Evaluate nth Roots and Use Rational Exponents

Goal - Evaluate nth roots and study rational exponents.

Your Notes

VOCABULARY

nth root of a

Index of a radical

REAL nth ROOTS OF a

Let n be an integer ($n>1$) and let a be a real number.
If \boldsymbol{n} is an even integer: If \boldsymbol{n} is an odd integer:

- $a<0$ No real nth roots. - $a<0$ One real nth root: $\sqrt[n]{a}=$ \qquad
- $a=0$ One real nth root: $\cdot a=0$ One real nth root:

$$
\sqrt[n]{0}=\quad \sqrt[n]{0}=
$$

\qquad

- a>0 Two real nth roots: - a>0 One real nth root:

$$
\pm \sqrt[n]{a}=\quad \sqrt[n]{a}=
$$

\qquad

Example 1 Find nth roots

Find the indicated real nth root(s) of a.
a. $n=3, a=-64$
b. $n=6, a=729$

Solution

a. Because $n=3$ is odd and $a=-64 \ldots 0,-64$ has can write $\sqrt[3]{-64}=\quad$ Because $\left(\overline{)^{3}}\right)^{3}=-64$, you $(-64)^{1 / 3}=. \quad$.
b. Because $n=6$ is even and $a=729 \quad 0,729$ has

$$
\text { . Because } \quad \overline{6}=729
$$

and $(\quad)^{6}=729$, you can write $\pm \sqrt[6]{729}=\quad$ or $\pm 729^{1 / 6}=$ \qquad .

6.1. Evaluate nth Roots and Use Rational Exponents

Goal - Evaluate nth roots and study rational exponents.

Your Notes

VOCABULARY

nth root of a For an integer n greater than 1, if $b^{n}=a$, then b is an nth root of a.

Index of a radical An nth root of a is written as $\sqrt[n]{a}$, where n is the index of the radical.

REAL nth ROOTS OF a

Let n be an integer ($n>1$) and let a be a real number.
If \boldsymbol{n} is an even integer: If \boldsymbol{n} is an odd integer:

- $a<0$ No real nth roots. - $a<0$ One real nth root:

$$
\sqrt[n]{a}=a^{1 / n}
$$

- $a=0$ One real nth root: $\cdot a=0$ One real nth root:

$$
\sqrt[n]{0}=0 \quad \sqrt[n]{0}=0
$$

- $a>0$ Two real nth roots: $\quad a>0$ One real nth root:

$$
\pm \sqrt[n]{a}= \pm a^{1 / n} \quad \sqrt[n]{a}=a^{1 / n}
$$

Example 1 Find nth roots

Find the indicated real nth root(s) of a.
a. $n=3, a=-64$
b. $n=6, a=729$

Solution

a. Because $n=3$ is odd and $a=-64<0,-64$ has one real cube root. Because $(\underline{-4})^{3}=-64$, you can write $\sqrt[3]{-64}=-4$ or $(-64)^{1 / 3}=-4$.
b. Because $n=6$ is even and $a=729>0,729$ has two real sixth roots. Because $3^{\frac{>}{6}}=729$ and $(-3)^{6}=729$, you can write $\pm \sqrt[6]{729}= \pm 3$ or $\pm 729^{1 / 6}= \pm 3$.

1. $n=4, a=256$
2. $n=3, a=512$

RATIONAL EXPONENTS

Let a be a real number, and let m and n be positive integers with $n>1$.
$a^{m / n}=\left(a^{1 / n}\right)^{m}=\left(\quad \quad^{m}\right.$
and $a^{m / n}=\left(a^{m}\right)^{1 / n}=(\sqrt[n]{\square})$
$a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\left(a^{1 / n}\right)^{m}}=\frac{1}{(\quad)^{m}}, a \neq 0$

Example 2 Evaluate an expression with rational exponents

Evaluate $8^{-4 / 3}$.

Solution

Rational Exponent Form

$$
8^{-4 / 3}=
$$

$$
=
$$

$$
=
$$

$$
=
$$

Example 3 Solve equations using nth roots

a. $2 x^{6}=1458$
b. $(x+4)^{3}=12$
$x^{6}=$ \qquad
$x=$ \qquad

$$
\begin{aligned}
x+4 & = \\
x & = \\
x & \approx
\end{aligned}
$$

Radical Form
$8^{-4 / 3}=$ \qquad

$$
=
$$

$$
=
$$

\qquad

$$
=
$$

\qquad

1. $n=4, a=256$
± 4
2. $n=3, a=512$

8

RATIONAL EXPONENTS

Let a be a real number, and let m and n be positive integers with $n>1$.

$$
\begin{aligned}
& a^{m / n}=\left(a^{1 / n}\right)^{m}=(\sqrt[n]{a})^{m} \\
& \text { and } a^{m / n}=\left(a^{m}\right)^{1 / n}=\left(\sqrt[n]{a^{m}}\right) \\
& a^{-m / n}=\frac{1}{a^{m / n}}=\frac{1}{\left(a^{1 / n}\right)^{m}}=\frac{1}{(\sqrt[n]{a})^{m}}, a \neq 0
\end{aligned}
$$

Example 2 Evaluate an expression with rational exponents

Evaluate $8^{-4 / 3}$.

Solution

Rational Exponent Form

$$
\begin{aligned}
8^{-4 / 3} & =\frac{\frac{1}{8^{4 / 3}}}{1} \\
& =\frac{1}{\left(8^{1 / 3}\right)^{4}} \\
& =\frac{1}{2^{4}} \\
& =\frac{1}{16}
\end{aligned}
$$

Radical Form

$$
\begin{aligned}
8^{-4 / 3} & =\frac{1}{8^{4 / 3}} \\
& =\frac{1}{(\sqrt[3]{8})^{4}} \\
& =\frac{1}{2^{4}} \\
& =\frac{1}{16}
\end{aligned}
$$

Example 3 Solve equations using nth roots

$$
\text { a. } \begin{aligned}
2 x^{6} & =1458 \\
x^{6} & =729 \\
x & = \pm \sqrt[6]{729} \\
x & = \pm 3
\end{aligned}
$$

b. $(x+4)^{3}=12$

Animal Population The population P of a certain animal species after t months can be modeled by $P=C(1.21)^{t / 3}$ where C is the initial population. Find the population after 19 months if the initial population was 75.

Solution

$$
\begin{aligned}
P & =C(1.21)^{t / 3} & & \text { Write model for population. } \\
& = & & \text { Substitute for } C \text { and } t . \\
& \approx & & \text { Use a calculator. }
\end{aligned}
$$

The population of the species is about \qquad after 19 months.

