
Chapter 6: Multimedia Networking

In this chapter we consider networking applications whose data contains audio
and video content. We refer to these applications as multimedia networking
applications. Multimedia networking applications are typically highly sensitive to
delay but are loss tolerant. After surveying and classifying different types of
multimedia applications, we examine their deployment in a best-effort network,
such as today’s Internet. We explore how a combination of client buffers, packet
sequence numbers and timestamps can greatly alleviate the effects of network
induced delay and jitter. We also study how forward error correction and packet
interleaving can improve user perceived performance when a fraction of packets
are lost or significantly delayed. We examine the RTP and H.323 protocols for
real-time telephony and video conferencing in the Internet. We then look at how
the Internet can evolve to provide improved QoS (Quality of Service) to its
applications. We identify several principles for providing QoS, including packet
marking and classification, isolation of packet flows, efficient use of resources,
and call admission. We survey several scheduling and policing mechanisms that
provide the foundation of a QoS network architecture. We then discuss new
Internet standards for QoS, including the Integrated Services and the
Differentiated Services standards.

Online Book

6.1: Multimedia Networking Applications
Having completed our journey down the protocol stack in Chapter 5, we
now have a strong grounding in the principles and practice of computer
networking. This foundation will serve us well as we turn in this chapter to a
topic that cuts across many layers of the protocol stack: multimedia
networking.

The last few years have witnessed an explosive growth in the development
and deployment of networked applications that transmit and receive audio
and video content over the Internet. New multimedia networking
applications (also referred to as continuous media applications)--
entertainment video, IP telephony, Internet radio, multimedia WWW sites,
teleconferencing, interactive games, virtual worlds, distance learning, and
much more--seem to be announced daily. The service requirements of
these applications differ significantly from those of traditional data-oriented
applications such as the Web text/image, e-mail, FTP, and DNS
applications that we examined in Chapter 2. In particular, multimedia
applications are highly sensitive to end-to-end delay and delay variation,
but can tolerate occasional loss of data. These fundamentally different
service requirements suggest that a network architecture that has been
designed primarily for data communication may not be well suited for
supporting multimedia applications. Indeed, we’ll see in this chapter that a

number of efforts are currently underway to extend the Internet architecture
to provide explicit support for the service requirements of these new
multimedia applications.

We’ll begin our study of multimedia networking in a top-down manner (of
course!) by describing several multimedia applications and their service
requirements in Section 6.1. In Section 6.2, we look at how today’s Web
servers stream audio and video over the Internet to clients. In Section 6.3
we examine a specific multimedia application, Internet telephony, in detail,
with the goal of illustrating some of the difficulties encountered (and
solutions developed) when applications must necessarily use today’s best-
effort Internet transport service. In Section 6.4 we describe the RTP
protocol, an emerging application-layer standard for framing and controlling
the transmission of multimedia data.

In the second half of this chapter we turn our attention toward the future
and towards the lower layers of the protocol stack, where we examine
recent advances aimed at developing a next-generation network
architecture that provides explicit support for the service requirements of
multimedia applications. We’ll see that rather than providing only a single
best-effort service class, these future architectures will also include service
classes that provide quality-of-service (QoS) performance guarantees to
multimedia applications. In Section 6.5 we identify key principles that will lie
at the foundation of this next generation architecture. In Section 6.6 we
examine specific packet-level scheduling and policing mechanisms that will
be important pieces of this future architecture. Sections 6.7 and 6.9
introduce the so-called Intserv and Diffserv architectures, emerging Internet
standards for the next generation QoS-sensitive Internet. In Section 6.8, we
examine RSVP, a signaling protocol that plays a key role in both Intserv
and Diffserv.

In our discussion in Chapter 2 of application service requirements, we
identified a number of axes along which these requirements can be
classified. Two of these characteristics--timing considerations and tolerance
to data loss--are particularly important for networked multimedia
applications. Multimedia applications are highly delay sensitive. We will
see shortly that packets that incur a sender-to-receiver delay of more than a
few hundred milliseconds (for Internet telephony) to a few seconds (for
streaming of stored multimedia) are essentially useless. On the other hand,
multimedia networking applications are also typically loss tolerant--
occasional loss only causes occasional glitches in the audio/video
playback, and these losses can be often partially or fully concealed. These
service requirements are clearly different from those of elastic applications
such as Web text/image, e-mail, FTP, and Telnet. For these applications,
long delays are annoying but not particularly harmful, and the integrity of
transferred data is of paramount importance.

6.1.1: Examples of Multimedia Applications
The Internet carries a large variety of exciting multimedia applications. In
the following sections, we consider three broad classes of multimedia
applications.
Streaming, Stored Audio and Video
In this class of applications, clients request on-demand compressed audio
or video files that are stored on servers. Stored audio files might contain
audio from a professor’s lecture (you are urged to visit the Web site for this
book to try this out!), rock songs, symphonies, archives of famous radio
broadcasts, or archived historical recordings. Stored video files might
contain video of a professor’s lecture, full-length movies, prerecorded
television shows, documentaries, video archives of historical events,
cartoons, or music video clips. There are three key distinguishing features
of this class of applications.

• Stored media. The multimedia content has been prerecorded and is
stored at the server. As a result, a user may pause, rewind, fast-
forward or index through the multimedia content. The time from
when a client makes such a request until the action manifests itself
at the client should be on the order of 1 to 10 seconds for acceptable
responsiveness.

• Streaming. In most stored audio/video applications, a client begins
playout of the audio/video a few seconds after it begins receiving the
file from the server. This means that the client will be playing out
audio/video from one location in the file while it is receiving later
parts of the file from the server. This technique, known as
streaming, avoids having to download the entire file (and incurring a
potentially long delay) before beginning playout. There are many
streaming multimedia products, including RealPlayer from
RealNetworks [RealNetworks 2000] and Microsoft’s Windows Media
[Microsoft Windows Media 2000]. There are also applications such
as Napster [Napster 2000], however, that require an entire audio file
to be downloaded before playout begins.

• Continuous playout. Once playout of the multimedia begins, it should
proceed according to the original timing of the recording. This places
critical delay constraints on data delivery. Data must be received
from the server in time for its playout at the client; otherwise, it is
considered useless. In Section 6.3, we’ll consider the consequences
of this requirement in detail. The end-to-end delay constraints for
streaming, stored media are typically less stringent than those for
live, interactive applications such as Internet telephony and video
conferencing (see below).

Real Networks: Bringing Audio to the Internet Foreground
RealNetworks, pioneers in streaming audio and video products, was the first company to
bring audio to the Internet mainstream. The company began under the name Progressive
Networks in 1995. Its initial product--the RealAudio system-- included an audio encoder, an
audio server, and an audio player. The RealAudio system enabled users to browse, select
and play back audio content on demand, as easily as using a standard video cassette
player/recorder. It quickly became popular for providers of entertainment, information, and
news content to deliver audio on demand services that can be accessed and played back
immediately. In early 1997, RealNetworks expanded its product line to include video as
well as audio. RealNetwork products currently incorporate RTP and RTSP protocols.

Over the past few years, RealNetworks has seen tough competition from Microsoft (which also has minority ownership of
RealNetworks). In 1997 Microsoft began to market its own streaming media products, essentially setting the stage for a
"media-player war," similar to the browser war between Netscape and Microsoft. But RealNetworks and Microsoft have
diverged on some of the underlying technology choices in their players. Waging the tug of war in the marketplace and in
Internet standards groups, both companies are seeking to have their own formats and protocols become the standard for
the Internet.

Streaming of Live Audio and Video
This class of application is similar to traditional broadcast radio and
television, except that transmission takes place over the Internet. These
applications allow a user to receive a live radio or television transmission
emitted from any corner of the world. (For example, one of the authors of
this book often listens to his favorite Philadelphia radio stations from his
home in France. The other author regularly listened to live broadcasts of his
university’s beloved basketball team while he was living in France for a
year.) See [Yahoo!Broadcast 2000] and [NetRadio 2000] for Internet radio
station guides.
Since streaming live audio/video is not stored, a client cannot fast forward
through the media. However, with local storage of received data, other
interactive operations such as pausing and rewinding though live
multimedia transmissions are possible in some applications. Live,
broadcast-like applications often have many clients who are receiving the
same audio/video program. Distribution of live audio/ video to many
receivers can be efficiently accomplished using the multicasting techniques
we studied in Section 4.8. At the time of the writing of this book, however,
this type of distribution is more often accomplished through multiple
separate unicast streams. As with streaming stored multimedia, continuous
playout is required, although the timing constraints are less stringent than
for live interactive applications. Delays of up to tens of seconds from when
the user requests the delivery/playout of a live transmission to when playout
begins can be tolerated.

Voice over the Internet
Given the worldwide popularity of the telephone system, since the late 1980s many
Internet visionaries have repeatedly predicted that the next Internet killer application would
be some sort of voice application. These predictions were accompanied with Internet

telephony research and product development. For example, researchers created Internet
phone prototypes in the 1980s, years before the Web was popularized. And numerous
startups produced PC-to-PC Internet phone products throughout the 1990s. But none of
these prototypes or products really caught on with mainstream Internet users (even though
some were bundled with popular browsers). Not until 1999 did voice communication begin
to get popularized in the Internet.

Three classes of voice communication applications began to see significant usage in the late 1990s. The first class is the
PC-to-phone applications, which allow an Internet user with an Internet connection and a microphone to call any ordinary
telephone. Two companies active in the PC-to-phone space are Net2Phone [Net2Phone 2000] and Dialpad [Dialpad
2000]. These PC-to-phone services tend to be free and hence enormously popular with people who love to talk but are
on a budget. (Dialpad, which launched in October 1999, claims to have attracted over 3 million users in less than three
months). The second class of applications consists of the voice chat applications, for which many companies currently
provide products, including Hearme [Hearme 2000], Firetalk [Firetalk 2000], and Lipstream [Lipstream 2000]. These
products allow the members in a chat room to converse with their voices, although only one person can talk at a time.
The third class of applications is that of asynchronous voice applications, including voice e-mail and voice message
boards. These applications allow voice messages to be archived and browsed. Some of the companies in this last space
include Wimba [Wimba 2000], Onebox [Onebox 2000], and RocketTalk [RocketTalk 2000].

Real-time Interactive Audio and Video
This class of applications allows people to use audio/video to communicate
with each other in real time. Real-time interactive audio is often referred to
as Internet phone, since, from the user’s perspective, it is similar to
traditional circuit-switched telephone service. Internet phone can potentially
provide PBX, local, and long-distance telephone service at very low cost. It
can also facilitate computer-telephone integration (CTI), group real-time
communication, directory services, caller identification, caller filtering, and
more. There are many Internet telephone products currently available. With
real-time interactive video, also called video con ferencing, individuals
communicate visually as well as orally. There are also many real-time
interactive video products currently available for the Internet, including
Microsoft’s NetMeeting. Note that in a real-time interactive audio/video
application, a user can speak or move at anytime. For a conversation with
interaction among multiple speakers, the delay from when a user speaks or
moves until the action is manifested at the receiving hosts should be less
than a few hundred milliseconds. For voice, delays smaller than 150
milliseconds are not perceived by a human listener, delays between 150
and 400 milliseconds can be acceptable, and delays exceeding 400
milliseconds can result in frustrating, if not completely unintelligible, voice
conversations.

6.1.2: Hurdles for Multimedia in Today’s Internet
Recall from Chapter 4 that today’s Internet’s network-layer protocol
provides a best-effort service to all the datagrams it carries. In other
words, the Internet makes its best effort to move each datagram from
sender to receiver as quickly as possible. However, best-effort service does
not make any promises whatsoever about the end-to-end delay for an
individual packet. Nor does the service make any promises about the
variation of packet delay within a packet stream. As we learned in Chapter
3, because TCP and UDP run over IP, neither of these protocols can make
any delay guarantees to invoking applications. Due to the lack of any
special effort to deliver packets in a timely manner, it is an extremely

challenging problem to develop successful multimedia networking
applications for the Internet. To date, multimedia over the Internet has
achieved significant but limited success. For example, streaming stored
audio/video with user-interactivity delays of five-to-ten seconds is now
commonplace in the Internet. But during peak traffic periods, performance
may be unsatisfactory, particularly when intervening links are congested
links (such as congested transoceanic links).
Internet phone and real-time interactive video has, to date, been less
successful than streaming stored audio/video. Indeed, real-time interactive
voice and video impose rigid constraints on packet delay and packet jitter.
Packet jitter is the variability of packet delays within the same packet
stream. Real-time voice and video can work well in regions where
bandwidth is plentiful, and hence delay and jitter are minimal. But quality
can deteriorate to unacceptable levels as soon as the real-time voice or
video packet stream hits a moderately congested link.
The design of multimedia applications would certainly be more
straightforward if there were some sort of first-class and second-class
Internet services, whereby first-class packets are limited in number and
receive priority service in router queues. Such a first-class service could be
satisfactory for delay-sensitive applications. But to date, the Internet has
mostly taken an egalitarian approach to packet scheduling in router queues.
All packets receive equal service; no packets, including delay-sensitive
audio and video packets, receive special priority in the router queues. No
matter how much money you have or how important you are, you must join
the end of the line and wait your turn! In the latter half of this chapter, we’ll
examine proposed architectures that aim to remove this restriction.
So for the time being we have to live with best-effort service. But given this
constraint, we can make several design decisions and employ a few tricks
to improve the user-perceived quality of a multimedia networking
application. For example, we can send the audio and video over UDP, and
thereby circumvent TCP’s low throughput when TCP enters its slow-start
phase. We can delay playback at the receiver by 100 msecs or more in
order to diminish the effects of network-induced jitter. We can timestamp
packets at the sender so that the receiver knows when the packets should
be played back. For stored audio/video we can prefetch data during
playback when client storage and extra bandwidth is available. We can
even send redundant information in order to mitigate the effects of network-
induced packet loss. We’ll investigate many of these techniques in the rest
of the first half of this chapter.

6.1.3: How Should the Internet Evolve to Better Support
Multimedia?
Today there is a tremendous--and sometimes ferocious--debate about how
the Internet should evolve in order to better accommodate multimedia traffic
with its rigid timing constraints. At one extreme, some researchers argue
that it isn’t necessary to make any fundamental changes to best-effort

service and the underlying Internet protocols. Instead, they argue that it is
only necessary to add more bandwidth to the links (along with network
caching for stored information and multicast support for one-to-many real-
time streaming). Opponents of this viewpoint argue that additional
bandwidth can be costly, and that as soon as it is put in place it will be
eaten up by new bandwidth-hungry applications (for example, high-
definition video on demand).
At the other extreme, some researchers argue that fundamental changes
should be made to the Internet so that applications can explicitly reserve
end-to-end bandwidth. These researchers feel, for example, that if a user
wants to make an Internet phone call from host A to host B, then the user’s
Internet phone application should be able to explicitly reserve bandwidth in
each link along a route from host A to host B. But allowing applications to
make reservations and requiring the network to honor the reservations
requires some big changes. First we need a protocol that, on the behalf of
applications, reserves bandwidth from the senders to their receivers.
Second, we must modify scheduling policies in the router queues so that
bandwidth reservations can be honored. With these new scheduling
policies, not all packets get equal treatment; instead, those that reserve
(and pay) more get more. Third, in order to honor reservations, the
applications must give the network a description of the traffic that they
intend to send into the network. The network must then police each
application’s traffic to make sure that it abides by the description. Finally,
the network must have a means of determining whether it has sufficient
available bandwidth to support any new reservation request. These
mechanisms, when combined, require new and complex software in the
hosts and routers as well as new types of services. We’ll look into these
mechanisms in more detail, when we examine the so-called Intserv model
in Section 6.7.
There is a camp between the two extremes--the so-called differentiated ser
vices camp. This camp wants to make relatively small changes at the
network and transport layers, and introduce simple pricing and policing
schemes at the edge of the network (that is, at the interface between the
user and the user’s ISP). The idea is to introduce a small number of classes
(possibly just two classes), assign each datagram to one of the classes,
give datagrams different levels of service according to their class in the
router queues, and charge users according to the class of packets that they
are sending into the network. We will cover differentiated services in
Section 6.9.

6.1.4: Audio and Video Compression
Before audio and video can be transmitted over a computer network, it
must be digitized and compressed. The need for digitization is obvious:
Computer networks transmit bits, so all transmitted information must be
represented as a sequence of bits. Compression is important because
uncompressed audio and video consume a tremendous amount of storage
and bandwidth; removing the inherent redundancies in digitized audio and

video signals can reduce the amount of data that needs to be stored and
transmitted by orders of magnitude. As an example, a single image
consisting of 1024 pixels x 1024 pixels with each pixel encoded into 24 bits
requires 3 MB of storage without compression. It would take seven minutes
to send this image over a 64 Kbps link. If the image is compressed at a
modest 10:1 compression ratio, the storage requirement is reduced to 300
KB and the transmission time also drops by a factor of 10.
The fields of audio and video compression are vast. They have been active
areas of research for more than 50 years, and there are now literally
hundreds of popular techniques and standards for both audio and video
compression. Most universities offer entire courses on audio and video
compression, and often offer a separate course on audio compression and
a separate course on video compression. We therefore provide here a brief
and high-level introduction to the subject.
Audio Compression in the Internet
A continuously varying analog audio signal (which could emanate from
speech or music) is normally converted to a digital signal as follows:

1. The analog audio signal is first sampled at some fixed rate, for
example, at 8,000 samples per second. The value of each sample is
an arbitrary real number.

