\qquad Date \qquad
\qquad

Lesson Practice A

6-1 Properties and Attributes of Polygons
Match each vocabulary term on the left with a part of polygon $A B C D E$ on the right.

1. a diagonal \qquad A. point D
2. a side of the polygon
B. $\overline{C E}$

3. a vertex of the polygon
C. $\overline{C D}$

A polygon is a closed flat figure made of straight segments that do not cross each other. Tell whether each figure is a polygon. If it is a polygon, name it by the number of its sides.

5.

6.

A regular polygon has all sides congruent and all angles congruent. Tell whether each polygon is regular or irregular. A concave polygon has a pair of sides that make a "cave" in the polygon. Tell whether each polygon is concave or convex.

8.

9.

Honeybees store their honey in honeycombs. The honeycomb is made of many small wax compartments that are perfect regular hexagons.

10. Use the Polygon Angle Sum Theorem to find the sum of the interior angle measures of a regular hexagon.
11. Find the measure of one interior angle of a regular hexagon.
(Hint: Divide the answer to Exercise 10 by the number of sides.)
12. Use the Polygon Exterior Angle Sum Theorem to find the sum of the exterior angle measures, one exterior angle at each vertex, of a regular hexagon.
13. Find the measure of one exterior angle of a regular hexagon.
(Hint: Divide the answer to Exercise 12 by the number of sides.) \qquad
\qquad Date \qquad Class \qquad

Lesson Practice A

6-2 Properties of Parallelograms

Fill in the blanks to complete each definition or theorem.

1. If a quadrilateral is a parallelogram, then its consecutive angles are
\qquad .
2. If a quadrilateral is a parallelogram, then its opposite sides are \qquad .
3. A parallelogram is a quadrilateral with two pairs of \qquad sides.
4. If a quadrilateral is a parallelogram, then its diagonals \qquad each other.
5. If a quadrilateral is a parallelogram, then its opposite angles are \qquad .

The figure shows a swing blown to one side by a breeze. As long as the seat of the swing is parallel to the top bar, the swing makes a parallelogram. In $\square A B C D, D C=2 \mathrm{ft}, B E=4 \frac{1}{2} \mathrm{ft}$, and $\mathrm{m} \angle B A D=75^{\circ}$.
 Find each measure.
6. $A B$
7. $E D$
8. $B D$
9. $\mathrm{m} \angle A B C$
10. $\mathrm{m} \angle B C D$
11. $\mathrm{m} \angle A D C$
\qquad
$P Q R S$ is a parallelogram. Find each measure.
12. $R S$
13. $\mathrm{m} \angle S$

14. $\mathrm{m} \angle R$

Three vertices of \square GHIJ are $G(0,0), H(2,3)$, and $J(6,1)$.
Complete Exercises 15-21 to find the coordinates of vertex I.
15. Plot vertices G, H, and J on the coordinate plane.
16. Find the rise (difference in the y-coordinates)
from G to H. \qquad
17. Find the run (difference in the x-coordinates)
 from G to H. \qquad
18. Using your answers from Exercises 16 and 17, add the rise to the y-coordinate of vertex J and add the run to the x-coordinate of vertex J. These are the coordinates of vertex I. \qquad _, \qquad
19. Plot vertex I. Connect the points to draw \square GHIJ.
20. Check your answer by finding the slopes of $\overline{I H}$ and $\overline{J G}$. slope of $\overline{I H}=$ \qquad slope of $\overline{J G}=$ \qquad
21. Parallel lines have equal slopes. Are the slopes of $\overline{I H}$ and $\overline{J G}$ equal?
\qquad Date \qquad Class \qquad

Lesson Practice A

6-3 Conditions for Parallelograms

For each definition or theorem, tell what information you would need about the figure to conclude that the figure is a parallelogram. For some exercises, there is more than one correct answer, but give only one example per exercise.

1. If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

2. If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram.
3. If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram.
4. If one pair of opposite sides of a quadrilateral are parallel and congruent, then the quadrilateral is a parallelogram.
5. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. (Hint: The diagonals of the figure are $\overline{W Y}$ and $\overline{X Z}$.)
6. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

A quadrilateral has vertices $E(1,1), F(4,5), G(6,6), H(3,2)$. Complete Exercises 7-10 to tell whether EFGH is a parallelogram.
7. Plot the vertices and draw EFGH.
8. Use the Distance Formula: $E F=$ \qquad $H G=$ \qquad
9. Use the Slope Formula: slope of $\overline{E F}=$ \qquad slope of $\overline{H G}=$ \qquad
10. The answers to Exercises 8 and 9 prove that $E F G H$ is a parallelogram. Which one of Exercises 1-6 states the
 theorem that you used? \qquad
This desk lamp has a circular base and a movable arm in the shape of a parallelogram. Use the figure to answer Exercises 11-13.
11. $\overline{A D}$ is vertical. Name another side of parallelogram $A B C D$ that is also vertical. \qquad
12. Because $\overline{A D}$ is attached to the base, $\overline{A D}$ stays vertical as the arm is
 moved. Tell what happens to $\overline{B C}$ as the arm is moved up or down.
\qquad Date \qquad Class \qquad

Lesson Practice A

6-4 Properties of Special Parallelograms

Match each figure with the letter of one of the vocabulary terms.