Checkpoint Complete the following exercises.
3. Evaluate $(-125)^{-2 / 3}$.
4. Solve $(y-3)^{4}=200$.
5. The volume of a cone is given by $V=\frac{\pi r^{2} h}{3}$, where h is the height of the cone and r is the radius. Find the radius of a cone whose volume is 25 cubic inches and whose height is 6 inches.

Example 4 Use nth roots in problem solving

Animal Population The population P of a certain animal species after t months can be modeled by $P=C(1.21)^{t / 3}$ where C is the initial population. Find the population after 19 months if the initial population was 75.

Solution

$$
\begin{aligned}
P & =C(1.21)^{t / 3} \\
& =75(1.21)^{19 / 3} \\
& \approx 250.8
\end{aligned}
$$

Write model for population.
Substitute for C and t.
Use a calculator.
The population of the species is about $\underline{251}$ after 19 months.

- Checkpoint Complete the following exercises.

3. Evaluate $(-125)^{-2 / 3}$. $\frac{1}{25}$
4. Solve $(y-3)^{4}=200$.

$$
\begin{aligned}
& \sqrt[4]{200}+3 \approx 6.76 \text { or } \\
& -\sqrt[4]{200}+3 \approx-0.76
\end{aligned}
$$

Apply Properties of Rational Exponents

Goal - Simplify expressions involving rational exponents.

Your Notes

VOCABULARY

Simplest form of a radical

Like radicals

PROPERTIES OF RATIONAL EXPONENTS

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those in Lesson 5.1, but now apply to rational exponents.

Property

1. $a^{m} \cdot a^{n}=a^{m+n} \quad 4^{1 / 2} \cdot 4^{3 / 2}=4^{(1 / 2+3 / 2)}$
2. $\left(a^{m}\right)^{n}=a^{m n} \quad\left(2^{5 / 2}\right)^{2}=2^{(5 / 2 \cdot 2)}$
3. $(a b)^{m}=a^{m} b^{m}$
$(16 \cdot 4)^{1 / 2}=16^{1 / 2} \cdot 4^{1 / 2}$
4. $a^{-m}=\frac{1}{a^{m}}, a \neq 0 \quad 25^{-1 / 2}=\frac{1}{25^{1 / 2}}=$
5. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0 \quad \frac{3^{5 / 2}}{3^{1 / 2}}=3^{(5 / 2-1 / 2)}=$ \qquad
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0 \quad\left(\frac{27}{8}\right)^{1 / 3}=\frac{27^{1 / 3}}{8^{1 / 3}}=$ \qquad

Apply Properties of Rational Exponents

Goal - Simplify expressions involving rational exponents.

Your Notes

VOCABULARY

Simplest form of a radical A radical with index n is in simplest form if the radicand has no perfect nth powers as factors and any denominator has been rationalized.

Like radicals Two radical expressions with the same index and radicand.

PROPERTIES OF RATIONAL EXPONENTS

Let a and b be real numbers and let m and n be rational numbers. The following properties have the same names as those in Lesson 5.1, but now apply to rational exponents.

Property

1. $a^{m} \cdot a^{n}=a^{m+n}$

$$
4^{1 / 2} \cdot 4^{3 / 2}=4^{(1 / 2+3 / 2)}
$$

$$
=4^{2}=16
$$

2. $\left(a^{m}\right)^{n}=a^{m n}$
$\left(2^{5 / 2}\right)^{2}=2^{(5 / 2 \cdot 2)}=2^{5}=32$
3. $(a b)^{m}=a^{m} b^{m}$
$(16 \cdot 4)^{1 / 2}=16^{1 / 2} \cdot 4^{1 / 2}$
$=4 \cdot 2=8$
4. $a^{-m}=\frac{1}{a^{m}}, a \neq 0$
$25^{-1 / 2}=\frac{1}{25^{1 / 2}}=\frac{1}{5}$
5. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0 \quad \frac{3^{5 / 2}}{3^{1 / 2}}=3^{(5 / 2-1 / 2)}=3^{2}=9$
6. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0 \quad\left(\frac{27}{8}\right)^{1 / 3}=\frac{27^{1 / 3}}{8^{1 / 3}}=\underline{\frac{3}{2}}$

Example 1 Use properties of exponents

Use the properties of rational exponents to simplify the expression.
a. $9^{1 / 2} \cdot 9^{3 / 4}=$ \qquad
b. $\left(7^{2 / 3} \cdot 5^{1 / 6}\right)^{3}=$ \qquad
$=$ \qquad
= \qquad
c. $\frac{3^{5 / 6}}{3^{1 / 3}}=$ \qquad
d. $\left(\frac{16^{2 / 3}}{4^{2 / 3}}\right)^{4}=$

PROPERTIES OF RADICALS

Product Property of Radicals Quotient Property of Radicals
$\sqrt[n]{a \cdot b}=$ \qquad $\sqrt[n]{\frac{a}{b}}=\quad, b \neq 0$

Example 2 Use properties of radicals

Use the properties of radicals to simplify the expression.
a. $\sqrt[5]{27} \cdot \sqrt[5]{9}=\square=\square=\begin{aligned} & \text { Product } \\ & \text { property }\end{aligned}$
b. $\frac{\sqrt[3]{192}}{\sqrt[3]{3}}=\quad=\quad=\quad \begin{aligned} & \begin{array}{l}\text { Quotient } \\ \text { property }\end{array}\end{aligned}$

Checkpoint Simplify the expression.

1. $\left(6^{6} \cdot 5^{6}\right)^{-1 / 6}$	2. $\frac{\sqrt{245}}{\sqrt{5}}$

Example 1 Use properties of exponents

Use the properties of rational exponents to simplify the expression.
a. $9^{1 / 2} \cdot 9^{3 / 4}=9^{(1 / 2+3 / 4)}=9^{5 / 4}$
b. $\left(7^{2 / 3} \cdot 5^{1 / 6}\right)^{3}=\left(7^{2 / 3}\right)^{3} \cdot\left(5^{1 / 6}\right)^{3}$

$$
=7^{(2 / 3 \cdot 3)} \cdot 5^{(1 / 6 \cdot 3)}
$$

$$
=7^{2} \cdot 5^{1 / 2}=49 \cdot 5^{1 / 2}
$$

c. $\frac{3^{5 / 6}}{3^{1 / 3}}=3^{(5 / 6-1 / 3)}=3^{3 / 6}=3^{1 / 2}$
d. $\left(\frac{16^{2 / 3}}{4^{2 / 3}}\right)^{4}=\left[\left(\frac{16}{4}\right)^{2 / 3}\right]^{4}=\left(4^{2 / 3}\right)^{4}=4^{(2 / 3 \cdot 4)}=4^{8 / 3}$

PROPERTIES OF RADICALS

Product Property of Radicals Quotient Property of Radicals
$\sqrt[n]{a \cdot b}=\underline{\sqrt[n]{a} \cdot \sqrt[n]{b}} \quad \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$

Example 2 Use properties of radicals

Use the properties of radicals to simplify the expression.
a. $\sqrt[5]{\mathbf{2 7}} \cdot \sqrt[5]{9}=\underline{\sqrt[5]{27 \cdot 9}}=\underline{\sqrt[5]{243}}=3 \begin{aligned} & \text { Product } \\ & \text { property }\end{aligned}$
b. $\frac{\sqrt[3]{192}}{\sqrt[3]{3}}=\sqrt[3]{\frac{192}{3}}=\underline{\sqrt[3]{64}}=4$

Checkpoint Simplify the expression.