2. Each of the samples is then "rounded" to one of a finite number of
values. This operation is referred to as "quantization." The number of
finite values--called quantization values--is typically a power of 2, for
example, 256 quantization values.

3. Each of the quantization values is represented by a fixed number of
bits. For example, if there are 256 quantization values, then each
value--and hence each sample--is represented by 1 byte. Each of
the samples is converted to its bit representation. The bit
representations of all the samples are concatenated together to form
the digital representation of the signal.

As an example, if an analog audio signal is sampled at 8,000 samples per
second and each sample is quantized and represented by 8 bits, then the
resulting digital signal will have a rate of 64,000 bits per second. This digital
signal can then be converted back--that is, decoded--to an analog signal for
playback. However, the decoded analog signal is typically different from the
original audio signal. By increasing the sampling rate and the number of
quantization values, the decoded signal can approximate (and even be
exactly equal to) the original analog signal. Thus, there is a clear tradeoff
between the quality of the decoded signal and the storage and bandwidth
requirements of the digital signal.
The basic encoding technique that we just described is called pulse code
modulation (PCM). Speech encoding often uses PCM, with a sampling
rate of 8,000 samples per second and 8 bits per sample, giving a rate of 64
Kbps. The audio compact disk (CD) also uses PCM, with a sampling rate of

44,100 samples per second with 16 bits per sample; this gives a rate of
705.6 Kbps for mono and 1.411 Mbps for stereo.
A bit rate of 1.411 Mbps for stereo music exceeds most access rates, and
even 64 Kbps for speech exceeds the access rate for a dial-up modem
user. For these reasons, PCM-encoded speech and music are rarely used
in the Internet. Instead compression techniques are used to reduce the bit
rates of the stream. Popular compression techniques for speech include
GSM (13 Kbps), G.729 (8 Kbps), and G.723.3 (both 6.4 and 5.3 Kbps), and
also a large number of proprietary techniques, including those used by
RealNetworks. A popular compression technique for near CD-quality stereo
music is MPEG layer 3, more commonly known as MP3. MP3 compresses
the bit rate for music to 128 or 112 Kbps, and produces very little sound
degradation. When an MP3 file is broken up into pieces, each piece is still
playable. This headerless file format allows MP3 music files to be streamed
across the Internet (assuming the playback bit rate and speed of the
Internet connection are compatible). The MP3 compression standard is
complex, using psychoacoustic masking, redundancy reduction, and bit
reservoir buffering.
Video Compression in the Internet
A video is a sequence of images, with images typically being displayed at a
constant rate, for example at 24 or 30 images per second. An
uncompressed, digitally encoded image consists of an array of pixels, with
each pixel encoded into a number of bits to represent luminance and color.
There are two types of redundancy in video, both of which can be exploited
for compression. Spatial redundancy is the redundancy within a given
image. For example, an image that consists of mostly white space can be
efficiently compressed. Temporal redundancy reflects repetition from image
to subsequent image. If, for example, an image and the subsequent image
are exactly the same, there is no reason to re-encode the subsequent
image; it is more efficient to simply indicate during encoding that the
subsequent image is exactly the same.
The MPEG compression standards are among the most popular
compression techniques. These include MPEG 1 for CD-ROM quality video
(1.5 Mbps), MPEG 2 for high-quality DVD video (3-6 Mbps), and MPEG 4
for object-oriented video compression. The MPEG standard draws heavily
from the JPEG standard for image compression. The H.261 video
compression standards are also very popular in the Internet. There are also
numerous proprietary standards.
Readers interested in learning more about audio and video encoding are
encouraged to see [Rao 1996] and [Solari 1997]. A good book on
multimedia networking in general is [Crowcroft 1999].

Online Book

6.2: Streaming Stored Audio and Video
In recent years, audio/video streaming has become a popular application
and a major consumer of network bandwidth. This trend is likely to continue
for several reasons. First, the cost of disk storage is decreasing rapidly,
even faster than processing and bandwidth costs. Cheap storage will lead
to a significant increase in the amount of stored audio/video in the Internet.
For example, shared MP3 audio files of rock music via [Napster 2000] has
become incredibly popular among college and high school students.
Second, improvements in Internet infrastructure, such as high-speed
residential access (that is, cable modems and ADSL, as discussed in
Chapter 1), network caching of video (see Section 2.2), and new QoS-
oriented Internet protocols (see Sections 6.5-6.9) will greatly facilitate the
distribution of stored audio and video. And third, there is an enormous pent-
up demand for high-quality video streaming, an application that combines
two existing killer communication technologies--television and the on-
demand Web.

In audio/video streaming, clients request compressed audio/video files that
are resident on servers. As we’ll discuss in this section, these servers can
be "ordinary" Web servers, or can be special streaming servers tailored for
the audio/video streaming application. Upon client request, the server
directs an audio/video file to the client by sending the file into a socket. Both
TCP and UDP socket connections are used in practice. Before sending the
audio/video file into the network, the file is segmented, and the segments
are typically encapsulated with special headers appropriate for audio/video
traffic. The Real-time protocol (RTP), discussed in Section 6.4, is a public-
domain standard for encapsulating such segments. Once the client begins
to receive the requested audio/video file, the client begins to render the file
(typically) within a few seconds. Most existing products also provide for
user interactivity, for example, pause/resume and temporal jumps within the
audio/video file. This user interactivity also requires a protocol for
client/server interaction. Real-time streaming protocol (RTSP), discussed
at the end of this section, is a public-domain protocol for providing user
interactivity.

Audio/video streaming is often requested by users through a Web client
(that is, browser). But because audio/video playout is not integrated directly
in today’s Web clients, a separate helper application is required for
playing out the audio/video. The helper application is often called a media
player, the most popular of which are currently RealNetworks’ Real Player
and the Microsoft Windows Media Player. The media player performs
several functions, including:

• Decompression. Audio/video is almost always compressed to save
disk storage and network bandwidth. A media player must

decompress the audio/video on the fly during playout.

• Jitter removal. Packet jitter is the variability of source-to-destination
delays of packets within the same packet stream. Since audio and
video must be played out with the same timing with which it was
recorded, a receiver will buffer received packets for a short period of
time to remove this jitter. We’ll examine this topic in detail in Section
6.3.

• Error correction. Due to unpredictable congestion in the Internet, a
fraction of packets in the packet stream can be lost. If this fraction
becomes too large, user-perceived audio/video quality becomes
unacceptable. To this end, many streaming systems attempt to
recover from losses by either (1) reconstructing lost packets through
the transmission of redundant packets, (2) by having the client
explicitly request retransmissions of lost packets, (3) masking loss by
interpolating the missing data from the received data.

• Graphical user interface with control knobs. This is the actual
interface that the user interacts with. It typically includes volume
controls, pause/resume buttons, sliders for making temporal jumps in
the audio/video stream, and so on.

Plug-ins may be used to embed the user interface of the media player
within the window of the Web browser. For such embeddings, the browser
reserves screen space on the current Web page, and it is up to the media
player to manage the screen space. But either appearing in a separate
window or within the browser window (as a plug-in), the media player is a
program that is being executed separately from the browser.

6.2.1: Accessing Audio and Video from a Web Server
Stored audio/video can reside either on a Web server that delivers the
audio/video to the client over HTTP, or on an audio/video streaming server
that delivers the audio/video over non-HTTP protocols (protocols that can
be either proprietary or open standards). In this subsection, we examine
delivery of audio/video from a Web server; in the next subsection, we
examine delivery from a streaming server.
Consider first the case of audio streaming. When an audio file resides on a
Web server, the audio file is an ordinary object in the server’s file system,
just as are HTML and JPEG files. When a user wants to hear the audio file,
the user’s host establishes a TCP connection with the Web server and
sends an HTTP request for the object (see Section 2.2). Upon receiving a
request, the Web server bundles the audio file in an HTTP response
message and sends the response message back into the TCP connection.
The case of video can be a little more tricky, because the audio and video
parts of the "video" may be stored in two different files, that is, they may be
two different objects in the Web server’s file system. In this case, two
separate HTTP requests are sent to the server (over two separate TCP

connections for HTTP/1.0), and the audio and video files arrive at the client
in parallel. It is up to the client to manage the synchronization of the two
streams. It is also possible that the audio and video are interleaved in the
same file, so that only one object need be sent to the client. To keep our
discussion simple, for the case of "video" we assume that the audio and
video are contained in one file.
A naive architecture for audio/video streaming is shown in Figure 6.1. In
this architecture:

Figure 6.1: A naive implementation for audio streaming

1. The browser process establishes a TCP connection with the Web
server and requests the audio/video file with an HTTP request
message.

2. The Web server sends to the browser the audio/video file in an
HTTP response message.

3. The content-type header line in the HTTP response message
indicates a specific audio/video encoding. The client browser
examines the content-type of the response message, launches the
associated media player, and passes the file to the media player.

4. The media player then renders the audio/video file.

Although this approach is very simple, it has a major drawback: The media
player (that is, the helper application) must interact with the server through
the intermediary of a Web browser. This can lead to many problems. In
particular, when the browser is an intermediary, the entire object must be
downloaded before the browser passes the object to a helper application.
The resulting delay before playout can begin is typically unacceptable for
audio/video clips of moderate length. For this reason, audio/video
streaming implementations typically have the server send the audio/video
file directly to the media player process. In other words, a direct socket
connection is made between the server process and the media player
process. As shown in Figure 6.2, this is typically done by making use of a
meta file, a file that provides information (for example, URL, type of

encoding) about the audio/video file that is to be streamed.

Figure 6.2: Web server sends audio/video directly to the media player
A direct TCP connection between the server and the media player is
obtained as follows:

1. The user clicks on a hyperlink for an audio/video file.

2. The hyperlink does not point directly to the audio/video file, but
instead to a meta file. The meta file contains the URL of the actual
audio/video file. The HTTP response message that encapsulates the
meta file includes a content-type header line that indicates the
specific audio/video application.

3. The client browser examines the content-type header line of the
response message, launches the associated media player, and
passes the entire body of the response message (that is, the meta
file) to the media player.

4. The media player sets up a TCP connection directly with the HTTP
server. The media player sends an HTTP request message for the
audio/video file into the TCP connection.

5. The audio/video file is sent within an HTTP response message to the
media player. The media player streams out the audio/video file.

The importance of the intermediate step of acquiring the meta file is clear.
When the browser sees the content-type for the file, it can launch the
appropriate media player, and thereby have the media player directly
contact the server.
We have just learned how a meta file can allow a media player to dialogue
directly with a Web server housing an audio/video. Yet many companies
that sell products for audio/video streaming do not recommend the
architecture we just described. This is because the architecture has the
media player communicate with the server over HTTP and hence also over
TCP. HTTP is often considered insufficiently rich to allow for satisfactory
user interaction with the server; in particular, HTTP does not easily allow a

user (through the media server) to send pause/resume, fast-forward, and
temporal jump commands to the server.

6.2.2: Sending Multimedia from a Streaming Server to a Helper
Application
In order to get around HTTP and/or TCP, audio/video can be stored on and
sent from a streaming server to the media player. This streaming server
could be a proprietary streaming server, such as those marketed by
RealNetworks and Microsoft, or could be a public-domain streaming server.
With a streaming server, audio/video can be sent over UDP (rather than
TCP) using application-layer protocols that may be better tailored than
HTTP to audio/video streaming.
This architecture requires two servers, as shown in Figure 6.3. One server,
the HTTP server, serves Web pages (including meta files). The second
server, the streaming server, serves the audio/video files. The two servers
can run on the same end system or on two distinct end systems. The steps
for this architecture are similar to those described in the previous
architecture. However, now the media player requests the file from a
streaming server rather than from a Web server, and now the media player
and streaming server can interact using their own protocols. These
protocols can allow for rich user interaction with the audio/video stream.

Figure 6.3: Streaming from a streaming server to a media player
In the architecture of Figure 6.3, there are many options for delivering the
audio/ video from the streaming server to the media player. A partial list of
the options is given below:

1. The audio/video is sent over UDP at a constant rate equal to the
drain rate at the receiver (which is the encoded rate of the
audio/video). For example, if the audio is compressed using GSM at
a rate of 13 Kbps, then the server clocks out the compressed audio
file at 13 Kbps. As soon as the client receives compressed
audio/video from the network, it decompresses the audio/video and
plays it back.

2. This is the same as option 1, but the media player delays playout for

2-5 seconds in order to eliminate network-induced jitter. The client
accomplishes this task by placing the compressed media that it
receives from the network into a client buffer, as shown in Figure
6.4. Once the client has "prefetched" a few seconds of the media, it
begins to drain the buffer. For this, and the previous option, the fill
rate x(t) is equal to the drain rate d, except when there is packet
loss, in which case x(t) is momentarily less than d.

Figure 6.4: Client buffer being filled at rate x(t) and drained at rate d

3. The media is sent over TCP. The server pushes the media file into
the TCP socket as quickly as it can; the client (i.e., media player)
reads from the TCP socket as quickly as it can, and places the
compressed video into the media player buffer. After an initial 2-5
second delay, the media player reads from its buffer at a rate d and
forwards the compressed media to decompression and playback.
Because TCP retransmits lost packets, it has the potential to provide
better sound quality than UDP. On the other hand, the fill rate x(t)
now fluctuates with time due to TCP congestion control and window
flow control. In fact, after packet loss, TCP congestion control may
reduce the instantaneous rate to less than d for long periods of time.
This can empty the client buffer and introduce undesirable pauses
into the output of the audio/video stream at the client.

For the third option, the behavior of x(t) will very much depend on the
size of the client buffer (which is not to be confused with the TCP
receive buffer). If this buffer is large enough to hold all of the media
file (possibly within disk storage), then TCP will make use of all the
instantaneous bandwidth available to the connection, so that x(t) can
become much larger than d. If x(t) becomes much larger than d for
long periods of time, then a large portion of media is prefetched into
the client, and subsequent client starvation is unlikely. If, on the other
hand, the client buffer is small, then x(t) will fluctuate around the
drain rate d. Risk of client starvation is much larger in this case.

6.2.3: Real-Time Streaming Protocol (RTSP)

Many Internet multimedia users (particularly those who grew up with a
remote TV control in hand) will want to control the playback of continuous
media by pausing playback, repositioning playback to a future or past point
of time, visual fast-forwarding playback, visual rewinding playback, and so
on. This functionality is similar to what a user has with a VCR when
watching a video cassette or with a CD player when listening to a music
CD. To allow a user to control playback, the media player and server need
a protocol for exchanging playback control information. RTSP, defined in
RFC 2326, is such a protocol.
But before getting into the details of RTSP, let us first indicate what RTSP
does not do:

• RTSP does not define compression schemes for audio and video.

• RTSP does not define how audio and video is encapsulated in
packets for transmission over a network; encapsulation for streaming
media can be provided by RTP or by a proprietary protocol. (RTP is
discussed in Section 6.4.) For example, RealMedia’s G2 server and
player use RTSP to send control information to each other. But the
media stream itself can be encapsulated in RTP packets or in some
proprietary data format.

• RTSP does not restrict how streamed media is transported; it can be
transported over UDP or TCP.

• RTSP does not restrict how the media player buffers the audio/video.
The audio/video can be played out as soon as it begins to arrive at
the client, it can be played out after a delay of a few seconds, or it
can be downloaded in its entirety before playout.

So if RTSP doesn’t do any of the above, what does RTSP do? RTSP is a
protocol that allows a media player to control the transmission of a media
stream. As mentioned above, control actions include pause/resume,
repositioning of playback, fast forward and rewind. RTSP is a so-called out-
of-band protocol. In particular, the RTSP messages are sent out-of-band,
whereas the media stream, whose packet structure is not defined by RTSP,
is considered "in-band." RTSP messages use a different port number, 544,
than the media stream. The RTSP specification [RFC 2326] permits RTSP
messages to be sent over either TCP or UDP.
Recall from Section 2.3, that file transfer protocol (FTP) also uses the out-
of-band notion. In particular, FTP uses two client/server pairs of sockets,
each pair with its own port number: one client/server socket pair supports a
TCP connection that transports control information; the other client/server
socket pair supports a TCP connection that actually transports the file. The
RTSP channel is in many ways similar to FTP’s control channel.
Let us now walk through a simple RTSP example, which is illustrated in
Figure 6.5. The Web browser first requests a presentation description file
from a Web server. The presentation description file can have references to
several continuous-media files as well as directives for synchronization of

the continuous-media files. Each reference to a continuous-media file
begins with the URL method, UWVS����

Figure 6.5: Interaction between client and server using RTSP
Below we provide a sample presentation file that has been adapted from
[Schulzrinne 1997]. In this presentation, an audio and video stream are
played in parallel and in lip sync (as part of the same "group"). For the
audio stream, the media player can choose ("switch") between two audio
recordings, a low-fidelity recording and a high-fidelity recording.
�WLWOH!7ZLVWHU��WLWOH!

