Name		Date			Class	
LESSON	Practice A					
6-1	Properties and At	tributes of Poly	gons			
	ach vocabulary term o ABCDE on the right.	on the left with a pa	art of		A	
1. a dia	agonal		Α.	point D	16	
2. a sid	de of the polygon		В.	CE	E	\leq_D
3. a ve	rtex of the polygon		C.	CD		
each otl	on is a closed flat figu ner. Tell whether each umber of its sides.	-	-			
4.		5.		6.	\bigotimes	
each po	ar polygon has all side lygon is regular or irre "cave" in the polygon.	gular. A concave	polygon	i has a pai	r of sides tha	t
			2			
-	ees store their honey i f many small wax com ns.	•		•	53	
	the Polygon Angle Sum sures of a regular hexa		ie sum o	f the interio	r angle	
	the measure of one int t: Divide the answer to I	• •		•		
	the Polygon Exterior Ar e measures, one exterio	•				
	the measure of one ex <i>t:</i> Divide the answer to I			-		

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Name		D	ate	Class	
LESSO		4			
6-2	Properties of	of Parallelograms			
		nplete each definition of parallelogram, then its of		s are	
_ 2. If	f a quadrilateral is a	parallelogram, then its c	opposite sides are		
3. A	A parallelogram is a	quadrilateral with two pa	airs of		_ sides.
	f a quadrilateral is a each other.	parallelogram, then its o	diagonals		
5. If	f a quadrilateral is a	parallelogram, then its o	pposite angles are	÷	
the s	eat of the swing is	ing blown to one side b parallel to the top bar	, the swing make	sa	AB
paral	llelogram. In 🗖 AE	$BCD, DC = 2 \text{ ft}, BE = 4\frac{1}{2}$, ft, and m∠ <i>BAD</i>	= 75°.	$A \lor A$
Find	each measure.	-	I		I D CI
6. A	AB	7. ED		8. <i>BD</i>	
9. n	n∠ <i>ABC</i>	10. m∠ <i>BCD</i>		 11. m∠ <i>ADC</i>	
PQR	S is a parallelogra	m. Find each measure.	P 2x	Q 8/P	
12. F	RS	13. m∠ <i>S</i>	<i>y</i> <u>x</u> + 3	—_ <i>R</i> 14. m∠ <i>R</i>	
		<i>HJ</i> are <i>G</i> (0, 0), <i>H</i> (2, 3), a –21 to find the coordin		y y	
15. F	Plot vertices <i>G</i> , <i>H</i> , a	nd J on the coordinate p	lane.	3-	
	Find the rise (difference in the <i>y</i> -coordinates)				3
	Find the run (difference in the x-coordinates)				
v		from Exercises 16 and 1 e run to the <i>x</i> -coordinate ,)		-	
19. F	Plot vertex I. Connect the points to draw D GHIJ.				
20. C	Check your answer	by finding the slopes of \overline{I}	\overline{IH} and \overline{JG} .		
S	slope of $\overline{IH} =$		slope of \overline{JG}	<u> </u>	
21. F	Parallel lines have e	qual slopes. Are the slop	bes of \overline{IH} and \overline{JG}	equal?	

Nam	ne		Date	_ Class
LES	SON	Practice A		
6	-3	Conditions for Parallelogra	ims	
nee For	ed abo r som	n definition or theorem, tell what i out the figure to conclude that th e exercises, there is more than o e example per exercise.	e figure is a parallelograr	/ /
1.		th pairs of opposite angles of a qua pruent, then the quadrilateral is a pa		
2.		th pairs of opposite sides of a quad llel, then the quadrilateral is a paral		
3.	lf an	angle of a quadrilateral is supplem ecutive angles, then the quadrilater	entary to both of its	
4.		e pair of opposite sides of a quadril the quadrilateral is a parallelogram		gruent,
5.		e diagonals of a quadrilateral bisect llelogram. (<i>Hint:</i> The diagonals of th	· ·	
6.		th pairs of opposite sides of a quad ruent, then the quadrilateral is a pa		
		ilateral has vertices <i>E</i> (1, 1), <i>F</i> (4, 5 e Exercises 7–10 to tell whether <i>E</i>		* y
7.	Plot	the vertices and draw EFGH.		
8.	Use	the Distance Formula: <i>EF</i> =	HG =	
9.	Use	the Slope Formula: slope of $\overline{EF} = $		3
	slope	e of \overline{HG} =		x
10.	para	answers to Exercises 8 and 9 prove llelogram. Which one of Exercises ⁻ rem that you used?		
of a 11.	a para <i>AD</i> also Beca	a k lamp has a circular base and a allelogram. Use the figure to answ is vertical. Name another side of particular base \overline{AD} is attached to the base, \overline{AL} and \overline{BC} as the set of the base	wer Exercises 11–13. arallelogram <i>ABCD</i> that is	