1. $\left(6^{6} \cdot 5^{6}\right)^{-1 / 6}$	2. $\frac{\sqrt{245}}{\sqrt{5}}$
$\frac{1}{30}$	7

Example 3 Write radicals in simplest form

Write the expression in simplest form.
$\sqrt[5]{128}=$ \qquad
\qquad -

$$
=
$$

Factor out perfect fifth power.
Product property
Simplify.

Example 4 Add and subtract like radicals and roots

Simplify the expression.
a. $2\left(12^{2 / 3}\right)+7\left(12^{2 / 3}\right)=$ \qquad
b. $\sqrt[4]{48}-\sqrt[4]{3}=$ \qquad - \qquad
$=$ \qquad

Checkpoint Write the expression in simplest form.
3. $\sqrt[3]{\frac{5}{9}}$
4. $6 \sqrt[4]{6}+2 \sqrt[4]{6}$

Example 5 Simplify expressions involving variables

Simplify the expression. Assume all variables are positive.
a. $\sqrt[5]{32 x^{15}}=$ \qquad
b. $\left(36 m^{4} n^{10}\right)^{1 / 2}=$ \qquad
= \qquad
c. $\sqrt[3]{\frac{a^{9}}{b^{6}}}=$
d. $\frac{42 x^{4} z^{7}}{6 x^{3 / 2} y^{-3} z^{5}}=$ \qquad

Example 3 Write radicals in simplest form

Write the expression in simplest form.

$$
\begin{aligned}
\sqrt[5]{128} & =\sqrt[5]{32 \cdot 4} & & \text { Factor out perfec } \\
& =\sqrt[5]{32} \cdot \sqrt[5]{4} & & \text { Product property } \\
& =2 \sqrt[5]{4} & & \text { Simplify. }
\end{aligned}
$$

Example 4 Add and subtract like radicals and roots

Simplify the expression.
a. $2\left(12^{2 / 3}\right)+7\left(12^{2 / 3}\right)=(2+7)\left(12^{2 / 3}\right)=9\left(12^{2 / 3}\right)$
b. $\begin{aligned} \sqrt[4]{48}-\sqrt[4]{3} & =\sqrt[4]{16} \cdot \frac{\sqrt[4]{3}}{\sqrt[4]{3}}-\sqrt[4]{3}=(2-1) \sqrt[4]{3} \\ & =\sqrt[4]{3}\end{aligned}$

Checkpoint Write the expression in simplest form.

3. $\sqrt[3]{\frac{5}{9}}$	$4.6 \sqrt[4]{6}+2 \sqrt[4]{6}$
$\frac{\sqrt[3]{15}}{3}$	$8 \sqrt[4]{6}$

Example 5 Simplify expressions involving variables

Simplify the expression. Assume all variables are positive.
a. $\sqrt[5]{32 x^{15}}=\sqrt[5]{2^{5} \cdot\left(x^{3}\right)^{5}}=\sqrt[5]{2^{5}} \cdot \sqrt[5]{\left(x^{3}\right)^{5}}=2 x^{3}$
b. $\left(36 m^{4} n^{10}\right)^{1 / 2}=36^{1 / 2}\left(m^{4}\right)^{1 / 2}\left(n^{10}\right)^{1 / 2}$

$$
=6 m^{(4 \cdot 1 / 2)} n^{(10 \cdot 1 / 2)}=6 m^{2} n^{5}
$$

c. $\sqrt[3]{\frac{a^{9}}{b^{6}}}=\frac{\sqrt[3]{a^{9}}}{\sqrt[3]{b^{6}}}=\frac{\sqrt[3]{\left(a^{3}\right)^{3}}}{\sqrt[3]{\left(b^{2}\right)^{3}}}=\frac{a^{3}}{b^{2}}$
d. $\frac{42 x^{4} z^{7}}{6 x^{3 / 2} y^{-3} z^{5}}=\underline{7 x^{(4-3 / 2)} y^{-(-3)} z^{(7-5)}=7 x^{5 / 2} y^{3} z^{2}}$

Example 7 Add and subtract expressions involving variables

Perform the indicated operation. Assume all variables are positive.
a. $10 \sqrt[5]{y}-6 \sqrt[5]{y}=$ \qquad
b. $3 a^{2} b^{1 / 4}+4 a^{2} b^{1 / 4}=$ \qquad

Checkpoint Simplify the expression. Assume all variables are positive.

Example 6 Write variable expressions in simplest form

You must multiply the original expression by a form of 1, in
this case $\sqrt[4]{\frac{b^{2}}{b^{2}}}$ when simplifying so that the new expression is equivalent.

Write the expression in simplest form. Assume all variables are positive.
$\sqrt[4]{\frac{a^{2}}{b^{6}}}=\frac{\sqrt[4]{\frac{a^{2}}{b^{6}}} \cdot \sqrt[4]{\frac{b^{2}}{b^{2}}}}{\sqrt{a^{2} b^{2}}}$

$$
=\sqrt[4]{\frac{a^{2} b^{2}}{b^{8}}}
$$

Multiply to make denominator a perfect fourth power.

Simplify.

$$
\begin{aligned}
& =\frac{\frac{\sqrt[4]{a^{2} b^{2}}}{\sqrt[4]{b^{8}}}}{=\frac{\sqrt[4]{a^{2} b^{2}}}{b^{2}}}
\end{aligned}
$$

Quotient property.

Simplify.

Example 7 Add and subtract expressions involving variables

Perform the indicated operation. Assume all variables are positive.
a. $10 \sqrt[5]{y}-6 \sqrt[5]{y}=(10-6) \sqrt[5]{y}=4 \sqrt[5]{y}$
b. $3 a^{2} b^{1 / 4}+4 a^{2} b^{1 / 4}=(3+4) a^{2} b^{1 / 4}=7 a^{2} b^{1 / 4}$
(Checkpoint Simplify the expression. Assume all variables are positive.

| 5. $\sqrt[3]{8 x^{7} y^{3} z^{11}}$
 $2 x^{2} y z^{3} \sqrt[3]{x z^{2}}$ | 6. $7 \sqrt[3]{2 a^{5}}-a \sqrt[3]{128 a^{2}}$
 $3 a \sqrt[3]{2 a^{2}}$ |
| :--- | :--- | :--- |
| Homework | |

Perform Function Operations and Composition

Goal - Perform operations with functions.