�VHVVLRQ!

����JURXS�ODQJXDJH HQ�OLSV\QF!

��������VZLWFK!

������������WUDFN�W\SH DXGLR

���������������H �3&08��������

���������������VUF �UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�HQ�ORIL�!

������������WUDFN�W\SH DXGLR

���������������H �'9,�����������SW ����'9,���������

���������������VUF �UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�HQ�KLIL�!

���������VZLWFK!

������WUDFN�W\SH �YLGHR�MSHJ�

���������������VUF �UWVS���YLGHR�H[DPSOH�FRP�WZLVWHU�YLGHR�!

�����JURXS!

��VHVVLRQ!

The Web server encapsulates the presentation description file in an HTTP
response message and sends the message to the browser. When the
browser receives the HTTP response message, the browser invokes a
media player (that is, the helper application) based on the content-type field
of the message. The presentation description file includes references to

media streams, using the URL method UWVS���,�as shown in the above
sample. As shown in Figure 6.5, the player and the server then send each
other a series of RTSP messages. The player sends an RTSP SETUP
request, and the server sends an RTSP SETUP response. The player
sends an RTSP PLAY request, say, for low-fidelity audio, and the server
sends an RTSP PLAY response. At this point, the streaming server pumps
the low-fidelity audio into its own in-band channel. Later, the media player
sends an RTSP PAUSE request, and the server responds with an RTSP
PAUSE response. When the user is finished, the media player sends an
RTSP TEARDOWN request, and the server responds with an RTSP
TEARDOWN response.
Each RTSP session has a session identifier, which is chosen by the server.
The client initiates the session with the SETUP request, and the server
responds to the request with an identifier. The client repeats the session
identifier for each request, until the client closes the session with the
TEARDOWN request. The following is a simplified example of an RTSP
session between a client (C:) and a sender (S:).
&��6(783�UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�5763����

���7UDQVSRUW��UWS�XGS��FRPSUHVVLRQ��SRUW ������PRGH 3/$<

6��5763�����������2.

���6HVVLRQ�����

&��3/$<�UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�HQ�ORIL

�����5763����

���6HVVLRQ������

���5DQJH��QSW ��

&��3$86(�UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�HQ�

�����ORIL�5763����

���6HVVLRQ������

���5DQJH��QSW ��

&��7($5'2:1�UWVS���DXGLR�H[DPSOH�FRP�WZLVWHU�DXGLR�HQ�

���ORIL�5763�����6HVVLRQ������

6��������2.

Notice that in this example, the player chose not to play back the complete
presentation, but instead only the low-fidelity portion of the presentation.
The RTSP protocol is actually capable of doing much more than described
in this brief introduction. In particular, RTSP has facilities that allow clients
to stream toward the server (for example, for recording). RTSP has been
adopted by RealNetworks, currently the industry leader in audio/video
streaming. Henning Schulzrinne makes available a Web page on RTSP
[Schulzrinne 1999].

© 2000-2001 by Addison Wesley Longman

A division of Pearson Education

Online Book

6.3: Internet Phone Example
The Internet’s network-layer protocol, IP, provides a best-effort
service. That is to say that the Internet makes its best effort to
move each datagram from source to destination as quickly as
possible. However, best-effort service does not make any
promises whatsoever on the extent of the end-to-end delay for an
individual packet, or on the extent of packet jitter and packet loss
within the packet stream.

Real-time interactive multimedia applications, such as Internet
phone and real-time video conferencing, are acutely sensitive to
packet delay, jitter, and loss. Fortunately, designers of these
applications can introduce several useful mechanisms that can
preserve good audio and video quality as long as delay, jitter, and
loss are not excessive. In this section, we examine some of these
mechanisms. To keep the discussion concrete, we discuss these
mechanisms in the context of an Internet phone application,
described below. The situation is similar for real-time video
conferencing applications [Bolot 1994].

The speaker in our Internet phone application generates an audio
signal consisting of alternating talk spurts and silent periods. In
order to conserve bandwidth, our Internet phone application only
generates packets during talk spurts. During a talk spurt the
sender generates bytes at a rate of 8 Kbytes per second, and
every 20 milliseconds the sender gathers bytes into chunks. Thus,
the number of bytes in a chunk is (20 msecs) · (8 Kbytes/sec) =
160 bytes. A special header is attached to each chunk, the
contents of which is discussed below. The chunk and its header
are encapsulated in a UDP segment, and then the UDP datagram
is sent into the socket interface. Thus, during a talk spurt, a UDP
segment is sent every 20 msec.

If each packet makes it to the receiver and has a small constant
end-to-end delay, then packets arrive at the receiver periodically
every 20 msec during a talk spurt. In these ideal conditions, the
receiver can simply play back each chunk as soon as it arrives.
But, unfortunately, some packets can be lost and most packets will
not have the same end-to-end delay, even in a lightly congested
Internet. For this reason, the receiver must take more care in (1)
determining when to play back a chunk, and (2) determining what
to do with a missing chunk.

6.3.1: The Limitations of a Best-Effort Service
We mentioned that the best-effort service can lead to packet loss,
excessive end-to-end delay, and delay jitter. Let’s examine these
issues in more detail.
Packet Loss
Consider one of the UDP segments generated by our Internet
phone application. The UDP segment is encapsulated in an IP
datagram. As the datagram wanders through the network, it
passes through buffers (that is, queues) in the routers in order to
access outbound links. It is possible that one or more of the buffers
in the route from sender to receiver is full and cannot admit the IP
datagram. In this case, the IP datagram is discarded, never to
arrive at the receiving application.
Loss could be eliminated by sending the packets over TCP rather
than over UDP. Recall that TCP retransmits packets that do not
arrive at the destination. However, retransmission mechanisms are
often considered unacceptable for interactive real-time audio
applications such as Internet phone, because they increase end-
to-end delay [Bolot 1996]. Furthermore, due to TCP congestion
control, after packet loss the transmission rate at the sender can
be reduced to a rate that is lower than the drain rate at the
receiver. This can have a severe impact on voice intelligibility at
the receiver. For these reasons, almost all existing Internet phone
applications run over UDP and do not bother to retransmit lost
packets.
But losing packets is not necessarily as grave as one might think.
Indeed, packet loss rates between 1% and 20% can be tolerated,
depending on how the voice is encoded and transmitted, and on
how the loss is concealed at the receiver. For example, forward
error correction (FEC) can help conceal packet loss. We’ll see
below that with FEC, redundant information is transmitted along
with the original information so that some of the lost original data
can be recovered from the redundant information. Nevertheless, if
one or more of the links between sender and receiver is severely
congested, and packet loss exceeds 10-20%, then there is really
nothing that can be done to achieve acceptable sound quality.
Clearly, best-effort service has its limitations.
End-to-End Delay
End-to-end delay is the accumulation of transmission processing
and queuing delays in routers, propagation delays, and end-
system processing delays along a path from source to destination.
For highly interactive audio applications, such as Internet phone,
end-to-end delays smaller than 150 milliseconds are not perceived
by a human listener; delays between 150 and 400 milliseconds
can be acceptable but not ideal; and delays exceeding 400
milliseconds can seriously hinder the interactivity in voice

conversations. The receiver in an Internet phone application will
typically disregard any packets that are delayed more than a
certain threshold, for example, more than 400 milliseconds. Thus,
packets that are delayed by more than the threshold are effectively
lost.
Delay Jitter
A crucial component of end-to-end delay is the random queuing
delays in the routers. Because of these varying delays within the
network, the time from when a packet is generated at the source
until it is received at the receiver can fluctuate from packet to
packet. This phenomenon is called jitter.
As an example, consider two consecutive packets within a talk
spurt in our Internet phone application. The sender sends the
second packet 20 msec after sending the first packet. But at the
receiver, the spacing between these packets can become greater
than 20 msec. To see this, suppose the first packet arrives at a
nearly empty queue at a router, but just before the second packet
arrives at the queue a large number of packets from other sources
arrive to the same queue. Because the second packet suffers a
large queuing delay, the first and second packets become spaced
apart by more than 20 msecs. The spacing between consecutive
packets can also become less than 20 msecs. To see this, again
consider two consecutive packets within a talk spurt. Suppose the
first packet joins the end of a queue with a large number of
packets, and the second packet arrives at the queue before
packets from other sources arrive at the queue. In this case, our
two packets find themselves right behind each other in the queue.
If the time it takes to transmit a packet on the router’s inbound link
is less than 20 msecs, then the first and second packets become
spaced apart by less than 20 msecs.
The situation is analogous to driving cars on roads. Suppose you
and your friend are each driving in your own cars from San Diego
to Phoenix. Suppose you and your friend have similar driving
styles, and that you both drive at 100 km/ hour, traffic permitting.
Finally, suppose your friend starts out one hour before you. Then,
depending on intervening traffic, you may arrive at Phoenix more
or less than one hour after your friend.
If the receiver ignores the presence of jitter, and plays out chunks
as soon as they arrive, then the resulting audio quality can easily
become unintelligible at the receiver. Fortunately, jitter can often
be removed by using sequence numbers, timestamps, and a
playout delay, as discussed below.

6.3.2: Removing Jitter at the Receiver for Audio
For a voice application such as Internet phone or audio-on-
demand, the receiver should attempt to provide synchronous
playout of voice chunks in the presence of random network jitter.

This is typically done by combining the following three
mechanisms:

• Prefacing each chunk with a sequence number. The
sender increments the sequence number by one for each of
the packet it generates.

• Prefacing each chunk with a timestamp. The sender
stamps each chunk with the time at which the chunk was
generated.

• Delaying playout of chunks at the receiver. The playout
delay of the received audio chunks must be long enough so
that most of the packets are received before their scheduled
playout times. This playout delay can either be fixed
throughout the duration of the conference, or it may vary
adaptively during the conference’s lifetime. Packets that do
not arrive before their scheduled playout times are
considered lost and forgotten; as noted above, the receiver
may use some form of speech interpolation to attempt to
conceal the loss.

We now discuss how these three mechanisms, when combined,
can alleviate or even eliminate the effects of jitter. We examine two
playback strategies: fixed playout delay and adaptive playout
delay.
Fixed Playout Delay
With the fixed delay strategy, the receiver attempts to playout each
chunk exactly q msecs after the chunk is generated. So if a chunk
is timestamped at time t, the receiver plays out the chunk at time t
+ q, assuming the chunk has arrived by that time. Packets that
arrive after their scheduled playout times are discarded and
considered lost.
What is a good choice for q? Internet telephone can support
delays up to about 400 msecs, although a more satisfying
interactive experience is achieved with smaller values of q. On the
other hand, if q is made much smaller than 400 msecs, then many
packets may miss their scheduled playback times due to the
network-induced delay jitter. Roughly speaking, if large variations
in end-to-end delay are typical, it is preferable to use a large q; on
the other hand, if delay is small and variations in delay are also
small, it is preferable to use a small q, perhaps less than 150
msecs.
The tradeoff between the playback delay and packet loss is
illustrated in Figure 6.6. The figure shows the times at which
packets are generated and played out for a single talkspurt. Two
distinct initial playout delays are considered. As shown by the
leftmost staircase, the sender generates packets at regular

intervals--say, every 20 msec. The first packet in this talkspurt is
received at time r. As shown in the figure, the arrivals of
subsequent packets are not evenly spaced due to the network
jitter.

Figure 6.6: Packet loss for different fixed playout delays
For the first playout schedule, the fixed initial playout delay is set to
p - r. With this schedule, the fourth packet does not arrive by its
scheduled playout time, and the receiver considers it lost. For the
second playout schedule, the fixed initial playout delay is set to p’ -
r. For this schedule, all packets arrive before their scheduled
playout times, and there is therefore no loss.
Adaptive Playout Delay
The above example demonstrates an important delay-loss tradeoff
that arises when designing a playout strategy with fixed playout
delays. By making the initial playout delay large, most packets will
make their deadlines and there will therefore be negligible loss;
however, for interactive services such as Internet phone, long
delays can become bothersome if not intolerable. Ideally, we
would like the play-out delay to be minimized subject to the
constraint that the loss be below a few percent.
The natural way to deal with this tradeoff is to estimate the network
delay and the variance of the network delay, and to adjust the
playout delay accordingly at the beginning of each talkspurt. This
adaptive adjustment of playout delays at the beginning of the
talkspurts will cause the sender’s silent periods to be compressed
and elongated; however, compression and elongation of silence by
a small amount is not noticeable in speech.
Following [Ramjee 1994], we now describe a generic algorithm
that the receiver can use to adaptively adjust its playout delays. To
this end, let
ti = timestamp of the ith packet = the time packet was generated by

sender
ri = the time packet i is received by receiver
pi = the time packet i is played at receiver
The end-to-end network delay of the ith packet is ri - ti. Due to
network jitter, this delay will vary from packet to packet. Let di

denote an estimate of the average network delay upon reception of
the ith packet. This estimate is constructed from the timestamps as
follows:

di = (1 - u) di-1 + u (ri - ti)
where u is a fixed constant (for example, u = 0.01). Thus di is a
smoothed average of the observed network delays r1 - t1, . . . , ri -
ti. The estimate places more weight on the recently observed
network delays than on the observed network delays of the distant
past. This form of estimate should not be completely unfamiliar; a
similar idea is used to estimate round-trip times in TCP, as
discussed in Chapter 3. Let vi denote an estimate of the average
deviation of the delay from the estimated average delay. This
estimate is also constructed from the timestamps:

vi = (1 - u) vi-1 + u | ri - ti - di |
The estimates di and vi are calculated for every packet received,
although they are only used to determine the playout point for the
first packet in any talkspurt.
Once having calculated these estimates, the receiver employs the
following algorithm for the playout of packets. If packet i is the first
packet of a talkspurt, its playout time, pi, is computed as:

pi = ti + di + Kvi

where K is a positive constant (for example, K = 4). The purpose of
the Kvi term is to set the playout time far enough into the future so
that only a small fraction of the arriving packets in the talkspurt will
be lost due to late arrivals. The playout point for any subsequent
packet in a talkspurt is computed as an offset from the point in time
when the first packet in the talkspurt was played out. In particular,
let

qi = pi - ti
be the length of time from when the first packet in the talkspurt is
generated until it is played out. If packet j also belongs to this
talkspurt, it is played out at time

pj = tj + qi

The algorithm just described makes perfect sense assuming that
the receiver can tell whether a packet is the first packet in the
talkspurt. If there is no packet loss, then the receiver can
determine whether packet i is the first packet of the talkspurt by
comparing the timestamp of the ith packet with the timestamp of
the (i - 1)st packet. Indeed, if ti - ti-1 > 20 msec, then the receiver
knows that ith packet starts a new talkspurt. But now suppose
there is occasional packet loss. In this case, two successive

packets received at the destination may have timestamps that
differ by more than 20 msec when the two packets belong to the
same talkspurt. So here is where the sequence numbers are
particularly useful. The receiver can use the sequence numbers to
determine whether a difference of more than 20 msec in
timestamps is due to a new talkspurt or to lost packets.

6.3.3: Recovering from Packet Loss
We have discussed in some detail how an Internet phone
application can deal with packet jitter. We now briefly describe
several schemes that attempt to preserve acceptable audio quality
in the presence of packet loss. Such schemes are called loss
recovery schemes. Here we define packet loss in a broad sense:
a packet is lost if either it never arrives at the receiver or if it arrives
after its scheduled playout time. Our Internet phone example will
again serve as a context for describing loss recovery schemes.
As mentioned at the beginning of this section, retransmitting lost
packets is not appropriate in an interactive real-time application
such as Internet phone. Indeed, retransmitting a packet that has
missed its playout deadline serves absolutely no purpose. And
retransmitting a packet that overflowed a router queue cannot
normally be accomplished quickly enough. Because of these
considerations, Internet phone applications often use some type of
loss anticipation scheme. Two types of loss-anticipation schemes
are forward error correction (FEC) and interleaving.
Forward Error Correction (FEC)
The basic idea of FEC is to add redundant information to the
original packet stream. For the cost of marginally increasing the
transmission rate of the audio of the stream, the redundant
information can be used to reconstruct "approximations" or exact
versions of some of the lost packets. Following [Bolot 1996] and
[Perkins 1998], we now outline two FEC mechanisms. The first
mechanism sends a redundant encoded chunk after every n
chunks. The redundant chunk is obtained by exclusive OR-ing the
n original chunks [Shacham 1990]. In this manner if any one
packet of the group of n + 1 packets is lost, the receiver can fully
reconstruct the lost packet. But if two or more packets in a group
are lost, the receiver cannot reconstruct the lost packets. By
keeping n + 1, the group size, small, a large fraction of the lost
packets can be recovered when loss is not excessive. However,
the smaller the group size, the greater the relative increase of the
transmission rate of the audio stream. In particular, the
transmission rate increases by a factor of 1/n; for example, if n = 3,
then the transmission rate increases by 33%. Furthermore, this
simple scheme increases the playout delay, as the receiver must
wait to receive the entire group of packets before it can begin
playout.

