-UPI case.

3.2 Coverage sensitivities.

The NS-THA-2172 model was also run for core coverages of 50%, 70%
and 100% to determine the sensitivity of the model to core
coverage. These results, shown in Tables 4-5 and Figures 13-19,
predict an increase in PCT with increasing core coverage. Both
the 50% and T0% core coverage casesS still show a benefit in
calculated PCT in comparison with the non-UPI case (146F and 60F
benefits, respectively), while the 1009 coverage case shows a 130F
penalty. ’
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4. CONCLUSIONS

e NS-THA=2172 model for upper plenum injection provides a
benefit in calculated flooding rate and PCT when analyzing a
minimum safeguards condition with 30% core coverage. In modeling
UPI an important peneficial effect is the calculation of steam
condensation, while a flooding rate penalty is the result of
calculated stean generation. Steam generation is predominant
during the early part of the transient; as the core cools, the UPI
water subcooling is available to condense steam and steam
condensation becomes more influential during the latter part -of
the transient. Increasing the core coverage accentuates the
effect of steam generation and hence produces lower average
flooding rates. NS-TMA-2172 concluded on the basis of test
results that 30% coverage is an upper bound for core coverage.
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. TABLE 1

TIVE SEQUENCE OF EVENTS -- DECLG CD = 0.4

A ?I. hon- UV

Start | 0.0 o.0

Rx trip signal 0. 420 0.420
VS._I. signal O. §l 0.21

Acc. injection .57 J. 57

.End of bypass 20-3 20-3

End of blowdown 23.3 | | 23.3

Pump injection 25.41 25.81
Bottom of core recov.ery (BdC) §40. 258 38.63

Acc. empty 55. 9 5. 7




TABLE 2

'CLADDING PARAMETERS

Ut now- A YT
Peak clad temp, F _ | 51 3‘7 /738
PCT location, ft o 7.25 T.5
Local Zr/H20 reaction (max), 7 - [«510 3.503
Location of max reaction, ft T.25 7.5
Total erj/H20 feaction,- % . <_O°'3 <o.3
Hot rod burst time, secv ' ~ | 49.6 . 55.6
Hot rod burét location, ft 6.0 6.0




TABLE 3

CALCULATION ASSUMPTIONS

11SSS power, IMit, 102% of 1518. 5
Pezk linear power, kw/ft, 10é€3 of : /12 . 60
Peaking factor 221
Acc. water volume, per tank, cubic feet | (/OO
Ace. pressure, psia i feYeo)
Number of SI trains operating ﬁ_
Steam generator tube plugging ] & 70




- TABLE 4

TIME SEQUENCE OF EVENTS — DECLG CD = 0.4

. | 5070 coverage 70 o /100 Jo

Start 0.0 sec 0.0 0.0
Rx trip signal o.420 0.420 0« 420
S. I. signal 0.810 0.810 0.310
Acc. injection 9.5 7’ 7.5 J.57
End of bypass 20.33 20.33 20433
End of blowdown 2.3.33 23.33 " 2333
Pump injection 25.91 25.8( 25. 8!‘
Bottom of core recovery (BOC) 40..26 4 0. 26 HO. 26

 Ace. empty 55.9/ s5.90 | 5511

_/l....



TABLE 5

. CLADDING PARAMETERS

50% Gverage | 107 /100 7o
Peak clad temp, F 1792 . /1818, | 206948.
PCT location, ft 7.25 T.25 7.25
Loéal Zr/H20 reaction (max), % 1. 4T /.93 32,66
Location of max reaction, ft 6.0 6.00 7.25
Total Zr/H20 reaction, % 0.3 0.3 £0.3
Hot rod burst time, sec 47.20 49,20 49.20
Hot rod burst location, ft é.00 6.00 6.00

=73
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