Your Notes

VOCABULARY

Power function

Composition

OPERATIONS ON FUNCTIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.
Operation and Definition Example: $f(x)=3 x, g(x)=x+3$

Addition

$h(x)=f(x)+g(x)$

$$
\begin{aligned}
h(x) & =3 x+(x+3) \\
& =
\end{aligned}
$$

Subtraction

$$
\begin{aligned}
h(x)=f(x)-g(x) \quad h(x) & =3 x-(x+3) \\
& =
\end{aligned}
$$

Multiplication
$h(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
h(x) & =3 x(x+3) \\
& =
\end{aligned}
$$

Division
$h(x)=\frac{f(x)}{g(x)}$
$h(x)=$ \qquad
The domain of h consists of the x-values that are in the domains of \qquad . Additionally, the domain of a quotient does not include x-values for which $g(x)=$ \qquad .

Perform Function Operations and Composition

Goal - Perform operations with functions.

Your Notes

VOCABULARY

Power function A function of the form $y=a x^{b}$ where a is a real number and b is a rational number

Composition The composition of a function g with a function f is $h(x)=g(f(x))$. The domain of h is the set of all x-values such that x is in the domain of f and $f(x)$ is in the domain of g.

OPERATIONS ON FUNCTIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.
Operation and Definition Example: $f(x)=3 x, g(x)=x+3$
Addition

$$
h(x)=f(x)+g(x) \quad \begin{aligned}
h(x) & =3 x+(x+3) \\
& =4 x+3
\end{aligned}
$$

Subtraction

$$
h(x)=f(x)-g(x) \quad \begin{aligned}
h(x) & =3 x-(x+3) \\
& =2 x-3
\end{aligned}
$$

Multiplication
$h(x)=f(x) \cdot g(x)$

$$
\begin{aligned}
h(x) & =3 x(x+3) \\
& =3 x^{2}+9 x
\end{aligned}
$$

Division
$h(x)=\frac{f(x)}{g(x)}$

$$
h(x)=\frac{3 x}{x+3}
$$

The domain of h consists of the x-values that are in the domains of both f and g. Additionally, the domain of a quotient does not include x-values for which $g(x)=\underline{0}$.

Example 1 Add and subtract functions

Let $f(x)=3 x^{1 / 2}$ and $g(x)=-5 x^{1 / 2}$. Find the following.
a. $f(x)+g(x)$
b. $f(x)-g(x)$
c. the domains of $f+g$ and $f-g$

Solution

a. $f(x)+g(x)=3 x^{1 / 2}+\left(-5 x^{1 / 2}\right)$
$=$ \qquad
b. $f(x)-g(x)=3 x^{1 / 2}-\left(-5 x^{1 / 2}\right)$

$$
=
$$

\qquad
c. The functions f and g each have the same domain:
\qquad
$f+g$ and $f-g$ also consist of
\qquad .

Example 2 Multiply and divide functions

Let $f(x)=7 x$ and $g(x)=x^{1 / 6}$. Find the following.
a. $f(x) \cdot g(x)$
b. $\frac{f(x)}{g(x)}$
c. the domains of $f \cdot g$ and $\frac{f}{g}$

Solution

a. $f(x) \cdot g(x)=(7 x)\left(x^{1 / 6}\right)=$ \qquad
b. $\frac{f(x)}{g(x)}=$
c. The domain of f consists of \qquad , and the domain of g consists of
\qquad . So, the domain of $f \cdot g$ consists of \qquad
\qquad . Because $g(0)=\square$,
the domain of $\frac{f}{g}$ is restricted to \qquad
\qquad .

Let $f(x)=3 x^{1 / 2}$ and $g(x)=-5 x^{1 / 2}$. Find the following.
a. $f(x)+g(x)$
b. $f(x)-g(x)$
c. the domains of $f+g$ and $f-g$

Solution

a. $f(x)+g(x)=3 x^{1 / 2}+\left(-5 x^{1 / 2}\right)$

$$
=[3+(-5)] x^{1 / 2}=-2 x^{1 / 2}
$$

b. $f(x)-g(x)=3 x^{1 / 2}-\left(-5 x^{1 / 2}\right)$

$$
=[3-(-5)] x^{1 / 2}=8 x^{1 / 2}
$$

c. The functions f and g each have the same domain: all nonnegative real numbers. So, the domains of $f+g$ and $f-g$ also consist of all nonnegative real numbers.

Example 2 Multiply and divide functions
Let $f(x)=7 x$ and $g(x)=x^{1 / 6}$. Find the following.
a. $f(x) \cdot g(x)$
b. $\frac{f(x)}{g(x)}$
c. the domains of $f \cdot g$ and $\frac{f}{g}$

Solution
a. $f(x) \cdot g(x)=(7 x)\left(x^{1 / 6}\right)=7 x^{(1+1 / 6)}=7 x^{7 / 6}$
b. $\frac{f(x)}{g(x)}=\frac{7 x}{x^{1 / 6}}=7 x^{(1-1 / 6)}=7 x^{5 / 6}$
c. The domain of f consists of all real numbers, and the domain of g consists of all nonnegative real numbers. So, the domain of $f \cdot g$ consists of all nonnegative real numbers. Because $g(0)=0$, the domain of $\frac{f}{g}$ is restricted to all positive real numbers.

1. Let $f(x)=5 x^{3 / 2}$ and $g(x)=-2 x^{3 / 2}$. Find (a) $f+g$,
(b) $f-g$, (c) $f \cdot g$, (d) $\frac{f}{g}$, and (e) the domains.

COMPOSITION OF FUNCTIONS

The composition of a function g with a function f is $h(x)=$ The domain of h is the set of all x-values such that x is in the domain of \qquad and $f(x)$ is in the domain of \qquad .

1. Let $f(x)=5 x^{3 / 2}$ and $g(x)=-2 x^{3 / 2}$. Find (a) $f+g$,
(b) $f-g$, (c) $f \cdot g$, (d) $\frac{f}{g}$, and (e) the domains.
a. $3 x^{3 / 2}$
b. $7 x^{3 / 2}$
c. $-10 x^{3}$
d. $-\frac{5}{2}$
e. The domain of $f+g, f-g$, and $f \cdot g$ is all nonnegative real numbers. The domain of $\frac{f}{g}$ is all positive real numbers.