The second FEC mechanism is to send a lower-resolution audio
stream as the redundant information. For example, the sender
might create a nominal audio stream and a corresponding low-
resolution low-bit rate audio stream. (The nominal stream could be
a PCM encoding at 64 Kbps and the lower-quality stream could be
a GSM encoding at 13 Kbps.) The low-bit-rate stream is referred to
as the redundant stream. As shown in Figure 6.7, the sender
constructs the nth packet by taking the nth chunk from the nominal
stream and appending to it the (n - 1)st chunk from the redundant
stream. In this manner, whenever there is nonconsecutive packet
loss, the receiver can conceal the loss by playing out the low-bit-
rate encoded chunk that arrives with the subsequent packet. Of
course, low-bit-rate chunks give lower quality than the nominal
chunks. However, a stream of mostly high-quality chunks,
occasional low-quality chunks, and no missing chunks gives good
overall audio quality. Note that in this scheme, the receiver only
has to receive two packets before playback, so that the increased
playout delay is small. Furthermore, if the low-bit-rate encoding is
much less than the nominal encoding, then the marginal increase
in the transmission rate will be small.

Figure 6.7: Piggybacking lower-quality redundant information
In order to cope with consecutive loss, a simple variation can be
employed. Instead of appending just the (n - 1)st low-bit-rate chunk
to the nth nominal chunk, the sender can append the (n - 1)st and
(n - 2)nd low-bit-rate chunk, or append the (n - 1)st and (n - 3)rd
low-bit-rate chunk, etc. By appending more low-bit-rate chunks to
each nominal chunk, the audio quality at the receiver becomes
acceptable for a wider variety of harsh best-effort environments.
On the other hand, the additional chunks increase the transmission
bandwidth and the playout delay.
Free Phone [Freephone 1999] and RAT [RAT 1999] are well-
documented Internet phone applications that use FEC. They can
transmit lower-quality audio streams along with the nominal audio
stream, as described above.
Interleaving
As an alternative to redundant transmission, an Internet phone

application can send interleaved audio. As shown in Figure 6.8,
the sender resequences units of audio data before transmission,
so that originally adjacent units are separated by a certain distance
in the transmitted stream. Interleaving can mitigate the effect of
packet losses. If, for example, units are 5 msec in length and
chunks are 20 msec (that is, 4 units per chunk), then the first
chunk could contain units 1, 5, 9, 13; the second chunk could
contain units 2, 6, 10, 14; and so on. Figure 6.8 shows that the
loss of a single packet from an interleaved stream results in
multiple small gaps in the reconstructed stream, as opposed to the
single large gap that would occur in a noninterleaved stream.

Figure 6.8: Sending interleaved audio
Interleaving can significantly improve the perceived quality of an
audio stream [Perkins 1998]. It also has low overhead. The
obvious disadvantage of interleaving is that it increases latency.
This limits its use for interactive applications such as Internet
phone, although it can perform well for streaming stored audio. A
major advantage of interleaving is that it does not increase the
bandwidth requirements of a stream.
Receiver-Based Repair of Damaged Audio Streams
Receiver-based recovery schemes attempt to produce a
replacement for a lost packet that is similar to the original. As
discussed in [Perkins 1998], this is possible since audio signals,
and in particular speech, exhibit large amounts of short-term self
similarity. As such, these techniques work for relatively small loss
rates (less than 15%), and for small packets (4-40 msec). When
the loss length approaches the length of a phoneme (5-100 msec)
these techniques breakdown, since whole phonemes may be
missed by the listener.
Perhaps the simplest form of receiver-based recovery is packet
repetition. Packet repetition replaces lost packets with copies of

the packets that arrived immediately before the loss. It has low
computational complexity and performs reasonably well. Another
form of receiver-based recovery is interpolation, which uses audio
before and after the loss to interpolate a suitable packet to cover
the loss. It performs somewhat better than packet repetition, but is
significantly more computationally intensive [Perkins 1998].

6.3.4: Streaming Stored Audio and Video
Let us conclude this section with a few words about streaming
stored audio and video. Streaming stored audio/video applications
also typically use sequence numbers, timestamps, and playout
delay to alleviate or even eliminate the effects of network jitter.
However, there is an important difference between real-time
interactive audio/video and streaming stored audio/video.
Specifically, streaming of stored audio/video can tolerate
significantly larger delays. Indeed, when a user requests an
audio/video clip, the user may find it acceptable to wait five
seconds or more before playback begins. And most users can
tolerate similar delays after interactive actions such as a temporal
jump within the media stream. This greater tolerance for delay
gives the application developer greater flexibility when designing
stored media applications.

Online Book

6.4: RTP
In the previous section we learned that the sender side of a
multimedia application appends header fields to the audio/video
chunks before passing them to the transport layer. These header
fields include sequence numbers and timestamps. Since most
multimedia networking applications can make use of sequence
numbers and timestamps, it is convenient to have a standardized
packet structure that includes fields for audio/video data, sequence
number, and timestamp, as well as other potentially useful fields.
RTP, defined in RFC 1889, is such a standard. RTP can be used
for transporting common formats such as PCM or GSM for sound
and MPEG1 and MPEG2 for video. It can also be used for
transporting proprietary sound and video formats.

In this section we provide a short introduction to RTP and to its
companion protocol, RTCP. We also discuss the role of RTP in the
H.323 standard for real-time interactive audio and video
conferencing. The reader is encouraged to visit Henning

Schulzrinne’s RTP site [Schulzrinne 1999], which provides a
wealth of information on the subject. Also, readers may want to
visit the Free Phone site [Freephone 1999], which describes an
Internet phone application that uses RTP.

6.4.1: RTP Basics
RTP typically runs on top of UDP. Specifically, chunks of audio or
video data that are generated by the sending side of a multimedia
application are encapsulated in RTP packets. Each RTP packet is
in turn encapsulated in a UDP segment. Because RTP provides
services (such as timestamps and sequence numbers) to the
multimedia application, RTP can be viewed as a sublayer of the
transport layer, as shown in Figure 6.9.

Figure 6.9: RTP can be viewed as a sublayer of the transport layer
From the application developer’s perspective, however, RTP is not
part of the transport layer but instead part of the application layer.
This is because the developer must integrate RTP into the
application. Specifically, for the sender side of the application, the
developer must write application code that creates the RTP
encapsulating packets. The application then sends the RTP
packets into a UDP socket interface. Similarly, at the receiver side
of the application, RTP packets enter the application through a
UDP socket interface. The developer therefore must write code
into the application that extracts the media chunks from the RTP
packets. This is illustrated in Figure 6.10.

Figure 6.10: From a developer’s perspective, RTP is part of the application
layer

As an example, consider the use of RTP to transport voice.
Suppose the voice source is PCM encoded (that is, sampled,
quantized, and digitized) at 64 Kbps. Further suppose that the
application collects the encoded data in 20 msec chunks, that is,
160 bytes in a chunk. The application precedes each chunk of the
audio data with an RTP header that includes the type of audio
encoding, a sequence number, and a timestamp. The audio chunk
along with the RTP header form the RTP packet. The RTP packet
is then sent into the UDP socket interface. At the receiver side, the
application receives the RTP packet from its socket interface. The
application extracts the audio chunk from the RTP packet, and
uses the header fields of the RTP packet to properly decode and
playback the audio chunk.
If an application incorporates RTP--instead of a proprietary
scheme to provide payload type, sequence numbers, or
timestamps--then the application will more easily interoperate with
other networked multimedia applications. For example, if two
different companies develop Internet phone software and they both
incorporate RTP into their product, there may be some hope that a
user using one of the Internet phone products will be able to
communicate with a user using the other Internet phone product.
At the end of this section we’ll see that RTP has been incorporated
into an important part of an Internet telephony standard.
It should be emphasized that RTP in itself does not provide any
mechanism to ensure timely delivery of data or provide other
quality of service guarantees; it does not even guarantee delivery
of packets or prevent out-of-order delivery of packets. Indeed, RTP
encapsulation is only seen at the end systems. Routers do not
distinguish between IP datagrams that carry RTP packets and IP
datagrams that don’t.
RTP allows each source (for example, a camera or a microphone)
to be assigned its own independent RTP stream of packets. For
example, for a videoconference between two participants, four
RTP streams could be opened--two streams for transmitting the

audio (one in each direction) and two streams for the video (again,
one in each direction). However, many popular encoding
techniques--including MPEG1 and MPEG2--bundle the audio and
video into a single stream during the encoding process. When the
audio and video are bundled by the encoder, then only one RTP
stream is generated in each direction.
RTP packets are not limited to unicast applications. They can also
be sent over one-to-many and many-to-many multicast trees. For a
many-to-many multicast session, all of the session’s senders and
sources typically use the same multicast group for sending their
RTP streams. RTP multicast streams belonging together, such as
audio and video streams emanating from multiple senders in a
videoconference application, belong to an RTP session.

6.4.2: RTP Packet Header Fields
As shown in Figure 6.11, the four main RTP packet header fields
are the payload type, sequence number, timestamp, and the
source identifier fields.

Figure 6.11: RTP header fields
The payload type field in the RTP packet is seven bits long. For an
audio stream, the payload type field is used to indicate the type of
audio encoding (for example, PCM, adaptive delta modulation,
linear predictive encoding) that is being used. If a sender decides
to change the encoding in the middle of a session, the sender can
inform the receiver of the change through this payload type field.
The sender may want to change the encoding in order to increase
the audio quality or to decrease the RTP stream bit rate. Table 6.1
lists some of the audio payload types currently supported by RTP.
Table 6.1: Some audio payload types supported by RTP
Payload Type Number
Audio Format
Sampling Rate
Throughput

0
PCM -law
8 KHz
64 Kbps

1
1016
8 KHz
4.8 Kbps

3
GSM
8 KHz

13 Kbps

7
LPC
8 KHz
2.4 Kbps

9
G.722
8 KHz
48-64 Kbps

14
MPEG Audio
90 KHz
--

15
G.728
8 KHz
16 Kbps

For a video stream, the payload type is used to indicate the type of
video encoding (for example, motion JPEG, MPEG1, MPEG2,
H.261). Again, the sender can change video encoding on-the-fly
during a session. Table 6.2 lists some of the video payload types
currently supported by RTP.
Table 6.2: Some video payload types supported by RTP
Payload Type Number
Video Format

26
Motion JPEG

31
H.261

32
MPEG1 video

33
MPEG2 video

The other important fields are:

• Sequence number field. The sequence number field is 16
bits long. The sequence number increments by one for each
RTP packet sent, and may be used by the receiver to detect
packet loss and to restore packet sequence. For example, if
the receiver side of the application receives a stream of
RTP packets with a gap between sequence numbers 86
and 89, then the receiver knows that packets 87 and 88 are
missing. The receiver can then attempt to conceal the lost

data.

• Timestamp field. The timestamp field is 32 bits long. It
reflects the sampling instant of the first byte in the RTP data
packet. As we saw in the previous section, the receiver can
use timestamps in order to remove packet jitter introduced
in the network and to provide synchronous playout at the
receiver. The timestamp is derived from a sampling clock at
the sender. As an example, for audio, the timestamp clock
increments by one for each sampling period (for example,
each 125 sec for an 8 kHz sampling clock); if the audio
application generates chunks consisting of 160 encoded
samples, then the timestamp increases by 160 for each
RTP packet when the source is active. The timestamp clock
continues to increase at a constant rate even if the source is
inactive.

• Synchronization source identifier (SSRC). The SSRC field is
32 bits long. It identifies the source of the RTP stream.
Typically, each stream in an RTP session has a distinct
SSRC. The SSRC is not the IP address of the sender, but
instead a number that the source assigns randomly when
the new stream is started. The probability that two streams
get assigned the same SSRC is very small. Should this
happen, the two sources pick a new SSRC value.

6.4.3: RTP Control Protocol (RTCP)
RFC 1889 also specifies RTCP, a protocol that a multimedia
networking application can use in conjunction with RTP. As shown
in the multicast scenario in Figure 6.12, RTCP packets are
transmitted by each participant in an RTP session to all other
participants in the session using IP multicast. For an RTP session
typically there is a single multicast address and all RTP and RTCP
packets belonging to the session use the multicast address. RTP
and RTCP packets are distinguished from each other through the
use of distinct port numbers.

Figure 6.12: Both senders and receivers send RTCP messages
RTCP packets do not encapsulate chunks of audio or video.
Instead, RTCP packets are sent periodically and contain sender
and/or receiver reports that announce statistics that can be useful
to the application. These statistics include number of packets sent,
number of packets lost, and interarrival jitter. The RTP
specification [RFC 1889] does not dictate what the application
should do with this feedback information; this is up to the
application developer. Senders can use the feedback information,
for example, to modify their transmission rates. The feedback
information can also be used for diagnostic purposes; for example,
receivers can determine whether problems are local, regional, or
global.
RTCP Packet Types
For each RTP stream that a receiver receives as part of a session,
the receiver generates a reception report. The receiver aggregates
its reception reports into a single RTCP packet. The packet is then
sent into the multicast tree that connects together all the
sessions’s participants. The reception report includes several
fields, the most important of which are listed below.

• The SSRC of the RTP stream for which the reception report
is being generated.

• The fraction of packets lost within the RTP stream. Each
receiver calculates the number of RTP packets lost divided
by the number of RTP packets sent as part of the stream. If
a sender receives reception reports indicating that the
receivers are receiving only a small fraction of the sender’s
transmitted packets, it can switch to a lower encoding rate,
with the aim of decreasing network congestion and
improving the reception rate.

• The last sequence number received in the stream of RTP
packets.

• The interarrival jitter, which is calculated as the average
interarrival time between successive packets in the RTP
stream.

For each RTP stream that a sender is transmitting, the sender
creates and transmits RTCP sender report packets. These packets
include information about the RTP stream, including:

• The SSRC of the RTP stream.

• The timestamp and wall clock time of the most recently
generated RTP packet in the stream.

• The number of packets sent in the stream.

• The number of bytes sent in the stream.

Sender reports can be used to synchronize different media
streams within an RTP session. For example, consider a
videoconferencing application for which each sender generates
two independent RTP streams, one for video and one for audio.
The timestamps in these RTP packets are tied to the video and
audio sampling clocks, and are not tied to the wall clock time (that
is, to real time). Each RTCP sender report contains, for the most
recently generated packet in the associated RTP stream, the
timestamp of the RTP packet and the wall clock time for when the
packet was created. Thus the RTCP sender report packets
associate the sampling clock to the real-time clock. Receivers can
use this association in RTCP sender reports to synchronize the
playout of audio and video.
For each RTP stream that a sender is transmitting, the sender also
creates and transmits source description packets. These packets
contain information about the source, such as e-mail address of
the sender, the sender’s name, and the application that generates
the RTP stream. It also includes the SSRC of the associated RTP
stream. These packets provide a mapping between the source
identifier (that is, the SSRC) and the user/host name.
RTCP packets are stackable, that is, receiver reception reports,
sender reports, and source descriptors can be concatenated into a
single packet. The resulting packet is then encapsulated into a
UDP segment and forwarded into the multicast tree.
RTCP Bandwidth Scaling
The astute reader will have observed that RTCP has a potential
scaling problem. Consider, for example, an RTP session that
consists of one sender and a large number of receivers. If each of
the receivers periodically generates RTCP packets, then the

aggregate transmission rate of RTCP packets can greatly exceed
the rate of RTP packets sent by the sender. Observe that the
amount of RTP traffic sent into the multicast tree does not change
as the number of receivers increases, whereas the amount of
RTCP traffic grows linearly with the number of receivers. To solve
this scaling problem, RTCP modifies the rate at which a participant
sends RTCP packets into the multicast tree as a function of the
number of participants in the session. Also, since each participant
sends control packets to everyone else, each participant can
estimate the total number of participants in the session [Friedman
1999].
RTCP attempts to limit its traffic to 5% of the session bandwidth.
For example, suppose there is one sender, which is sending video
at a rate of 2 Mbps. Then RTCP attempts to limit its traffic to 5% of
2 Mbps, or 100 Kbps, as follows. The protocol gives 75% of this
rate, or 75 Kbps, to the receivers; it gives the remaining 25% of the
rate, or 25 Kbps, to the sender. The 75 Kbps devoted to the
receivers is equally shared among the receivers. Thus, if there are
R receivers, then each receiver gets to send RTCP traffic at a rate
of 75/R Kbps and the sender gets to send RTCP traffic at a rate of
25 Kbps. A participant (a sender or receiver) determines the RTCP
packet transmission period by dynamically calculating the average
RTCP packet size (across the entire session) and dividing the
average RTCP packet size by its allocated rate. In summary, the
period for transmitting RTCP packets for a sender is

And the period for transmitting RTCP packets for a receiver is

6.4.4: H.323
H.323 is a standard for real-time audio and video conferencing
among end systems on the Internet. As shown in Figure 6.13, the
standard also covers how end systems attached to the Internet
communicate with telephones attached to ordinary circuit-switched
telephone networks. In principle, if manufacturers of Internet
telephony and video conferencing all conform to H.323, then all
their products should be able to interoperate, and should be able
to communicate with ordinary telephones. We discuss H.323 in
this section, as it provides an application context for RTP. Indeed,
we’ll see below that RTP is an integral part of the H.323 standard.