5. **c.**

6. ∠1 ≅ ∠3

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

5. rhomb. \rightarrow each diag. bisects opp. \measuredangle

6. **d.**_____

6-5

is a rectangle.

LESSON Practice A

Conditions for Special Parallelograms

Fill in the blanks to complete each theorem. (Hint: Exercise 3 is not stated as a theorem in the textbook.)

- 1. If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a ______.
- 2. If the diagonals of a parallelogram are , then the parallelogram is a rhombus.
- 3. If a parallelogram is both a _____ and a _____ then the parallelogram is a square.
- 4. If the ______ of a parallelogram are congruent, then the parallelogram is a rectangle.
- 5. If one diagonal of a parallelogram bisects a pair of opposite angles, then the parallelogram is a
- 6. If one angle of a parallelogram is a right angle, then the parallelogram is a

- 7. Because both pairs of opposite are congruent, the flag is a parallelogram.
- 8. Because ABCD is a parallelogram and the diagonals are the flag is a rectangle.

The Jamaican flag is a guadrilateral with a diagonal gold "X" that divides the flag into two black triangles and two green triangles. In ABCD, $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{BC}$. The diagonals, AC and BD, are also congruent. Fill in the blanks in Exercises 7 and 8 to show why the flag

Complete Exercises 9–12 to show that the conclusion is valid.

Given: $\overline{JK} \cong \overline{ML}, \overline{JM} \cong \overline{KL}, \text{ and } \overline{JK} \cong \overline{KL}.$ $\angle M$ is a right angle. **Conclusion:** *JKLM* is a square.

- 9. Because $\overline{JK} \cong \overline{ML}$ and $\overline{JM} \cong \overline{KL}$, JKLM is a
- 10. Because JKLM is a parallelogram and $\angle M$ is a right angle, JKLM is a

11. Because JKLM is a parallelogram and $\overline{JK} \cong \overline{KL}$, JKLM is a _____.

12. Because *JKLM* is a ______ and a _____ JKLM is a square.

Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor.

Name		Date	Class			
LESSO	Practice A					
6-6	Properties of Kites a	nd Trapezoids				
Fill in	the blanks to complete eacl	n theorem or definitio	n.			
	1. If a quadrilateral is a kite, then its are perpendicular.					
	a quadrilateral is a kite, then e e congruent.	exactly one pair of oppo	osite			
3. A	kite is a quadrilateral with exa	ctly two pairs of congru	lent			
CC	onsecutive	·	3.25			
) is a kite. Use the figure to f ercises 4–6.	ind each measure	A 118° 6 C B B C			
4. m	∠D 5	AB	6. <i>CD</i>			
parall	bezoid is a quadrilateral with el sides. Name the parts of t l for in Exercises 7–9.					
7. bo	oth bases					
8. bo	oth legs					
9. or	ne pair of base angles					
Fill in	the blanks to complete eacl	n theorem or definitio	n.			
10. A	trapezoid is isosceles if and o	nly if its	are congruent.			
11. If	a trapezoid has one pair of co	ngruent base angles, tl	hen the trapezoid			
is						
	the legs of a trapezoid are n isosceles trapezoid.	,	then the trapezoid is			
13. If	a quadrilateral is an isosceles	trapezoid, then each p	air of			
_	is cor	ngruent.				
isosc	art museum, a statue sits or eles trapezoids. Name the pa I for in Exercises 14 and 15.	-				
14. bo	oth pairs of congruent angles					

15. both pairs of congruent segments