COMPOSITION OF FUNCTIONS

The composition of a function g with a function f is $h(x)=g(f(x))$. The domain of h is the set of all x-values such that x is in the domain of f and $f(x)$ is in the domain of g.

Example 3 Find compositions of functions

Let $f(x)=6 x^{-1}$ and $g(x)=3 x+5$. Find the following.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$
d. the domain of each composition

Solution

a. $f(g(x))=f(3 x+5)=$
b. $g(f(x))=g\left(6 x^{-1}\right)$

$$
=
$$

c. $f(f(x))=f\left(6 x^{-1}\right)=$ \qquad
d. The domain of $f(g(x))$ consists of

the \qquad . (Note that $f(0)=$, which
is \qquad .) The domains of $g(f(x))$ and $f(f(x))$ consist of \qquad except $x=$ \qquad , again because \qquad .

Checkpoint Complete the following exercise.
2. Let $f(x)=5 x-4$ and $g(x)=3 x^{-1}$. Find (a) $f(g(x))$, (b) $g(f(x))$, (c) $f(f(x))$, and (d) the domain of each composition.

Example 3 Find compositions of functions

Let $f(x)=6 x^{-1}$ and $g(x)=3 x+5$. Find the following.
a. $f(g(x))$
b. $g(f(x))$
c. $f(f(x))$
d. the domain of each composition

Solution

a. $f(g(x))=f(3 x+5)=6(3 x+5)^{-1}=\frac{6}{3 x+5}$
b. $g(f(x))=g\left(6 x^{-1}\right)$

$$
=3\left(6 x^{-1}\right)+5=18 x^{-1}+5=\frac{18}{x}+5
$$

c. $f(f(x))=f\left(6 x^{-1}\right)=6\left(6 x^{-1}\right)^{-1}=6\left(6^{-1} x\right)=6^{0} x=x$
d. The domain of $f(g(x))$ consists of all real numbers except $x=-\frac{5}{3}$ because $g\left(-\frac{5}{3}\right)=0$ is not in the domain of f. (Note that $\overline{f(0)}=\underline{\frac{6}{0}}$, which is undefined .) The domains of $g(f(x))$ and $f(f(x))$ consist of all real numbers except $x=0$, again because 0 is not in the domain of f.

Checkpoint Complete the following exercise.
2. Let $f(x)=5 x-4$ and $g(x)=3 x^{-1}$. Find (a) $f(g(x))$,
(b) $g(f(x))$, (c) $f(f(x))$, and (d) the domain of each composition.
a. $\frac{15}{x}-4$
b. $\frac{3}{5 x-4}$
c. $25 x-24$
d. The domain of $f(g(x))$ and $f(f(x))$ is all real numbers except $x=0$. The domain of $g(f(x))$ is all real numbers except $x=\frac{4}{5}$.

6.4 Use Inverse Functions

Goal - Find inverse functions.

Your Notes

Example 1 Find an inverse relation

Find an equation for the inverse of the relation $y=7 x-4$.

$$
y=7 x-4 \quad \text { Write original equation. }
$$

Switch x and y.
Add \qquad to each side.

Solve for y. This is the inverse relation.

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided:

$$
f(g(x))=\ldots \quad \text { and } \quad g(f(x))=
$$

The function g is denoted by f^{-1}, read as " f inverse."

Example 2 Verify that functions are inverses

Verify that $f(x)=7 x-4$ and $f^{-1}(x)=\frac{1}{7} x+\frac{4}{7}$ are inverses.

Show that $f\left(f^{-1}(x)\right)=x . \quad$ Show that $f^{-1}(f(x))=x$.

$$
f\left(f^{-1}(x)\right)=f\left(\frac{1}{7} x+\frac{4}{7}\right) \quad f^{-1}(f(x))=f^{-1}(7 x-4)
$$

$$
\begin{aligned}
& = \\
& = \\
& =
\end{aligned}
$$

$$
\begin{aligned}
& = \\
& = \\
& = \\
&
\end{aligned}
$$

6.4 Use Inverse Functions

Goal - Find inverse functions.

Your Notes

VOCABULARY

Inverse relation A relation that interchanges the input and output values of the original relation

Inverse function The original relation and its inverse relation whenever both relations are functions

Example 1 Find an inverse relation

Find an equation for the inverse of the relation $y=7 x-4$.

$$
\begin{array}{rlrl}
y & =7 x-4 \\
x & =7 y-4 \\
x+4 & =7 y & & \begin{array}{l}
\text { Write original equation. } \\
\text { Switch } x \text { and } y .
\end{array} \\
\frac{1}{7} x+\frac{4}{7} & =y & & \text { Add } 4 \text { to each side. } \\
\hline
\end{array}
$$

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided: $f(g(x))=\underline{x}$ and $g(f(x))=\underline{x}$
The function g is denoted by f^{-1}, read as " f inverse."

Example 2 Verify that functions are inverses

Verify that $f(x)=7 x-4$ and $f^{-1}(x)=\frac{1}{7} x+\frac{4}{7}$ are inverses.
Show that $f\left(f^{-1}(x)\right)=x . \quad$ Show that $f^{-1}(f(x))=x$.

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =f\left(\frac{1}{7} x+\frac{4}{7}\right) \\
& =7\left(\frac{1}{7} x+\frac{4}{7}\right)-4 \\
& =x+4-4 \\
& =x
\end{aligned}
$$

$$
f^{-1}(f(x))=f^{-1}(7 x-4)
$$

$$
=\frac{1}{7}(7 x-4)+\frac{4}{7}
$$

$$
=x-\frac{4}{7}+\frac{4}{7}
$$

$$
=x
$$

Checkpoint Find the inverse of the function. Then verify that your result and the original function are inverses.

1. $f(x)=-3 x+5$

Example 3 Find the inverse of a power function

Find the inverse of $f(x)=4 x^{2}, x \leq 0$. Then graph f and $\boldsymbol{f}^{\mathbf{- 1}}$.

$$
\begin{aligned}
f(x)=4 x^{2} & \text { Write original function. } \\
y=4 x^{2} & \text { Replace } f(x) \text { with } y . \\
& \text { Switch } x \text { and } y .
\end{aligned}
$$

Divide each side by 4.

You can check the solution by noting that the graph of $f^{-1}(x)=-\frac{1}{2} \sqrt{x}$ is the reflection of the graph of $f(x)=4 x^{2}, x \leq 0$, in the line $y=x$.

Take square roots of each side.

The domain of f is restricted to negative values of x. So, the range of f^{-1} must also be restricted to negative values, and therefore the inverse is $f^{-1}(x)=\quad$. (If the domain were restricted to $x \geq 0$, you would choose $f^{-1}(x)=$ \qquad .)