Figure 6.13: H.323 end systems attached to the Internet can communicate with
telephones attached to a circuit-switched telephone network

H.323 end points (terminals) can be standalone devices (for
example, Web phones and Web TVs) or applications in a PC (for
example, Internet phone or video conferencing software). H.323
equipment also includes gateways and gatekeepers. Gateways
permit communication among H.323 end points and ordinary
telephones in a circuit-switched telephone network. Gatekeepers,
which are optional, provide address translation, authorization,
bandwidth management, accounting, and billing. We will discuss
gatekeepers in more detail at the end of this section.
The H.323 standard is an umbrella specification that includes:

• A specification for how endpoints negotiate common
audio/video encodings. Because H.323 supports a variety of
audio and video encoding standards, a protocol is needed
to allow the communicating endpoints to agree on a
common encoding.

• A specification for how audio and video chunks are
encapsulated and sent over network. As you may have
guessed, this is where RTP comes into the picture.

• A specification for how endpoints communicate with their
respective gatekeepers.

• A specification for how Internet phones communicate
through a gateway with ordinary phones in the public circuit-
switched telephone network.

Figure 6.14 shows the H.323 protocol architecture.

Figure 6.14: H.323 protocol architecture
Minimally, each H.323 endpoint must support the G.711 speech
compression standard. G.711 uses PCM to generate digitized
speech at either 56 Kbps or 64 Kbps. Although H.323 requires
every endpoint to be voice capable (through G.711), video
capabilities are optional. Because video support is optional,
manufacturers of terminals can sell simpler speech terminals as
well as more complex terminals that support both audio and video.
As shown in Figure 6.14, H.323 also requires that all H.323 end
points use the following protocols:

• RTP. The sending side of an endpoint encapsulates all
media chunks within RTP packets. The sending side then
passes the RTP packets to UDP.

• H.245. An "out-of-band" control protocol for controlling
media between H.323 endpoints. This protocol is used to
negotiate a common audio or video compression standard
that will be employed by all the participating endpoints in a
session.

• Q.931. A signaling protocol for establishing and terminating
calls. This protocol provides traditional telephone
functionality (for example, dial tones and ringing) to H.323
endpoints and equipment.

• RAS (Registration/Admission/Status) channel protocol. A
protocol that allows end points to communicate with a
gatekeeper (if a gatekeeper is present).

Audio and Video Compression
The H.323 standard supports a specific set of audio and video
compression techniques. Let’s first consider audio. As we just
mentioned, all H.323 end points must support the G.711 speech

encoding standard. Because of this requirement, two H.323 end
points will always be able to default to G.711 and communicate.
But H.323 allows terminals to support a variety of other speech
compression standards, including G.723.1, G.722, G.728, and
G.729. Many of these standards compress speech to rates that are
suitable for 28.8 Kbps dial-up modems. For example, G.723.1
compresses speech to either 5.3 Kbps or 6.3 Kbps, with sound
quality that is comparable to G.711.
As we mentioned earlier, video capabilities for an H.323 endpoint
are optional. However, if an endpoint does support video, then it
must (at the very least) support the QCIF H.261 (176 x144 pixels)
video standard. A video-capable endpoint may optionally support
other H.261 schemes, including CIF, 4CIF, 16CIF, and the H.263
standard. As the H.323 standard evolves, it will likely support a
longer list of audio and video compression schemes.
H.323 Channels
When an end point participates in an H.323 session, it maintains
several channels, as shown in Figure 6.15. Examining Figure 6.15,
we see that an end point can support many simultaneous RTP
media channels. For each media type, there will typically be one
send media channel and one receive media channel; thus, if audio
and video are sent in separate RTP streams, there will typically be
four media channels. Accompanying the RTP media channels,
there is one RTCP media control channel, as discussed in Section
6.4.3. All of the RTP and RTCP channels run over UDP. In
addition to the RTP/RTCP channels, two other channels are
required: the call control channel and the call signaling channel.
The H.245 call control channel is a TCP connection that carries
H.245 control messages. Its principal tasks are (1) opening and
closing media channels, and (2) capability exchange, that is,
before sending media, endpoints agree on an encoding algorithm.
H.245, being a control protocol for real-time interactive
applications, is analogous to RTSP, the control protocol for
streaming of stored multimedia that we studied in Section 6.2.3.
Finally, the Q.931 call signaling channel provides classical
telephone functionality, such as dial tone and ringing.

Figure 6.15: H.323 channels
Gatekeepers
The gatekeeper is an optional H.323 device. Each gatekeeper is
responsible for an H.323 zone. A typical deployment scenario is
shown in Figure 6.16. In this scenario, the H.323 terminals and the
gatekeeper are all attached to the same LAN, and the H.323 zone
is the LAN itself. If a zone has a gatekeeper, then all H.323
terminals in the zone are required to communicate with it using the
RAS protocol, which runs over TCP. Address translation is one of
the more important gatekeeper services. Each terminal can have
an alias address, such as the name of the person at the terminal,
the e-mail address of the person at the terminal, and so on. The
gateway translates these alias addresses to IP addresses. This
address translation service is similar to the DNS service, covered
in Section 2.5. Another gatekeeper service is bandwidth
management: The gatekeeper can limit the number of
simultaneous real-time conferences in order to save some
bandwidth for other applications running over the LAN. Optionally,
H.323 calls can be routed through gatekeeper, which is useful for
billing.

Figure 6.16: H.323 terminals and gatekeeper on the same LAN
The H.323 terminal must register itself with the gatekeeper in its
zone. When the H.323 application is invoked at the terminal, the
terminal uses RAS to send its IP address and alias (provided by
user) to the gatekeeper. If the gatekeeper is present in a zone,
each terminal in the zone must contact the gatekeeper to ask
permission to make a call. Once it has permission, the terminal
can send the gatekeeper an e-mail address, alias string, or phone
extension for the terminal it wants to call, which may be in another
zone. If necessary, a gatekeeper will poll other gatekeepers in
other zones to resolve an IP address.
An excellent tutorial on H.323 is provided by [WebProForum 1999].
The reader is also encouraged to see [Rosenberg 1999] for an
alternative architecture to H.323 for providing telephone service in
the Internet.

Online Book

6.5: Beyond Best-Effort
In previous sections we learned how sequence numbers, timestamps, FEC,
RTP, and H.323 can be used by multimedia applications in today’s Internet.
But are these techniques alone enough to support reliable and robust
multimedia applications, for example, an IP telephony service that is
equivalent to a service in today’s telephone network? Before answering this
question, let us recall again that today’s Internet provides a best-effort
service to all of its applications, that is, does not make any promises about
the quality of service (QoS) an application will receive. An application will
receive whatever level of performance (for example, end-to-end packet

delay and loss) that the network is able to provide at that moment. Recall
also that today’s public Internet does not allow delay-sensitive multimedia
applications to request any special treatment. All packets are treated
equally at the routers, including delay-sensitive audio and video packets.
Given that all packets are treated equally, all that’s required to ruin the
quality of an ongoing IP telephone call is enough interfering traffic (that is,
network congestion) to noticeably increase the delay and loss seen by an
IP telephone call.

In this section, we will identify new architectural components that can be
added to the Internet architecture to shield an application from such
congestion and thus make high-quality networked multimedia applications a
reality. Many of the issues that we will discuss in this, and the remaining
sections of this chapter, are currently under active discussion in the IETF
Diffserv, Intserv, and RSVP working groups.

Figure 6.17 shows a simple network scenario we’ll use to illustrate the most
important architectural components that have been proposed for the
Internet in order to provide explicit support for the QoS needs of multimedia
applications. Suppose that two application packet flows originate on hosts
H1 and H2 on one LAN and are destined for hosts H3 and H4 on another
LAN. The routers on the two LANs are connected by a 1.5 Mbps link. Let’s
assume the LAN speeds are significantly higher than 1.5 Mbps, and focus
on the output queue of router R1; it is here that packet delay and packet
loss will occur if the aggregate sending rate of the H1 and H2 exceeds 1.5
Mbps. Let’s now consider several scenarios, each of which will provide us
with important insight into the underlying principles for providing QoS
guarantees to multimedia applications.

Figure 6.17: A simple network with two applications

6.5.1: Scenario 1: A 1 Mbps Audio Application and an FTP
Transfer
Scenario 1 is illustrated in Figure 6.18. Here, a 1 Mbps audio application
(for example, a CD-quality audio call) shares the 1.5 Mbps link between R1
and R2 with an FTP application that is transferring a file from H2 to H4. In
the best-effort Internet, the audio and FTP packets are mixed in the output
queue at R1 and (typically) transmitted in a first-in-first-out (FIFO) order. In

this scenario, a burst of packets from the FTP source could potentially fill up
the queue, causing IP audio packets to be excessively delayed or lost due
to buffer overflow at R1. How should we solve this potential problem? Given
that the FTP application does not have time constraints, our intuition might
be to give strict priority to audio packets at R1. Under a strict priority
scheduling discipline, an audio packet in the R1 output buffer would always
be transmitted before any FTP packet in the R1 output buffer. The link from
R1 to R2 would look like a dedicated link of 1.5 Mbps to the audio traffic,
with FTP traffic using the R1-to-R2 link only when no audio traffic is
queued.

Figure 6.18: Competing audio and FTP applications
In order for R1 to distinguish between the audio and FTP packets in its
queue, each packet must be marked as belonging to one of these two
"classes" of traffic. Recall from Section 4.7, that this was the original goal of
the Type-of-Service (ToS) field in IPv4. As obvious as this might seem, this
then is our first principle underlying the provision of quality-of-service
guarantees:

Principle 1: Packet marking allows a router to distinguish
among packets belonging to different classes of traffic.

6.5.2: Scenario 2: A 1 Mbps Audio Application and a High
Priority FTP Transfer
Our second scenario is only slightly different from scenario 1. Suppose now
that the FTP user has purchased "platinum service" (that is, high-priced)
Internet access from its ISP, while the audio user has purchased cheap,
low-budget Internet service that costs only a minuscule fraction of platinum
service. Should the cheap user’s audio packets be given priority over FTP
packets in this case? Arguably not. In this case, it would seem more
reasonable to distinguish packets on the basis of the sender’s IP address.
More generally, we see that it is necessary for a router to classify packets
according to some criteria. This then calls for a slight modification to
principle 1:

Principle 1 (modified): Packet classification allows a router
to distinguish among packets belonging to different classes of
traffic.

Explicit packet marking is one way in which packets may be distinguished.
However, the marking carried by a packet does not, by itself, mandate that

the packet will receive a given quality of service. Marking is but one
mechanism for distinguishing packets. The manner in which a router
distinguishes among packets by treating them differently is a policy
decision.

6.5.3: Scenario 3: A Misbehaving Audio Application and an
FTP Transfer
Suppose now that somehow (by use of mechanisms that we will study in
subsequent sections), the router knows it should give priority to packets
from the 1 Mbps audio application. Since the outgoing link speed is 1.5
Mbps, even though the FTP packets receive lower priority, they will still, on
average, receive 0.5 Mbps of transmission service. But what happens if the
audio application starts sending packets at a rate of 1.5 Mbps or higher
(either maliciously or due to an error in the application)? In this case, the
FTP packets will starve, that is, will not receive any service on the R1-to-R2
link. Similar problems would occur if multiple applications (for example,
multiple audio calls), all with the same priority, were sharing a link’s
bandwidth; one noncompliant flow could degrade and ruin the performance
of the other flows. Ideally, one wants a degree of isolation among flows, in
order to protect one flow from another misbehaving flow. This, then, is a
second underlying principle the provision of QoS guarantees.

Principle 2: It is desirable to provide a degree of isolation
among traffic flows, so that one flow is not adversely affected
by another misbehaving flow.

In the following section, we will examine several specific mechanisms for
providing this isolation among flows. We note here that two broad
approaches can be taken. First, it is possible to "police" traffic flows, as
shown in Figure 6.19. If a traffic flow must meet certain criteria (for
example, that the audio flow not exceed a peak rate of 1 Mbps), then a
policing mechanism can be put into place to ensure that this criteria is
indeed observed. If the policed application misbehaves, the policing
mechanism will take some action (for example, drop or delay packets that
are in violation of the criteria) so that the traffic actually entering the network
conforms to the criteria. The leaky bucket mechanism that we examine in
the following section is perhaps the most widely used policing mechanism.
In Figure 6.19, the packet classification and marking mechanism (Principle
1) and the policing mechanism (Principle 2) are co-located at the "edge" of
the network, either in the end system, or at an edge router.

Figure 6.19: Policing (and marking) the audio and FTP traffic flows
An alternate approach for providing isolation among traffic flows is for the
link-level packet scheduling mechanism to explicitly allocate a fixed amount
of link bandwidth to each application flow. For example, the audio flow
could be allocated 1Mbps at R1, and the FTP flow could be allocated 0.5
Mbps. In this case, the audio and FTP flows see a logical link with capacity
1.0 and 0.5 Mbps, respectively, as shown in Figure 6.20.

Figure 6.20: Logical isolation of audio and FTP application flows
With strict enforcement of the link-level allocation of bandwidth, a flow can
use only the amount of bandwidth that has been allocated; in particular, it
cannot utilize bandwidth that is not currently being used by the other
applications. For example, if the audio flow goes silent (for example, if the
speaker pauses and generates no audio packets), the FTP flow would still
not be able to transmit more than 0.5 Mbps over the R1-to-R2 link, even
though the audio flow’s 1 Mbps bandwidth allocation is not being used at
that moment. It is therefore desirable to use bandwidth as efficiently as
possible, allowing one flow to use another flow’s unused bandwidth at any
given point in time. This is the third principle underlying the provision of
quality of service:

Principle 3: While providing isolation among flows, it is
desirable to use resources (for example, link bandwidth and
buffers) as efficiently as possible.

6.5.4: Scenario 4: Two 1 Mbps Audio Applications over an
Overloaded 1.5 Mbps Link
In our final scenario, two 1-Mbps audio connections transmit their packets
over the 1.5 Mbps link, as shown in Figure 6.21. The combined data rate of
the two flows (2 Mbps) exceeds the link capacity. Even with classification
and marking (Principle 1), isolation of flows (Principle 2), and sharing of

unused bandwidth (Principle 3), of which there is none, this is clearly a
losing proposition. There is simply not enough bandwidth to accommodate
the applications’ needs. If the two applications equally share the bandwidth,
each would receive only 0.75 Mbps. Looked at another way, each
application would lose 25% of its transmitted packets. This is such an
unacceptably low quality of service that the application is completely
unusable; there’s no need even to transmit any audio packets in the first
place.

Figure 6.21: Two competing audio applications overloading the R1-to-R2 link
For a flow that needs a minimum quality of service in order to be
considered "usable," the network should either allow the flow to use the
network or else block the flow from using the network. The telephone
network is an example of a network that performs such call blocking--if the
required resources (an end-to-end circuit, in the case of the telephone
network) cannot be allocated to the call, the call is blocked (prevented from
entering the network) and a busy signal is returned to the user. In our
example above, there is no gain in allowing a flow into the network if it will
not receive a sufficient QoS to be considered "usable." Indeed, there is a
cost to admitting a flow that does not receive its needed QoS, as network
resources are being used to support a flow that provides no utility to the
end user.
Implicit with the need to provide a guaranteed QoS to a flow is the need for
the flow to declare its QoS requirements. This process of having a flow
declare its QoS requirement, and then having the network either accept the
flow (at the required QoS) or block the flow is referred to as the call
admission process. The need for call admission is the fourth underlying
principle in the provision of QoS guarantees:

Principle 4: A call admission process is needed in which
flows declare their QoS requirements and are then either
admitted to the network (at the required QoS) or blocked from
the network (if the required QoS cannot be provided by the
network).

In our discussion above, we have identified four basic principles in
providing QoS guarantees for multimedia applications. These principles are
illustrated in Figure 6.22. In the following section, we consider various
mechanisms for implementing these principles. In the sections following
that, we examine proposed Internet service models for providing QoS

guarantees.

Figure 6.22: Four principles of providing QoS support

© 2000-2001 by Addison Wesley Longman
A division of Pearson Education

Online Book

6.6: Scheduling and Policing
Mechanisms
In the previous section, we identified the important underlying
principles in providing quality-of-service (QoS) guarantees to
networked multimedia applications. In this section, we will examine
various mechanisms that are used to provide these QoS
guarantees.