Use each term once.

1.

2.

3.

A. rectangle
B. rhombus
C. square

Fill in the blanks to complete each theorem.
4. If a parallelogram is a rhombus, then its diagonals are \qquad .
5. If a parallelogram is a rectangle, then its diagonals are \qquad .
6. If a quadrilateral is a rectangle, then it is a \qquad .
7. If a parallelogram is a rhombus, then each diagonal \qquad a pair of opposite angles.
8. If a quadrilateral is a rhombus, then it is a \qquad .

The part of a ruler shown is a rectangle with $A B=3$ inches and $B D=3 \frac{1}{4}$ inches. Find each length.
9. $D C=$ \qquad
10. $A C=$ \qquad

Use the phrases and theorems from the Word Bank to complete this two-column proof.
11. Given: GHIJ is a rhombus.

Prove: $\angle 1 \cong \angle 3$

Alternate Interior $\&$ Thm. GHIJ is a parallelogram.
Trans. Prop. of \cong $\angle 2 \cong \angle 3$

Statements	Reasons		
1. $G H I J$ is a rhombus.	1. Given		
2. a.	2. rhomb. $\rightarrow \square$		
3. $\overline{G H} \\| \bar{J}$	3. $\square \rightarrow$ opp. sides $\\|$		
4. $\angle 1 \cong \angle 2$	4. b. \rightarrow		
5. \mathbf{c}.	5. rhomb. \rightarrow each diag. bisects opp. \bar{s}		
6. $\angle 1 \cong \angle 3$	6. d.		

\qquad Date \qquad Class \qquad

Lesson Practice A

6-5 Conditions for Special Parallelograms

Fill in the blanks to complete each theorem. (Hint: Exercise 3 is not stated as a theorem in the textbook.)

1. If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a \qquad .
2. If the diagonals of a parallelogram are \qquad , then the parallelogram is a rhombus.
3. If a parallelogram is both a \qquad and a \qquad ,
then the parallelogram is a square.
4. If the \qquad of a parallelogram are congruent, then the parallelogram is a rectangle.
5. If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a \qquad _.
6. If one angle of a parallelogram is a right angle, then the parallelogram is a
\qquad -.

The Jamaican flag is a quadrilateral with a diagonal gold " X " that divides the flag into two black triangles and two green triangles. In $A B C D, \overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{B C}$. The diagonals, $\overline{A C}$ and $\overline{B D}$, are also congruent. Fill in the blanks in Exercises 7 and 8 to show why the flag is a rectangle.

7. Because both pairs of opposite \qquad are congruent, the flag is a parallelogram.
8. Because $A B C D$ is a parallelogram and the diagonals are \qquad , the flag is a rectangle.

Complete Exercises 9-12 to show that the conclusion is valid.
Given: $\overline{J K} \cong \overline{M L}, \overline{J M} \cong \overline{K L}$, and $\overline{J K} \cong \overline{K L}$.
$\angle M$ is a right angle.
Conclusion: $J K L M$ is a square.

9. Because $\overline{J K} \cong \overline{M L}$ and $\overline{J M} \cong \overline{K L}, J K L M$ is a \qquad .
10. Because $J K L M$ is a parallelogram and $\angle M$ is a right angle, $J K L M$ is a
\qquad .
11. Because $J K L M$ is a parallelogram and $\overline{J K} \cong \overline{K L}, J K L M$ is a \qquad .
12. Because JKLM is a \qquad and a \qquad , $J K L M$ is a square.
\qquad Date \qquad Class \qquad

Lesson Practice A

6-6 Properties of Kites and Trapezoids

Fill in the blanks to complete each theorem or definition.

1. If a quadrilateral is a kite, then its \qquad are perpendicular.
2. If a quadrilateral is a kite, then exactly one pair of opposite \qquad are congruent.
3. A kite is a quadrilateral with exactly two pairs of congruent consecutive \qquad -.
$A B C D$ is a kite. Use the figure to find each measure in Exercises 4-6.

4. $m \angle D$
5. $A B$
6. $C D$

A trapezoid is a quadrilateral with exactly one pair of parallel sides. Name the parts of trapezoid PQRS asked for in Exercises 7-9.

7. both bases
8. both legs
9. one pair of base angles

Fill in the blanks to complete each theorem or definition.
10. A trapezoid is isosceles if and only if its \qquad are congruent.
11. If a trapezoid has one pair of congruent base angles, then the trapezoid is \qquad -
12. If the legs of a trapezoid are \qquad , then the trapezoid is an isosceles trapezoid.
13. If a quadrilateral is an isosceles trapezoid, then each pair of
\qquad is congruent.

In an art museum, a statue sits on a pedestal with sides that are isosceles trapezoids. Name the parts of isosceles trapezoid EFGH asked for in Exercises 14 and 15.

14. both pairs of congruent angles
15. both pairs of congruent segments