——_

HORIZONTAL LINE TEST

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f

\qquad .

Function

Not a function

Checkpoint Find the inverse of the function. Then verify that your result and the original function are inverses.

1. $f(x)=-3 x+5$
$f^{-1}(x)=-\frac{1}{3} x+\frac{5}{3}$

Example 3 Find the inverse of a power function

Find the inverse of $f(x)=4 x^{2}, x \leq 0$. Then graph f and $\boldsymbol{f}^{\mathbf{- 1}}$.

$$
\begin{aligned}
f(x) & =4 x^{2} & & \text { Write original function. } \\
y & =4 x^{2} & & \text { Replace } f(x) \text { with } y . \\
x & =4 y^{2} & & \text { Switch } x \text { and } y . \\
\frac{1}{4} x & =y^{2} & & \text { Divide each side by } 4 . \\
\pm \frac{1}{2} \sqrt{x} & =y & & \text { Take square roots of each side. }
\end{aligned}
$$

You can check the solution by noting that the graph of $f^{-1}(x)=-\frac{1}{2} \sqrt{x}$ is the reflection of the graph of $f(x)=4 x^{2}, x \leq 0$, in the line $y=x$.

The domain of f is restricted to negative values of x. So, the range of f^{-1} must also be restricted to negative values, and therefore the inverse is $f^{-1}(x)=-\frac{1}{2} \sqrt{x}$. (If the domain were restricted to $x \geq 0$, you
 would choose $f^{-1}(x)=\underline{\frac{1}{2} \sqrt{x}}$.)

HORIZONTAL LINE TEST

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Function

Not a function

Consider the function $f(x)=\frac{1}{4} x^{3}+3$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function f. Notice that no intersects the graph
more than once. So, the inverse of f is itself a \qquad . To find an equation for f^{-1}, complete the following steps.

				y	y		

$$
\begin{aligned}
f(x)=\frac{1}{4} x^{3}+3 & \text { Write original function. } \\
y=\frac{1}{4} x^{3}+3 & \text { Replace } f(x) \text { with } y . \\
& \text { Switch } x \text { and } y .
\end{aligned}
$$

Subtract \qquad from each side.

Multiply each side by \qquad .
Take cube root of each side.
The inverse of f is $f^{-1}(x)=$ \qquad .
(v) checkpoint Find the inverse of the function.

2. $f(x)=2 x^{4}+1$	3. $g(x)=\frac{1}{32} x^{5}$
Homework	

Example 4 Find the inverse of a cubic function

Consider the function $f(x)=\frac{1}{4} x^{3}+3$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function f. Notice that no horizontal line intersects the graph more than once. So, the inverse of f is itself a function. To find an equation for f^{-1}, complete the following steps.

				y			
y	$=$	$\frac{1}{4}$	x^{3}				
		3					
					1		x

$$
\begin{aligned}
& f(x)=\frac{1}{4} x^{3}+3 \text { Write original function. } \\
& y=\frac{1}{4} x^{3}+3 \text { Replace } f(x) \text { with } y . \\
& x=\frac{1}{4} y^{3}+3 \text { Switch } x \text { and } y . \\
& x-3=\frac{1}{4} y^{3} \text { Subtract } 3 \text { from each side. } \\
& \frac{4 x-12=y^{3}}{\sqrt[3]{4 x-12}=y} \text { Multiply each side by } 4 . \\
& \hline
\end{aligned}
$$

The inverse of f is $f^{-1}(x)=\sqrt[3]{4 x-12}$.
(Vheckpoint Find the inverse of the function.
\(\left.\begin{array}{|l|l|}\hline 2. f(x)=2 x^{4}+1

f^{-1}(x)=\sqrt[4]{\frac{1}{2} x-\frac{1}{2}} \& 3. g(x)=\frac{1}{32} x^{5}

g^{-1}(x)=2 \sqrt[5]{x}\end{array}\right]\)| |
| :--- |

Graph Square Root and Cube Root Functions

Goal - Graph square root and cube root functions.

Your Notes

VOCABULARY

Radical function

PARENT FUNCTIONS FOR SQUARE ROOT AND CUBE ROOT FUNCTIONS

- The parent function for the family of square root functions is $f(x)=\sqrt{x}$. The domain is x \qquad , and the range is y \qquad .
- The parent function for the family of cube root functions is $g(x)=\sqrt[3]{x}$. The domain and range are \qquad -

Example 1 Graph a square root function

Graph $y=2 \sqrt{x}$, and state the domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

Solution

Make a table of values and sketch the graph.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}					

The radicand of a square root is always nonnegative. So, the domain is x 0 . The range is y \qquad 0.

The graph of $y=2 \sqrt{x}$ is a vertical \qquad of the parent graph of $y=\sqrt{x}$.

6.5 Graph Square Root and Cube Root Functions

Goal - Graph square root and cube root functions.

Your Notes

VOCABULARY

Radical function A function containing a radical such as $y=\sqrt{x}$

PARENT FUNCTIONS FOR SQUARE ROOT AND CUBE ROOT FUNCTIONS

- The parent function for the family of square root functions is $f(x)=\sqrt{x}$. The domain is $x \geq 0$, and the range is $y \geq 0$.
- The parent function for the family of cube root functions is $g(x)=\sqrt[3]{x}$. The domain and range are all real numbers.

Example 1 Graph a square root function

Graph $y=2 \sqrt{x}$, and state the domain and range.
Compare the graph with the graph of $y=\sqrt{x}$.

Solution

Make a table of values and sketch the graph.

\boldsymbol{x}	0	1	2	3	4
\boldsymbol{y}	0	$\underline{2}$	2.83	3.46	4

The radicand of a square root is always nonnegative. So, the domain is x \qquad 0 . The range is y \qquad 0.

The graph of $y=2 \sqrt{x}$ is a vertical stretch of the parent graph of $y=\sqrt{x}$.

Graph $y=-\frac{1}{2} \sqrt[3]{x}$, and state the domain and range.
Compare the graph with the graph of $y=\sqrt[3]{x}$.

Solution

Make a table of values and sketch the graph.

\boldsymbol{x}	-2	-1	0
\boldsymbol{y}			

x	1	2
y		

The domain and range are \qquad .

The graph of $y=-\frac{1}{2} \sqrt[3]{x}$ is a vertical \qquad of the parent graph of $y=\sqrt[3]{x}$ by a factor of followed by a reflection in the x-axis.
(Vheckpoint Graph the function. Then state the domain and range.

1. $y=2 \sqrt[3]{x}$

2. $y=-2 \sqrt{x}$

Example 2 Graph a cube root function

Graph $y=-\frac{1}{2} \sqrt[3]{x}$, and state the domain and range.
Compare the graph with the graph of $y=\sqrt[3]{x}$.