6.6.1: Scheduling Mechanisms
Recall from our discussion in Section 1.6 and Section 4.6, that
packets belonging to various network flows are multiplexed
together and queued for transmission at the output buffers
associated with a link. The manner in which queued packets are
selected for transmission on the link is known as the link
scheduling discipline. We saw in the previous section that the
link scheduling discipline plays an important role in providing QoS

guarantees. Let us now consider several of the most important link
scheduling disciplines in more detail.
First-In-First-Out (FIFO)
Figure 6.23 shows the queuing model abstractions for the First-in-
First-Out (FIFO) link scheduling discipline. Packets arriving at the
link output queue are queued for transmission if the link is currently
busy transmitting another packet. If there is not sufficient buffering
space to hold the arriving packet, the queue’s packet discarding
policy then determines whether the packet will be dropped ("lost")
or whether other packets will be removed from the queue to make
space for the arriving packet. In our discussion below we will
ignore packet discard. When a packet is completely transmitted
over the outgoing link (that is, receives service) it is removed from
the queue.

Figure 6.23: FIFO queuing abstraction
The FIFO scheduling discipline (also known as First-Come-First-
Served--FCFS) selects packets for link transmission in the same
order in which they arrived at the output link queue. We’re all
familiar with FIFO queuing from bus stops (particularly in England,
where queuing seems to have been perfected) or other service
centers, where arriving customers join the back of the single
waiting line, remain in order, and are then served when they reach
the front of the line.
Figure 6.24 shows an example of the FIFO queue in operation.
Packet arrivals are indicated by numbered arrows above the upper
timeline, with the number indicating the order in which the packet
arrived. Individual packet departures are shown below the lower
timeline. The time that a packet spends in service (being
transmitted) is indicated by the shaded rectangle between the two
timelines. Because of the FIFO discipline, packets leave in the
same order in which they arrived. Note that after the departure of
packet 4, the link remains idle (since packets 1 through 4 have
been transmitted and removed from the queue) until the arrival of
packet 5.

Figure 6.24: The FIFO queue in operation
Priority Queuing
Under priority queuing, packets arriving at the output link are
classified into one of two or more priority classes at the output
queue, as shown in Figure 6.25. As discussed in the previous
section, a packet’s priority class may depend on an explicit
marking that it carries in its packet header (for example, the value
of the Type of Service (ToS) bits in an IPv4 packet), its source or
destination IP address, its destination port number, or other
criteria. Each priority class typically has its own queue. When
choosing a packet to transmit, the priority queuing discipline will
transmit a packet from the highest priority class that has a
nonempty queue (that is, has packets waiting for transmission).
The choice among packets in the same priority class is typically
done in a FIFO manner.

Figure 6.25: Priority queuing model
Figure 6.26 illustrates the operation of a priority queue with two
priority classes. Packets 1, 3, and 4 belong to the high-priority
class and packets 2 and 5 belong to the low-priority class. Packet
1 arrives and, finding the link idle, begins transmission. During the
transmission of packet 1, packets 2 and 3 arrive and are queued in
the low- and high-priority queues, respectively. After the

transmission of packet 1, packet 3 (a high-priority packet) is
selected for transmission over packet 2 (which, even though it
arrived earlier, is a low-priority packet). At the end of the
transmission of packet 3, packet 2 then begins transmission.
Packet 4 (a high-priority packet) arrives during the transmission of
packet 3 (a low-priority packet). Under a so-called non-preemptive
priority queuing discipline, the transmission of a packet is not
interrupted once it has begun. In this case, packet 4 queues for
transmission and begins being transmitted after the transmission
of packet 2 is completed.

Figure 6.26: Operation of teh priority queue
Round Robin and Weighted Fair Queuing (WFQ)
Under the round robin queuing discipline, packets are again
sorted into classes, as with priority queuing. However, rather than
there being a strict priority of service among classes, a round robin
scheduler alternates service among the classes. In the simplest
form of round robin scheduling, a class 1 packet is transmitted,
followed by a class 2 packet, followed by a class 1 packet,
followed by a class 2 packet, and so on. A so-called work-
conserving queuing discipline will never allow the link to remain
idle whenever there are packets (of any class) queued for
transmission. A work-conserving round robin discipline that
looks for a packet of a given class but finds none will immediately
check the next class in the round robin sequence.
Figure 6.27 illustrates the operation of a two-class round robin
queue. In this example, packets 1, 2, and 4 belong to class 1, and
packets 3 and 5 belong to the second class. Packet 1 begins
transmission immediately upon arrival at the output queue.
Packets 2 and 3 arrive during the transmission of packet 1 and
thus queue for transmission. After the transmission of packet 1, the
link scheduler looks for a class-2 packet and thus transmits packet
3. After the transmission of packet 3, the scheduler looks for a
class-1 packet and thus transmits packet 2. After the transmission
of packet 2, packet 4 is the only queued packet; it is thus

transmitted immediately after packet 2.

Figure 6.27: Operation of the two-class round robin queue
A generalized abstraction of round robin queuing that has found
considerable use in QoS architectures is the so-called weighted
fair queuing (WFQ) discipline [Demers 1990; Parekh 1993].
WFQ is illustrated in Figure 6.28. Arriving packets are again
classified and queued in the appropriate per-class waiting area. As
in round robin scheduling, a WFQ scheduler will again serve
classes in a circular manner--first serving class 1, then serving
class 2, then serving class 3, and then (assuming there are three
classes) repeating the service pattern. WFQ is also a work-
conserving queuing discipline and thus will immediately move on
to the next class in the service sequence upon finding an empty
class queue.

Figure 6.28: Weighted Fair Queuing (WFQ)
WFQ differs from round robin in that each class may receive a
differential amount of service in any interval of time. Specifically,
each class, i, is assigned a weight, wi. Under WFQ, during any
interval of time during which there are class i packets to send,
class i will then be guaranteed to receive a fraction of service
equal to wi/(wj), where the sum in the denominator is taken over
all classes that also have packets queued for transmission. In the
worst case, even if all classes have queued packets, class i will

still be guaranteed to receive a fraction wi/(wj) of the bandwidth.
Thus, for a link with transmission rate R, class i will always achieve
a throughput of at least R · wi/(wj). Our description of WFQ has
been an idealized one, as we have not considered the fact that
packets are discrete units of data and a packet's transmission will
not be interrupted to begin transmission of another packet;
[Demers 1990] and [Parekh 1993] discuss this packetization issue.
As we will see in the following sections, WFQ plays a central role
in QoS architectures. It is also available in today's router products
[Cisco QoS 1997]. (Intranets that use WFQ-capable routers can
therefore provide QoS to their internal flows.)

6.6.2: Policing: The Leaky Bucket
In Section 6.5, we also identified policing, the regulation of the
rate at which a flow is allowed to inject packets into the network, as
one of the cornerstones of any QoS architecture. But what aspects
of a flow's packet rate should be policed? We can identify three
important policing criteria, each differing from the other according
to the time scale over which the packet flow is policed:

• Average rate. The network may wish to limit the long-term
average rate (packets per time interval) at which a flow's
packets can be sent into the network. A crucial issue here is
the interval of time over which the average rate will be
policed. A flow whose average rate is limited to 100 packets
per second is more constrained than a source that is limited
to 6,000 packets per minute, even though both have the
same average rate over a long enough interval of time. For
example, the latter constraint would allow a flow to send
1,000 packets in a given second-long interval of time
(subject to the constraint that the rate be less than 6,000
packets over a minute-long interval containing these 1,000
packets), while the former constraint would disallow this
sending behavior.

• Peak rate. While the average rate-constraint limits the
amount of traffic that can be sent into the network over a
relatively long period of time, a peak-rate constraint limits
the maximum number of packets that can be sent over a
shorter period of time. Using our example above, the
network may police a flow at an average rate of 6,000
packets per minute, while limiting the flow's peak rate to
1,500 packets per second.

• Burst size. The network may also wish to limit the maximum
number of packets (the "burst" of packets) that can be sent
into the network over an extremely short interval of time. In
the limit, as the interval length approaches zero, the burst

size limits the number of packets that can be
instantaneously sent into the network. Even though it is
physically impossible to instantaneously send multiple
packets into the network (after all, every link has a physical
transmission rate that cannot be exceeded!), the abstraction
of a maximum burst size is a useful one.

The leaky bucket mechanism is an abstraction that can be used to
characterize these policing limits. As shown in Figure 6.29, a leaky
bucket consists of a bucket that can hold up to b tokens. Tokens
are added to this bucket as follows. New tokens, which may
potentially be added to the bucket, are always being generated at
a rate of r tokens per second. (We assume here for simplicity that
the unit of time is a second.) If the bucket is filled with less than b
tokens when a token is generated, the newly generated token is
added to the bucket; otherwise the newly generated token is
ignored, and the token bucket remains full with b tokens.

Figure 6.29: The Leaky Bucket Policer
Let us now consider how the leaky bucket can be used to police a
packet flow. Suppose that before a packet is transmitted into the
network, it must first remove a token from the token bucket. If the
token bucket is empty, the packet must wait for a token. (An
alternative is for the packet to be dropped, although we will not
consider that option here.) Let us now consider how this behavior
polices a traffic flow. Because there can be at most b tokens in the
bucket, the maximum burst size for a leaky-bucket-policed flow is b
packets. Furthermore, because the token generation rate is r, the
maximum number of packets that can enter the network of any
interval of time of length t is rt + b. Thus, the token generation rate,
r, serves to limit the long-term average rate at which the packet
can enter the network. It is also possible to use leaky buckets
(specifically, two leaky buckets in series) to police a flow’s peak
rate in addition to the long-term average rate; see the homework
problems at the end of this chapter.
Leaky Bucket + Weighted Fair Queuing Provides Provable

Maximum Delay in a Queue
In Sections 6.7 and 6.9 we will examine the so-called Intserv and
Diffserv approaches for providing quality of service in the Internet.
We will see that both leaky bucket policing and WFQ scheduling
can play an important role. Let us thus close this section by
considering a router’s output that multiplexes n flows, each policed
by a leaky bucket with parameters bi and ri, i = 1, . . . , n, using
WFQ scheduling. We use the term "flow" here loosely to refer to
the set of packets that are not distinguished from each other by the
scheduler. In practice, a flow might be comprised of traffic from a
single end-to-end connection (as in Intserv) or a collection of many
such connections (as in Diffserv), see Figure 6.30.

Figure 6.30: n multiplexed leaky bucket flows with WFQ scheduling
Recall from our discussion of WFQ that each flow, i, is guaranteed
to receive a share of the link bandwidth equal to at least R · wi/(
wj), where R is the transmission rate of the link in packets/sec.
What then is the maximum delay that a packet will experience
while waiting for service in the WFQ (that is, after passing through
the leaky bucket)? Let us focus on flow 1. Suppose that flow 1's
token bucket is initially full. A burst of b1 packets then arrives to the
leaky bucket policer for flow 1. These packets remove all of the
tokens (without wait) from the leaky bucket and then join the WFQ
waiting area for flow 1. Since these b1 packets are served at a rate
of at least R · w1/(wj) packet/sec., the last of these packets will
then have a maximum delay, dmax, until its transmission is
completed, where

The justification of this formula is that if there are b1 packets in the
queue and packets are being serviced (removed) from the queue
at a rate of at least R · w1/ (wj) packets per second, then the
amount of time until the last bit of the last packet is transmitted

cannot be more than b1/(R · w1/(wj)). A homework problem asks
you to prove that as long as r1 < R · w1/(wj), then dmax is indeed
the maximum delay that any packet in flow 1 will ever experience
in the WFQ queue.

© 2000-2001 by Addison Wesley Longman
A division of Pearson Education

Online Book

6.7: Integrated Services
In the previous sections, we identified both the principles and the mechanisms
used to provide quality of service in the Internet. In this section, we consider how
these ideas are exploited in a particular architecture for providing quality of service
in the Internet--the so-called Intserv (Integrated Services) Internet architecture.
Intserv is a framework developed within the IETF to provide individualized quality-
of-service guarantees to individual application sessions. Two key features lie at
the heart of Intserv architecture:

• Reserved resources. A router is required to know what amounts of its
resources (buffers, link bandwidth) are already reserved for ongoing
sessions.

• Call setup. A session requiring QoS guarantees must first be able to
reserve sufficient resources at each network router on its source-to-
destination path to ensure that its end-to-end QoS requirement is met. This
call setup (also known as call admission) process requires the participation
of each router on the path. Each router must determine the local resources
required by the session, consider the amounts of its resources that are
already committed to other ongoing sessions, and determine whether it has
sufficient resources to satisfy the per-hop QoS requirement of the session
at this router without violating local QoS guarantees made to an already-
admitted session.

Figure 6.31 depicts the call setup process.

Figure 6.31: The call setup process
Let us now consider the steps involved in call admission in more detail:

1. Traffic characterization and specification of the desired QoS. In order for a
router to determine whether or not its resources are sufficient to meet the
QoS requirements of a session, that session must first declare its QoS
requirement, as well as characterize the traffic that it will be sending into the
network, and for which it requires a QoS guarantee. In the Intserv
architecture, the so-called Rspec (R for reserved) defines the specific QoS
being requested by a connection; the so-called Tspec (T for traffic)
characterizes the traffic the sender will be sending into the network, or the
receiver will be receiving from the network. The specific form of the Rspec
and Tspec will vary, depending on the service requested, as discussed
below. The Tspec and Rspec are defined in part in RFC 2210 and RFC
2215.

2. Signaling for call setup. A session’s Tspec and Rspec must be carried to
the routers at which resources will be reserved for the session. In the
Internet, the RSVP protocol, which is discussed in detail in the next section,
is currently the signaling protocol of choice. RFC 2210 describes the use of
the RSVP resource reservation protocol with the Intserv architecture.

3. Per-element call admission. Once a router receives the Tspec and Rspec
for a session requesting a QoS guarantee, it can determine whether or not
it can admit the call. This call admission decision will depend on the traffic
specification, the requested type of service, and the existing resource
commitments already made by the router to ongoing sessions. Per-element
call admission is shown in Figure 6.32.

Figure 6.32: Per-element call behavior
The Intserv architecture defines two major classes of service: guaranteed service
and controlled-load service. We will see shortly that each provides a very different
form of a quality of service guarantee.

6.7.1: Guaranteed Quality of Service
The guaranteed service specification, defined in RFC 2212, provides firm
(mathematically provable) bounds on the queuing delays that a packet will
experience in a router. While the details behind guaranteed service are rather
complicated, the basic idea is really quite simple. To a first approximation, a
source’s traffic characterization is given by a leaky bucket (see Section 6.6) with
parameters (r,b) and the requested service is characterized by a transmission
rate, R, at which packets will be transmitted. In essence, a session requesting
guaranteed service is requiring that the bits in its packet be guaranteed a
forwarding rate of R bits/sec. Given that traffic is specified using a leaky bucket
characterization, and a guaranteed rate of R is being requested, it is also possible
to bound the maximum queuing delay at the router. Recall that with a leaky bucket
traffic characterization, the amount of traffic (in bits) generated over any interval of
length t is bounded by rt + b. Recall also from Section 6.6, that when a leaky
bucket source is fed into a queue that guarantees that queued traffic will be
serviced at least at a rate of R bits per second, the maximum queuing delay
experienced by any packet will be bounded by b/R, as long as R is greater than r.
The actual delay bound guaranteed under the guaranteed service definition is
slightly more complicated, due to packetization effects (the simple b/R bound
assumes that data is in the form of a fluid-like flow rather than discrete packets),
the fact that the traffic arrival process is subject to the peak rate limitation of the
input link (the simple b/R bound assumes that a burst of b bits can arrive in zero
time), and possible additional variations in a packet’s transmission time.

6.7.2: Controlled-Load Network Service
A session receiving controlled-load service will receive "a quality of service closely
approximating the QoS that same flow would receive from an unloaded network
element" [RFC 2211]. In other words, the session may assume that a "very high
percentage" of its packets will successfully pass through the router without being

dropped and will experience a queuing delay in the router that is close to zero.
Interestingly, controlled load service makes no quantitative guarantees about
performance--it does not specify what constitutes a "very high percentage" of
packets nor what quality of service closely approximates that of an unloaded
network element.
The controlled-load service targets real-time multimedia applications that have
been developed for today’s Internet. As we have seen, these applications perform
quite well when the network is unloaded, but rapidly degrade in performance as
the network becomes more loaded.

Online Book

Online Book

6.8: RSVP
We learned in section 6.7 that in order for a network to provide QoS guarantees,
there must be a signaling protocol that allows applications running in hosts to
reserve resources in the Internet. RSVP [RFC 2205; Zhang 1993], is such a
signaling protocol for the Internet.

When people talk about resources in the Internet context, they usually mean link
bandwidth and router buffers. To keep the discussion concrete and focused,
however, we shall assume that the word resource is synonymous with bandwidth.
For our pedagogic purposes, RSVP stands for bandwidth reservation protocol.

6.8.1: The Essence of RSVP
The RSVP protocol allows applications to reserve bandwidth for their data flows. It
is used by a host, on the behalf of an application data flow, to request a specific
amount of bandwidth from the network. RSVP is also used by the routers to
forward bandwidth reservation requests. To implement RSVP, RSVP software
must be present in the receivers, senders, and routers. The two principal
characteristics of RSVP are:

1. It provides reservations for bandwidth in multicast trees (unicast is
handled as a degenerate case of multicast).

2. It is receiver-oriented, that is, the receiver of a data flow initiates and
maintains the resource reservation used for that flow.

These two characteristics are illustrated in Figure 6.33. The diagram shows a
multicast tree with data flowing from the top of the tree to hosts at the bottom of
the tree. Although data originates from the sender, the reservation messages
originate from the receivers. When a router forwards a reservation message
upstream toward the sender, the router may merge the reservation message with

other reservation messages arriving from downstream.

Figure 6.33: RSVP: Multicast- and receiver-oriented
Before discussing RSVP in greater detail, we need to consider the notion of a
session. As with RTP, a session can consist of multiple multicast data flows. Each
sender in a session is the source of one or more data flows; for example, a sender
might be the source of a video data flow and an audio data flow. Each data flow in
a session has the same multicast address. To keep the discussion concrete, we
assume that routers and hosts identify the session to which a packet belongs by
the packet’s multicast address. This assumption is somewhat restrictive; the actual
RSVP specification allows for more general methods to identify a session. Within a
session, the data flow to which a packet belongs also needs to be identified. This
could be done, for example, with the flow identifier field in IPv6.
What RSVP Is Not
We emphasize that the RSVP standard [RFC 2205] does not specify how the
network provides the reserved bandwidth to the data flows. It is merely a protocol
that allows the applications to reserve the necessary link bandwidth. Once the
reservations are in place, it is up to the routers in the Internet to actually provide
the reserved bandwidth to the data flows. This provisioning would likely be done
with the scheduling mechanisms (priority scheduling, weighted fair queuing, etc.)
discussed in Section 6.6.
It is also important to understand that RSVP is not a routing protocol--it does not
determine the links in which the reservations are to be made. Instead it depends
on an underlying routing protocol (unicast or multicast) to determine the routes for
the flows. Once the routes are in place, RSVP can reserve bandwidth in the links
along these routes. (We shall see shortly that when a route changes, RSVP re-
reserves resources.) Once the reservations are in place, the routers’ packet
schedulers must actually provide the reserved bandwidth to the data flows. Thus,
RSVP is only one piece--albeit an important piece--in the QoS guarantee puzzle.
RSVP is sometimes referred to as a signaling protocol. By this it is meant that
RSVP is a protocol that allows hosts to establish and tear down reservations for
data flows. The term "signaling protocol" comes from the jargon of the circuit-
switched telephony community.
Heterogeneous Receivers
Some receivers can receive a flow at 28.8 Kbps, others at 128 Kbps, and yet

others at 10 Mbps or higher. This heterogeneity of the receivers poses an
interesting question. If a sender is multicasting a video to a group of
heterogeneous receivers, should the sender encode the video for low quality at
28.8 Kbps, for medium quality at 128 Kbps, or for high quality at 10 Mbps? If the
video is encoded at 10 Mbps, then only the users with 10 Mbps access will be able
to watch the video. On the other hand, if the video is encoded at 28.8 Kbps, then
the 10 Mbps users will have to see a low-quality image when they know they can
see something much better.
To resolve this dilemma it is often suggested that video and audio be encoded in
layers. For example, a video might be encoded into two layers: a base layer and
an enhancement layer. The base layer could have a rate of 20 Kbps whereas the
enhancement layer could have a rate of 100 Kbps; in this manner receivers with
28.8 Kbps access could receive the low-quality base-layer image, and receivers
with 128 Kbps could receive both layers to construct a high-quality image.
We note that the sender does not need to know the receiving rates of all the
receivers. It only needs to know the maximum rate of all its receivers. The sender
encodes the video or audio into multiple layers and sends all the layers up to the
maximum rate into multicast tree. The receivers pick out the layers that are
appropriate for their receiving rates. In order to not excessively waste bandwidth in
the network’s links, the heterogeneous receivers must communicate to the
network the rates they can handle. We shall see that RSVP gives foremost
attention to the issue of reserving resources for heterogeneous receivers.

6.8.2: A Few Simple Examples
Let us first describe RSVP in the context of a concrete one-to-many multicast
example. Suppose there is a source that is transmitting the video of a major
sporting event into the Internet. This session has been assigned a multicast
address, and the source stamps all of its outgoing packets with this multicast
address. Also suppose that an underlying multicast routing protocol has
established a multicast tree from the sender to four receivers as shown below; the
numbers next to the receivers are the rates at which the receivers want to receive
data. Let us also assume that the video is layered and encoded to accommodate
this heterogeneity of receiver rates.
Crudely speaking, RSVP operates as follows for this example. Each receiver
sends a reservation message upstream into the multicast tree. This reservation
message specifies the rate at which the receiver would like to receive the data
from the source. When the reservation message reaches a router, the router
adjusts its packet scheduler to accommodate the reservation. It then sends a
reservation upstream. The amount of bandwidth reserved upstream from the
router depends on the bandwidths reserved downstream. In the example in Figure
6.34, receivers R1, R2, R3, and R4 reserve 20 Kbps, 100 Kbps, 3 Mbps, and 3
Mbps, respectively. Thus router D’s downstream receivers request a maximum of
3 Mbps. For this one-to-many transmission, Router D sends a reservation
message to Router B requesting that Router B reserve 3 Mbps on the link
between the two routers. Note that only 3 Mbps are reserved and not 3+3=6
Mbps; this is because receivers R3 and R4 are watching the same sporting event,
so their reservations may be merged. Similarly, Router C requests that Router B

reserve 100 Kbps on the link between routers B and C; the layered encoding
ensures that receiver R1’s 20 Kbps stream is included in the 100 Kbps stream.
Once Router B receives the reservation message from its downstream routers and
passes the reservations to its schedulers, it sends a new reservation message to
its upstream router, Router A. This message reserves 3 Mbps of bandwidth on the
link from Router A to Router B, which is again the maximum of the downstream
reservations.

Figure 6.34: An RSVP example
We see from this first example that RSVP is receiver-oriented, that is, the
receiver of a data flow initiates and maintains the resource reservation used for
that flow. Note that each router receives a reservation message from each of its
downstream links in the multicast tree and sends only one reservation message
into its upstream link.
As another example, suppose that four persons are participating in a video
conference, as shown in Figure 6.35. Each person has three windows open on her
computer to look at the other three persons. Suppose that the underlying routing
protocol has established the multicast tree among the four hosts as shown in the
diagram below. Finally, suppose each person wants to see each of the videos at 3
Mbps. Then on each of the links in this multicast tree, RSVP would reserve 9
Mbps in one direction and 3 Mbps in the other direction. Note that RSVP does not
merge reservations in this example, as each person wants to receive three distinct
streams.

Figure 6.35: An RSVP video conference example
Now consider an audio conference among the same four persons over the same
multicast tree. Suppose b bps are needed for an isolated audio stream. Because
in an audio conference it is rare that more than two persons speak at the same
time, it is not necessary to reserve 3 · b bps into each receiver; 2 · b should
suffice. Thus, in this last application we can conserve bandwidth by merging
reservations.
Call Admission
Just as the manager of a restaurant should not accept reservations for more
tables than the restaurant has, the amount of bandwidth on a link that a router
reserves should not exceed the link's capacity. Thus whenever a router receives a
new reservation message, it must first determine if its downstream links on the
multicast tree can accommodate the reservation. This admission test is
performed whenever a router receives a reservation message. If the admission
test fails, the router rejects the reservation and returns an error message to the
appropriate receiver(s).
RSVP does not define the admission test, but it assumes that the routers perform
such a test and that RSVP can interact with the test.

6.8.3: Path Messages
So far we have only discussed the RSVP reservation messages. These messages
originate at the receivers and flow upstream toward the senders. Path messages
are another important RSVP message type; they originate at the senders and flow
downstream toward the receivers.
The principal purpose of the path messages is to let the routers know the links on
which they should forward the reservation messages. Specifically, a path message
sent within the multicast tree from a Router A to a Router B contains Router A's
unicast IP address. Router B puts this address in a path-state table, and when it
receives a reservation message from a downstream node it accesses the table
and learns that it should send a reservation message up the multicast tree to
Router A. In the future some routing protocols may supply reverse path forwarding
information directly, replacing the reverse-routing function of the path state.
Along with some other information, the path messages also contain a sender

Tspec, which defines the traffic characteristics of the data stream that the sender
will generate (see Section 6.7). This Tspec can be used to prevent over-
reservation.

6.8.4: Reservation Styles
Through its reservation style, a reservation message specifies whether merging
of reservations from the same session is permissible. A reservation style also
specifies the session senders from which a receiver desires to receive data. Recall
that a router can identify the sender of a datagram from the datagram’s source IP
address.
There are currently three reservation styles defined: wildcard-filter style, fixed-filter
style, and shared-explicit style.

• Wildcard-filter style. When a receiver uses the wildcard-filter style in its
reservation message, it is telling the network that it wants to receive all
flows from all upstream senders in the session and that its bandwidth
reservation is to be shared among the senders.

• Fixed-filter style. When a receiver uses the fixed-filter style in its reservation
message, it specifies a list of senders from which it wants to receive a data
flow along with a bandwidth reservation for each of these senders. These
reservations are distinct, that is, they are not to be shared.

• Shared-explicit style. When a receiver uses the shared-explicit style in its
reservation message, it specifies a list of senders from which it wants to
receive a data flow along with a single bandwidth reservation. This
reservation is to be shared among all the senders in the list.

Shared reservations, created by the wildcard filter and the shared-explicit styles,
are appropriate for a multicast session whose sources are unlikely to transmit
simultaneously. Packetized audio is an example of an application suitable for
shared reservations; because a limited number of people talk at once, each
receiver might issue a wildcard-filter or a shared-explicit reservation request for
twice the bandwidth required for one sender (to allow for overspeaking). On the
other hand, the fixed-filter reservation, which creates distinct reservations for the
flows from different senders, is appropriate for video teleconferencing.
Examples of Reservation Styles
Following the RSVP Internet RFC, let’s next consider a few examples of the three
reservation styles. In Figure 6.36, a router has two incoming interfaces, labeled A
and B, and two outgoing interfaces, labeled C and D. The many-to-many multicast
session has three senders--S1, S2, and S3--and three receivers--R1, R2, and R3.
Figure 6.36 also shows that interface D is connected to a LAN.

Figure 6.36: Sample scenario for RSVP reservation styles
Suppose first that all of the receivers use the wildcard-filter reservation. As shown
in the Figure 6.37, receivers R1, R2, and R3 want to reserve 4b, 3b, and 2b,
respectively, where b is a given bit rate. In this case, the router reserves 4b on
interface C and 3b on interface D. Because of the wildcard-filter reservation, the
two reservations from R2 and R3 are merged for interface D. The larger of the two
reservations is used rather than the sum of reservations. The router then sends a
reservation message upstream to interface A and another to interface B; each of
these reservation message requests is 4b, which is the larger of 3b and 4b.

Figure 6.37: Wildcard filter reservations
Now suppose that all of the receivers use the fixed-filter reservation. As shown in
Figure 6.38, receiver R1 wants to reserve 4b for source S1 and 5b for source S2;
also shown in the figure are the reservation requests from R2 and R3. Because of
the fixed-filter style, the router reserves two disjoint chunks of bandwidth on
interface C: one chunk of 4b for S1 and another chunk of 5b for S2. Similarly, the
router reserves two disjoint chunks of bandwidth on interface D: one chunk of 3b
for S1 (the maximum of b and 3b) and one chunk of b for S3. On interface A, the
router sends a message with a reservation for S1 of 4b (the maximum of 3b and
4b). On interface B, the router sends a message with a reservation of 5b for S2
and b for S3.

Figure 6.38: Fixed filter reservations
Finally, suppose that each of the receivers use the shared-explicit reservation. As
shown in Figure 6.39, receiver R1 desires a pipe of 1b, which is to be shared
between sources S1 and S2; receiver R2 desires a pipe of 3b to be shared
between sources S1 and S3; and receiver R3 wants a pipe of 2b for source S2.
Because of the shared-explicit style, the reservations from R2 and R3 are merged
for interface D. Only one pipe is reserved on interface D, although it is reserved at
the maximum of the reservation rates. RSVP will reserve on interface B a pipe of
3b to be shared by S2 and S3; note that 3b is the maximum of the downstream
reservations for S2 and S3.

Figure 6.39: Shared-explicit reservations
In each of the above examples the three receivers used the same reservation
style. Because receivers make independent decisions, the receivers participating
in a session could use different styles. RSVP does not permit, however,
reservations of different styles to be merged.

The Principle of Soft State

The reservations in the routers and hosts are maintained with soft states. By this it is meant that
each reservation for bandwidth stored in a router has an associated timer. If a reservation’s timer
expires, then the reservation is removed. If a receiver desires to maintain a reservation, it must
periodically refresh the reservation by sending reservation messages. This soft-state principle is
also used by other protocols in computer networking. As we learned in Chapter 5, for the routing

tables in transparent bridges, the entries are refreshed by data packets that arrive to the bridge;
entries that are not refreshed are timed-out. On the other hand, if a protocol takes explicit actions
to modify or release state, then the protocol makes use of hard state. Hard state is employed in
virtual circuit networks (VC), in which explicit actions must be taken to adjust VC tables in switching
nodes to establish and tear down VCs.

6.8.5: Transport of Reservation Messages
RSVP messages are sent hop-by-hop directly over IP. Thus the RSVP message is
placed in the information field of the IP datagram; the protocol number in the IP
datagram is set to 46. Because IP is unreliable, RSVP messages can be lost. If an
RSVP path or reservation message is lost, a replacement refresh message should
arrive soon.
An RSVP reservation message that originates in a host will have the host’s IP
address in the source address field of the encapsulating IP datagram. It will have
the IP address of the first router along the reserve path in the multicast tree in the
destination address in the encapsulating IP datagram. When the IP datagram
arrives at the first router, the router strips off the IP fields and passes the
reservation message to the router’s RSVP module. The RSVP module examines
the message’s multicast address (that is, session identifier) and style type,
examines its current state, and then acts appropriately; for example, the RSVP
module may merge the reservation with a reservation originating from another
interface and then send a new reservation message to the next router upstream in
the multicast tree.
Insufficient Resource
Because a reservation request that fails an admission test may embody a number
of requests merged together, a reservation error must be reported to all the
concerned receivers. These reservation errors are reported within ResvError
messages. The receivers can then reduce the amount of resource that they
request and try reserving again. The RSVP standard provides mechanisms to
allow the backtracking of the reservations when insufficient resources are
available; unfortunately, these mechanisms add significant complexity to the
RSVP protocol. Furthermore, RSVP suffers from the so-called killer-reservation
problem, whereby a receiver requests a large reservation over and over again,
each time getting its reservation rejected due to lack of sufficient resources.
Because this large reservation may have been merged with smaller reservations
downstream, the large reservation may be excluding smaller reservations from
being established. To solve this thorny problem, RSVP uses the ResvError
messages to establish additional state in routers, called blockade state. Blockade
state in a router modifies the merging procedure to omit the offending reservation
from the merge, allowing a smaller request to be forwarded and established. The
blockade state adds yet further complexity to the RSVP protocol and its
implementation.

Online Book

6.9: Differentiated Services
In the previous section we discussed how RSVP can be used to reserve
per-flow resources at routers within the network. The ability to request and
reserve per-flow resources, in turn, makes it possible for the Intserv
framework to provide quality-of-service guarantees to individual flows. As
work on Intserv and RSVP proceeded, however, researchers involved with
these efforts (for example, [Zhang 1998]) have begun to uncover some of
the difficulties associated with the Intserv model and per-flow reservation of
resources:

• Scalability. Per-flow resource reservation using RSVP implies the
need for a router to process resource reservations and to maintain
per-flow state for each flow passing though the router. With recent
measurements [Thomson 1997] suggesting that even for an OC-3
speed link, approximately 256,000 source-destination pairs might be
seen in one minute in a backbone router, per-flow reservation
processing represents a considerable overhead in large networks.

• Flexible service models. The Intserv framework provides for a small
number of prespecified service classes. This particular set of service
classes does not allow for more qualitative or relative definitions of
service distinctions (for example, "Service class A will receive
preferred treatment over service class B."). These more qualitative
definitions might better fit our intuitive notion of service distinction
(for example, first class versus coach class in air travel; "platinum"
versus "gold" versus "standard" credit cards).