Solution

Make a table of values and sketch the graph.

x	-2	-1	0
y	0.63	0.5	0

\boldsymbol{x}	1	2
\boldsymbol{y}	-0.5	-0.63

The domain and range are \qquad all real numbers The graph of $y=-\frac{1}{2} \sqrt[3]{x}$ is a vertical shrink of the parent graph of $y=\sqrt[3]{x}$ by a factor of $\frac{1}{2}$ followed by a reflection in the x-axis.
(Vheckpoint Graph the function. Then state the domain and range.

1. $y=2 \sqrt[3]{x}$

The domain and range are all real numbers.
2. $y=-2 \sqrt{x}$

domain $x \geq 0$, range $y \leq 0$

GRAPHS OF RADICAL FUNCTIONS

To graph $y=a \sqrt{x-h}+k$ or $y=a \sqrt[3]{x-h}+k$, follow these steps:
Step 1 \qquad the graph of $y=a \sqrt{x}$ or $y=a \sqrt[3]{x}$.

Step 2 Translate the graph \qquad units horizontally and \qquad units vertically.

Example 3 Graph a translated square root function

Graph $y=3 \sqrt{x-1}+2$. Then state the domain and range.

Solution

1. Sketch the graph of $y=3 \sqrt{x}$. Notice that it begins at the origin and passes through the point (1, \qquad).
2. Translate the graph. For $y=3 \sqrt{x-1}+2, h=$ and

$k=\ldots$. So, shift the graph \qquad and ___) and
\qquad . The resulting graph starts at (\qquad , \qquad passes through (\qquad , \qquad).
From the graph, you can see that the domain of the function is \qquad and the range of the function is

GRAPHS OF RADICAL FUNCTIONS

To graph $y=a \sqrt{x-h}+k$ or $y=a \sqrt[3]{x-h}+k$, follow these steps:
Step 1 Sketch the graph of $y=a \sqrt{x}$ or $y=a \sqrt[3]{x}$.
Step 2 Translate the graph h units horizontally and k units vertically.

Example 3 Graph a translated square root function
Graph $y=3 \sqrt{x-1}+2$. Then state the domain and range.

Solution

1. Sketch the graph of $y=3 \sqrt{x}$. Notice that it begins at the origin and passes through the point (1, 3).
2. Translate the graph. For
$y=3 \sqrt{x-1}+2, h=1$ and
 $k=2$. So, shift the graph right 1 unit and up 2 units. The resulting graph starts at (1, 2) and passes through (2, 5).
From the graph, you can see that the domain of the function is $x \geq 1$ and the range of the function is $y \geq 2$.

Graph $y=-2 \sqrt[3]{x+3}-2$. Then state the domain and range.

Solution

1. Sketch the graph of $y=-2 \sqrt[3]{x}$. Notice that it passes through the origin and the points (\qquad , \qquad and (\qquad , \qquad).

2. Note that for $y=-2 \sqrt[3]{x+3}-2, h=$ \qquad and
$k=$ \qquad . So, shift the graph
and \qquad . The resulting graph passes through the points \qquad , \qquad), \qquad , \qquad), and (\qquad ,).
From the graph, you can see that the domain and range of the function are both \qquad .

- Checkpoint Graph the function. Then state the domain and range.

3. $y=-\frac{1}{2} \sqrt{x+3}+2$

4. $y=3 \sqrt[3]{x}+2$

Example 4 Graph a translated cube root function

Graph $y=-2 \sqrt[3]{x+3}-2$. Then state the domain and range.

Solution

1. Sketch the graph of $y=-2 \sqrt[3]{x}$. Notice that it passes through the origin and the points ($-1,2$) and (1, -2).

2. Note that for $y=-2 \sqrt[3]{x+3}-2, h=-3$ and $k=-2$. So, shift the graph left 3 units and down 2 units. The resulting graph passes through the points $(-4,0),(-3,-2)$, and ($-2,-4$).

From the graph, you can see that the domain and range of the function are both all real numbers.

Checkpoint Graph the function. Then state the domain and range.
3. $y=-\frac{1}{2} \sqrt{x+3}+2$

domain $x \geq-3$, range $y \leq 2$
4. $y=3 \sqrt[3]{x}+2$

The domain and range are all real numbers.

6.6 Solve Radical Equations

Goal - Solve radical equations.

Your Notes

VOCABULARY

Radical equation

SOLVING RADICAL EQUATIONS

To solve a radical equation, follow these steps:
Step 1 \qquad the radical on one side of the equation, if necessary.
Step 2 Raise each side of the equation to the same to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.

Step 3 \qquad the polynomial equation using techniques you learned in previous chapters. Check your solution.

Example 1 Solve a radical equation

Solve $\sqrt{x+6}=3$.
$\sqrt{x+6}=3 \quad$ Write original equation.

	$=_\quad$Square each side to eliminate the radical.
	$=_\quad$Simplify.
Subtract ___ from each side.	

The solution is \qquad . Check this in the original equation.

Checkpoint Solve the equation. Check your solution.

1. $\sqrt[3]{x-5}+1=-1$

6.6 Solve Radical Equations

Goal - Solve radical equations.

Your Notes

VOCABULARY

Radical equation An equation with a radical that has variables in the radicand

SOLVING RADICAL EQUATIONS

To solve a radical equation, follow these steps:
Step 1 Isolate the radical on one side of the equation, if necessary.

Step 2 Raise each side of the equation to the same power to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.

Step 3 Solve the polynomial equation using techniques you learned in previous chapters. Check your solution.

Example 1 Solve a radical equation

Solve $\sqrt{x+6}=3$.

$$
\begin{array}{rlrl}
\sqrt{x+6} & =3 & & \text { Write original equation. } \\
\frac{(\sqrt{x+6})^{2}}{y x} & =3^{2} & & \begin{array}{l}
\text { Square each side to eliminate the } \\
\text { radical. }
\end{array} \\
\frac{x+6}{x} & =9 & & \text { Simplify. } \\
\hline & & \text { Subtract } 6 \text { from each side. }
\end{array}
$$

The solution is 3 . Check this in the original equation.

Checkpoint Solve the equation. Check your solution.

1. $\sqrt[3]{x-5}+1=-1$

$$
-3
$$

Example 2 Solve an equation with a rational exponent

The solution is \qquad . Check this in the original equation.

Example 3 Solve an equation with an extraneous solution

$x-2=\sqrt{x+10}$	Original equation
=	Square each side.
	Expand left side and simplify right side.
$=0$	Write in standard form.
$=0$	Factor.
$=0$ or $\quad=0$	Zero product property
$x=\quad$ or $\quad x=$	Solve for x.