These considerations have led to the recent so-called "diffserv"
(Differentiated Services) activity [Diffserv 1999] within the Internet
Engineering Task Force. The Diffserv working group is developing an
architecture for providing scalable and flexible service differentiation--that
is, the ability to handle different "classes" of traffic in different ways within
the Internet. The need for scalability arises from the fact that hundreds of
thousands of simultaneous source-destination traffic flows may be present
at a backbone router of the Internet. We will see shortly that this need is
met by placing only simple functionality within the network core, with more
complex control operations being implemented at the "edge" of the network.
The need for flexibility arises from the fact that new service classes may
arise and old service classes may become obsolete. The differentiated
services architecture is flexible in the sense that it does not define specific
services or service classes (for example, as is the case with Intserv).
Instead, the differentiated services architecture provides the functional
components, that is, the pieces of a network architecture, with which such

services can be built. Let us now examine these components in detail.

6.9.1: Differentiated Services: A Simple Scenario
To set the framework for defining the architectural components of the
differentiated service model, let us begin with the simple network shown in
Figure 6.40. In the following, we describe one possible use of the Diffserv
components. Many other possible variations are possible, as described in
RFC 2475. Our goal here is to provide an introduction to the key aspects of
differentiated services, rather than to describe the architectural model in
exhaustive detail.

Figure 6.40: A simple diffserv network example
The differentiated services architecture consists of two sets of functional
elements:

• Edge functions: Packet classification and traffic conditioning. At the
incoming "edge" of the network (that is, at either a Diffserv-capable
host that generates traffic or at the first Diffserv-capable router that
the traffic passes through), arriving packets are marked. More
specifically, the Differentiated Service (DS) field of the packet header
is set to some value. For example, in Figure 6.40, packets being sent
from H1 to H3 might be marked at R1, while packets being sent from
H2 to H4 might be marked at R2. The mark that a packet receives
identifies the class of traffic to which it belongs. Different classes of
traffic will then receive different service within the core network. The
RFC defining the differentiated service architecture, RFC 2475, uses
the term behavior aggregate rather than "class of traffic." After
being marked, a packet may then be immediately forwarded into the
network, delayed for some time before being forwarded, or it may be
discarded. We will see shortly that many factors can influence how a
packet is to be marked, and whether it is to be forwarded

immediately, delayed, or dropped.

• Core function: Forwarding. When a DS-marked packet arrives at a
Diffserv-capable router, the packet is forwarded onto its next hop
according to the so-called per-hop behavior associated with that
packet’s class. The per-hop behavior influences how a router’s
buffers and link bandwidth are shared among the competing classes
of traffic. A crucial tenet of the Diffserv architecture is that a router’s
per-hop behavior will be based only on packet markings, that is, the
class of traffic to which a packet belongs. Thus, if packets being sent
from H1 to H3 in Figure 6.40 receive the same marking as packets
from H2 to H4, then the network routers treat these packets as an
aggregate, without distinguishing whether the packets originated at
H1 or H2. For example, R3 would not distinguish between packets
from H1 and H2 when forwarding these packets on to R4. Thus, the
differentiated service architecture obviates the need to keep router
state for individual source-destination pairs--an important
consideration in meeting the scalability requirement discussed at the
beginning of this section.

An analogy might prove useful here. At many large-scale social events (for
example, a large public reception, a large dance club or discoth�TXH��D

concert, a football game), people entering the event receive a "pass" of one
type or another. There are VIP passes for Very Important People; there are
over-18 passes for people who are 18 years old or older (for example, if
alcoholic drinks are to be served); there are backstage passes at concerts;
there are press passes for reporters; there is an ordinary pass for the
Ordinary Person. These passes are typically distributed on entry to the
event, that is, at the "edge" of the event. It is here at the edge where
computationally intensive operations such as paying for entry, checking for
the appropriate type of invitation, and matching an invitation against a piece
of identification, are performed. Furthermore, there may be a limit on the
number of people of a given type that are allowed into an event. If there is
such a limit, people may have to wait before entering the event. Once
inside the event, one’s pass allows one to receive differentiated service at
many locations around the event--a VIP is provided with free drinks, a
better table, free food, entry to exclusive rooms, and fawning service.
Conversely, an Ordinary Person is excluded from certain areas, pays for
drinks, and receives only basic service. In both cases, the service received
within the event depends solely on the type of one’s pass. Moreover, all
people within a class are treated alike.

6.9.2: Traffic Classification and Conditioning
In the differentiated services architecture, a packet’s mark is carried within
the DS field in the IPv4 or IPv6 packet header. The definition of the DS field
is intended to supersede the earlier definitions of the IPv4 Type-of-Service
field (see Section 4.4) and the IPv6 Traffic Class Field (see Section 4.7).
The structure of this eight-bit field is shown below in Figure 6.41.

Figure 6.41: Structure of the DS field in IVv4 and IPv6 header
The six-bit differentiated service code point (DSCP) subfield determines the
so-called per-hop behavior (see Section 6.9.3) that the packet will receive
within the network. The two-bit CU subfield of the DS field is currently
unused. Restrictions are placed on the use of half of the DSCP values in
order to preserve backward compatibility with the IPv4 ToS field use; see
RFC 2474 for details. For our purposes here, we need only note that a
packet’s mark, its "code point" in the Diffserv terminology, is carried in the
eight-bit Diffserv field.
As noted above, a packet is marked by setting its Diffserv field value at the
edge of the network. This can either happen at a Diffserv-capable host or at
the first point at which the packet encounters a Diffserv-capable router. For
our discussion here, we will assume marking occurs at an edge router that
is directly connected to a sender, as shown in Figure 6.40.
Figure 6.42 provides a logical view of the classification and marking
function within the edge router. Packets arriving to the edge router are first
"classified." The classifier selects packets based on the values of one or
more packet header fields (for example, source address, destination
address, source port, destination port, protocol ID) and steers the packet to
the appropriate marking function. The DS field value is then set accordingly
at the marker. Once packets are marked, they are then forwarded along
their route to the destination. At each subsequent Diffserv-capable router,
marked packets then receive the service associated with their marks. Even
this simple marking scheme can be used to support different classes of
service within the Internet. For example, all packets coming from a certain
set of source IP addresses (for example, those IP addresses that have paid
for an expensive priority service within their ISP) could be marked on entry
to the ISP, and then receive a specific forwarding service (for example, a
higher priority forwarding) at all subsequent Diffserv-capable routers. A
question not addressed by the Diffserv working group is how the classifier
obtains the "rules" for such classification. This could be done manually, that
is, the network administrator could load a table of source addresses that
are to be marked in a given way into the edge routers, or this could be done
under the control of some yet-to-be-specified signaling protocol.

Figure 6.42: Simple packet classification and marking
In Figure 6.42, all packets meeting a given header condition receive the
same marking, regardless of the packet arrival rate. In some scenarios, it
might also be desirable to limit the rate at which packets bearing a given
marking are injected into the network. For example, an end user might
negotiate a contract with its ISP to receive high-priority service, but at the

same time agree to limit the maximum rate at which it would send packets
into the network. That is, the end user agrees that its packet sending rate
would be within some declared traffic profile. The traffic profile might
contain a limit on the peak rate, as well as the burstiness of the packet flow,
as we saw in Section 6.6 with the leaky bucket mechanism. As long as the
user sends packets into the network in a way that conforms to the
negotiated traffic profile, the packets receive their priority marking. On the
other hand, if the traffic profile is violated, the out-of-profile packets might
be marked differently, might be shaped (for example, delayed so that a
maximum rate constraint would be observed), or might be dropped at the
network edge. The role of the metering function, shown in Figure 6.43, is
to compare the incoming packet flow with the negotiated traffic profile and
to determine whether a packet is within the negotiated traffic profile. The
actual decision about whether to immediately re-mark, forward, delay, or
drop a packet is not specified in the Diffserv architecture. The Diffserv
architecture only provides the framework for performing packet marking and
shaping/dropping; it does not mandate any specific policy for what marking
and conditioning (shaping or dropping) is actually to be done. The hope, of
course, is that the Diffserv architectural components are together flexible
enough to accommodate a wide and constant evolving set of services to
end users. For a discussion of a policy framework for Diffserv, see [Rajan
1999].

Figure 6.43: Logical view of packet classification and traffic conditioning at the edge router

6.9.3: Per-Hop Behaviors
So far, we have focused on the edge functions in the differentiated services
architecture. The second key component of the Diffserv architecture
involves the per-hop behavior performed by Diffserv-capable routers. The
per-hop behavior (PHB) is rather cryptically, but carefully, defined as "a
description of the externally observable forwarding behavior of a Diffserv
node applied to a particular Diffserv behavior aggregate" [RFC 2475].
Digging a little deeper into this definition, we can see several important
considerations embedded within:

• A PHB can result in different classes of traffic receiving different
performance (that is, different externally observable forwarding
behavior).

• While a PHB defines differences in performance (behavior) among

classes, it does not mandate any particular mechanism for achieving
these behaviors. As long as the externally observable performance
criteria are met, any implementation mechanism and any
buffer/bandwidth allocation policy can be used. For example, a PHB
would not require that a particular packet queuing discipline, for
example, a priority queue versus a weighted-fair-queuing queue
versus a first-come-first-served queue, be used to achieve a
particular behavior. The PHB is the "end," to which resource
allocation and implementation mechanisms are the "means."

• Differences in performance must be observable, and hence
measurable.

An example of a simple PHB is one that guarantees that a given class of
marked packets receive at least x% of the outgoing link bandwidth over
some interval of time. Another per-hop behavior might specify that one
class of traffic will always receive strict priority over another class of traffic--
that is, if a high-priority packet and a low-priority packet are present in a
router’s queue at the same time, the high-priority packet will always leave
first. Note that while a priority queuing discipline might be a natural choice
for implementing this second PHB, any queuing discipline that implements
the required observable behavior is acceptable.
Currently, two PHBs are under active discussion within the Diffserv working
group: an expedited forwarding (EF) PHB [RFC 2598] and an assured
forwarding (AF) PHB [RFC 2597]:

• The expedited forwarding PHB specifies that the departure rate of
a class of traffic from a router must equal or exceed a configured
rate. That is, during any interval of time, the class of traffic can be
guaranteed to receive enough bandwidth so that the output rate of
the traffic equals or exceeds this minimum configured rate. Note that
the EF per-hop behavior implies some form of isolation among traffic
classes, as this guarantee is made independently of the traffic
intensity of any other classes that are arriving to a router. Thus, even
if the other classes of traffic are overwhelming router and link
resources, enough of those resources must still be made available to
the class to ensure that it receives its minimum rate guarantee. EF
thus provides a class with the simple abstraction of a link with a
minimum guaranteed link bandwidth.

• The assured forwarding PHB is more complex. AF divides traffic
into four classes, where each AF class is guaranteed to be provided
with some minimum amount of bandwidth and buffering. Within each
class, packets are further partitioned into one of three "drop
preference" categories. When congestion occurs within an AF class,
a router can then discard (drop) packets based on their drop
preference values. See RFC 2597 for details. By varying the amount
of resources allocated to each class, an ISP can provide different

levels of performance to the different AF traffic classes.

The AF PHB could be used as a building block to provide different levels of
service to the end systems, for example, Olympic-like gold, silver, and
bronze classes of service. But what would be required to do so? If gold
service is indeed going to be "better" (and presumably more expensive!)
than silver service, then the ISP must ensure that gold packets receive
lower delay and/or loss than silver packets. Recall, however, that a
minimum amount of bandwidth and buffering are to be allocated to each
class. What would happen if gold service was allocated x% of a link’s
bandwidth and silver service was allocated x/2% of the link’s bandwidth, but
the traffic intensity of gold packets was 100 times higher than that of silver
packets? In this case, it is likely that silver packets would receive better
performance than the gold packets! (This is an outcome that leaves the
silver service buyers happy, but the high-spending gold service buyers
extremely unhappy!) Clearly, when creating a service out of a PHB, more
than just the PHB itself will come into play. In this example, the
dimensioning of resources--determining how much resources will be
allocated to each class of service--must be done hand-in-hand with
knowledge about the traffic demands of the various classes of traffic.

6.9.4: A Beginning
The differentiated services architecture is still in the early stages of its
development and is rapidly evolving. RFCs 2474 and 2475 define the
fundamental framework of the Diffserv architecture but themselves are
likely to evolve as well. The ways in which PHBs, edge functionality, and
traffic profiles can be combined to provide an end-to-end service, such as a
virtual leased line service [RFC 2638] or an Olympic-like gold/silver/bronze
service [RFC 2597], are still under investigation. In our discussion above,
we have assumed that the Diffserv architecture is deployed within a single
administrative domain. The (typical) case where an end-to-end service
must be fashioned from a connection that crosses several administrative
domains, and through non-Diffserv-capable routers, pose additional
challenges beyond those described above.

© 2000-2001 by Addison Wesley Longman
A division of Pearson Education

Online Book

6.10: Summary
Multimedia networking is perhaps the most exciting development in the Internet
today. People throughout the world are spending less time in front of their radios and

televisions and are instead turning to the Internet to receive audio and video
emissions, both live and prerecorded. As high-speed access penetrates more
residences, this trend will continue--couch potatoes throughout the world will access
their favorite video programs through the Internet rather than through the traditional
broadcast distribution channels. In addition to audio and video distribution, the
Internet is also being used to transport phone calls. In fact, over the next 10 years
the Internet may render the traditional circuit-switched telephone system nearly
obsolete in many countries. The Internet will not only provide phone service for less
money, but will also provide numerous value-added services, such as video
conferencing, online directory services, and voice messaging services.

In Section 6.1 we classified multimedia applications into three categories: streaming
stored audio and video; one-to-many transmission of real-time audio and video; and
real-time interactive audio and video. We emphasized that multimedia applications
are delay-sensitive and loss-tolerant--characteristics that are very different from
static-content applications that are delay tolerant and loss intolerant. We also
discussed some of the hurdles that today’s best-effort Internet places before
multimedia applications. We surveyed several proposals to overcome these hurdles,
including simply improving the existing networking infrastructure (by adding more
bandwidth, more network caches, and deploying multicast), adding functionality to
the Internet so that applications can reserve end-to-end resources (and so that the
network can honor these reservations), and finally, introducing service classes to
provide service differentiation.

In Sections 6.2-6.4 we examined architectures and mechanisms for multimedia
networking in a best-effort network. In Section 6.2 we surveyed several architectures
for streaming stored audio and video. We discussed user interaction--such as
pause/resume, repositioning, and visual fast forward--and provided an introduction to
RTSP, a protocol that provides client-server interaction to streaming applications. In
Section 6.3 we examined how interactive real-time applications can be designed to
run over a best-effort network. We saw how a combination of client buffers, packet
sequence numbers, and timestamps can greatly alleviate the effects of network-
induced jitter. We also studied how forward error correction and packet interleaving
can improve user-perceived performance when a fraction of the packets are lost or
are significantly delayed. In Section 6.4 we explored media chunk encapsulation,
and we investigated in some detail one of the more important standards for media
encapsulation, namely, RTP. We also looked at how RTP fits into the emerging
H.323 architecture for interactive real-time conferencing.

Sections 6.5-6.9 looked at how the Internet can evolve to provide guaranteed QoS to
its applications. In Section 6.5 we identified several principles for providing QoS to
multimedia applications. These principles include packet marking and classification,
isolation of packet flows, efficient use of resources, and call admission. In Section
6.6 we surveyed a variety of scheduling policies and policing mechanisms that can
provide the foundation of a QoS networking architecture. The scheduling policies
include priority scheduling, round-robin scheduling, and weighted-fair queuing. We
then explored the leaky bucket as a policing mechanism, and showed how the leaky

bucket and weighted-fair queuing can be combined to bound the maximum delay a
packet experiences at the output queue of a router.

In Sections 6.7-6.9 we showed how these principles and mechanisms have led to
the definitions of new standards for providing QoS in the Internet. The first class of
these standards is the so-called Intserv standard, which includes two services--the
guaranteed QoS service and the controlled load service. Guaranteed QoS service
provides hard, mathematical provable guarantees on the delay of each of the
individual packets in a flow. Controlled-load service does not provide any hard
guarantees, but instead ensures that most of an application’s packets will pass
through a seemingly uncongested Internet. The Intserv architecture requires a
signaling protocol for reserving bandwidth and buffer resources within the network.
In Section 6.8 we examined in some detail an Internet signaling protocol for
reservations, namely, RSVP. We indicated that one of the drawbacks of the Intserv
architecture is the need for routers to maintain per-flow state, which may not scale.
We concluded the chapter in Section 6.9 by outlining a recent and promising
proposal for providing QoS in the Internet, namely, the Diffserv architecture. The
Diffserv architecture does not require routers to maintain per-flow state; it instead
classifies packets into a small number of aggregate classes, to which routers provide
per-hop behavior. The Diffserv architecture is still in its infancy, but because the
architecture requires relatively minor changes to the existing Internet protocols and
infrastructure, it could be deployed relatively quickly.

Now that we have finished our study of multimedia networking, it is time to move on
to another exciting topic: network security. Recent advances in multimedia
networking may move the distribution of audio and video information to the Internet.
As we’ll see in the next chapter, recent advances in network security may well help
move the majority of economic transactions to the Internet.

© 2000-2001 by Addison Wesley Longman
A division of Pearson Education