CHECK

Check $x=$ \qquad .

$$
x-2=\sqrt{x+10}
$$

$\stackrel{?}{?}$ \qquad
\qquad $\stackrel{?}{?}$
\qquad

Check $x=-$ \qquad .

$$
x-2=\sqrt{x+10}
$$

\qquad ? \qquad
\qquad $\stackrel{?}{\underline{?}}$ \qquad

The only solution is \qquad . (The apparent solution \qquad is extraneous.)

Example 2 Solve an equation with a rational exponent

$$
\begin{array}{rlrl}
(3 x+4)^{2 / 3} & =16 & & \begin{array}{l}
\text { Original equation } \\
\text { Raise each side to the }
\end{array} \\
\frac{\left[(3 x+4)^{2 / 3] 3 / 2}\right.}{}=\underline{16^{3 / 2}} & \begin{array}{l}
\text { Rower } \frac{3}{2} .
\end{array} \\
\frac{3 x+4}{\text { por }} & =\left(16^{1 / 2)^{3}}\right. & \begin{array}{l}
\text { Apply properties of } \\
\text { exponents. }
\end{array} \\
\frac{3 x+4}{3 x} & =64 & & \begin{array}{l}
\text { Simplify. }
\end{array} \\
\frac{30}{x} & =\underline{20} & & \text { Subtract 4 from each side. } \\
\text { Divide each side by } 3 .
\end{array}
$$

The solution is 20 . Check this in the original equation.

$$
\begin{aligned}
& \text { Example } 3 \text { Solve an equation with an extraneous solution } \\
& x-2=\sqrt{x+10} \quad \text { Original equation } \\
& (x-2)^{2}=(\sqrt{x+10})^{2} \\
& x^{2}-4 x+4=x+10 \\
& x^{2}-5 x-6=0 \\
& (x-6)(x+1)=0 \\
& x-6=0 \text { or } x+1=0 \\
& x=6 \text { or } \quad x=-1 \quad \text { Solve for } x .
\end{aligned}
$$

CHECK

$$
\begin{array}{rlrl}
\text { Check } x & =6 . & \text { Check } x=-1 . \\
x-2 & =\sqrt{x+10} & x-2=\sqrt{x+10} \\
6-2 & \stackrel{?}{=} \frac{\sqrt{6+10}}{4} & & \stackrel{-1-2}{=} \stackrel{?}{=} \frac{\sqrt{-1+10}}{4} \\
4 & =4 & -3 & \stackrel{?}{=} \sqrt{9} \\
4 & -3 & \neq 3
\end{array}
$$

Check $x=-1$.

The only solution is 4 . (The apparent solution -1 is extraneous.)

CHECK Check $x=$ \qquad .

Check $x=-$ \qquad .
\qquad $\stackrel{?}{?}$ \qquad
\qquad ? \qquad
\qquad
\qquad

The only solution is \qquad . (The apparent solution \qquad is extraneous.)

Solve $\sqrt{x+6}+2=\sqrt{10-3 x}$.

$$
\begin{array}{rlrl}
\sqrt{x+6}+2 & =\sqrt{10-3 x} & \begin{array}{l}
\text { Write original } \\
\text { equation. } \\
\text { Square each }
\end{array} \\
\frac{(\sqrt{x+6}+2)^{2}}{x+6+4 \sqrt{x+6}+4} & =\underline{(\sqrt{10-3 x})^{2}} & \begin{array}{l}
10-3 x \\
\text { side. }
\end{array} \\
\frac{4 \sqrt{x+6}}{} & =\underline{-4 x} & \begin{array}{l}
\text { Expand left } \\
\text { side and } \\
\text { simplify right } \\
\text { side. } \\
\text { Isolate radical } \\
\text { expression. }
\end{array} \\
\frac{\sqrt{x+6}}{l(\sqrt{x+6})^{2}} & =\underline{-x} & \begin{array}{l}
\text { Divide each } \\
\text { side by 4. }
\end{array} \\
\frac{(-x)^{2}}{} & \begin{array}{l}
\text { Square each } \\
\text { side again. } \\
\text { Simplify. }
\end{array} \\
0 & =\underline{x^{2}} & \begin{array}{l}
x^{2}-x-6 \\
0
\end{array} & =(x-3)(x+2) \\
\text { Write in } \\
\text { standard form. }
\end{array}
$$

$$
x=3 \text { or } \quad x=-2 \quad \text { Solve for } x .
$$

CHECK Check $x=3$.

$$
\begin{aligned}
\frac{\sqrt{3+6}+2}{\sqrt{9}+2} & \stackrel{?}{=} \sqrt{10-3(3)} \\
\frac{5}{=} & =1
\end{aligned}
$$

Check $x=-\quad-2$.

$$
\begin{aligned}
& \frac{\sqrt{(-2)+6}+2}{\sqrt{4}+2} \stackrel{?}{=} \frac{\sqrt{10-3(-2)}}{\sqrt{4}} \\
&=4
\end{aligned}
$$

The only solution is -2 . (The apparent solution 3 is extraneous.)

Your Notes

Checkpoint Solve the equation. Check for extraneous solutions.

2. $-2 x^{4 / 3}-21=-53$
3. $x+2=\sqrt{2 x}+7$
4. $\sqrt{3 x+4}-1=\sqrt{x+5}$ solutions.

2. $-2 x^{4 / 3}-21=-53$

 83. $x+2=\sqrt{2 x+7}$

1
4. $\sqrt{3 x+4}-1=\sqrt{x+5}$

4

Words to Review

Give an example of the vocabulary word.

nth root of a	Index of a radical
Simplest form of a radical	Like radicals
Power function	
Inverse relation	

Review your notes and Chapter 6 by using the

 Chapter Review on pages 459-461 of your textbook.
Words to Review

Give an example of the vocabulary word.

n nh root of a 3 is the cube root of 27.	Index of a radical 3 is the index of $\sqrt[3]{27}$.
Simplest form of a radical $3 \sqrt{2 x}$ is the simplest form of $\sqrt{18 x}$.	Like radicals $7\left(11^{1 / 3}\right)$ and 18(11/3) are like radicals.
Power function $f(x)=6 x^{4}$	Composition If $f(x)=3 x^{2}$ and $g(x)=x-1$, then $g(f(x))=3 x^{2}-1$.
Inverse relation inverse relation for $y=6 x-2$.	Inverse function $f(x)=3 x+6$ and $f^{-1}(x)=\frac{1}{3} x-2$ are inverse functions.
Radical function $y=\sqrt[3]{x+5}-6$	Radical equation $\sqrt{x+7}=-3$

Review your notes and Chapter 6 by using the Chapter Review on pages 459-461 of your textbook.

