6.1 Evaluate *n*th Roots and Use Rational Exponents

Goal • Evaluate *n*th roots and study rational exponents.

Your Notes

VOCABULARY

nth root of a

Index of a radical

REAL nth ROOTS OF a		
Let <i>n</i> be an integer $(n > 1)$	and let a be a real number.	
If <i>n</i> is an even integer:	If <i>n</i> is an odd integer:	
 a < 0 No real nth roots. 	• $a < 0$ One real <i>n</i> th root: $\sqrt[n]{a} = _$	
• $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = $	• $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = _$	
• $a > 0$ Two real <i>n</i> th roots $\pm \sqrt[n]{a} = $	S: • $a > 0$ One real <i>n</i> th root: $\sqrt[n]{a} = _$	

Example 1 Find nth roots

Find the indicated real <i>n</i> th root(s) of <i>a</i> .	
a. $n = 3, a = -64$ b. $n = 6, a = 729$	
Solution	
a. Because $n = 3$ is odd and $a = -64$ 0, -64 has	
Because $()^3 = -64$, you	
can write $\sqrt[3]{-64} = $ or $(-64)^{1/3} = $	
b. Because $n = 6$ is even and $a = 729$ 0, 729 has	
Because ⁶ = 729	
and () ⁶ = 729, you can write $\pm \sqrt[6]{729}$ = o	or
$\pm 729^{1/6} = $	

6.1 Evaluate *n*th Roots and Use Rational Exponents

Goal • Evaluate *n*th roots and study rational exponents.

Your Notes

VOCABULARY

*n*th root of *a* For an integer *n* greater than 1, if $b^n = a$, then *b* is an *n*th root of *a*.

Index of a radical An *n*th root of *a* is written as $\sqrt[n]{a}$, where *n* is the index of the radical.

REAL <i>n</i> th ROOTS OF <i>a</i>		
Let n be an integer $(n > 1)$ a	and let a be a real number.	
If <i>n</i> is an even integer:	If <i>n</i> is an odd integer:	
 a < 0 No real nth roots. 	• $a < 0$ One real <i>n</i> th root: $\sqrt[n]{a} = \underline{a^{1/n}}$	
• $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = \underline{0}$	• $a = 0$ One real <i>n</i> th root: $\sqrt[n]{0} = \underline{0}$	
• $a > 0$ Two real <i>n</i> th roots $\pm \sqrt[n]{a} = \underline{\pm a^{1/n}}$: • $a > 0$ One real <i>n</i> th root: $\sqrt[n]{a} = \underline{a^{1/n}}$	

Example 1 Find nth roots

Find the indicated real *n*th root(s) of *a*.

a. n = 3, a = -64 **b.** n = 6, a = 729

Solution

- a. Because n = 3 is odd and a = -64 < 0, -64 has <u>one real cube root</u>. Because $(-4)^3 = -64$, you can write $\sqrt[3]{-64} = -4$ or $(-64)^{1/3} = -4$.
- **b.** Because n = 6 is even and a = 729 > 0,729 has <u>two real sixth roots</u>. Because <u>3</u> $^{6} = 729$ and $(-3)^{6} = 729$, you can write $\pm \sqrt[6]{729} = \pm 3$ or $\pm 729^{1/6} = \pm 3$.

Checkpoint Find the indicated real *n*th roots of *a*.

1. <i>n</i> = 4, <i>a</i> = 256	2. <i>n</i> = 3, <i>a</i> = 512

RATIONAL EXPONENTS

Let *a* be a real number, and let *m* and *n* be positive integers with n > 1.

$$a^{m/n} = (a^{1/n})^m = ($$
)^m

and
$$a^{m/n} = (a^m)^{1/n} = (\sqrt[n]{1/n})$$

$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(a^{1/n})^m}, a \neq 0$$

Example 2 Evaluate an expression with rational exponents

Evaluate $8^{-4/3}$.

Solution

Rational Exponent Form

Radical Form

8 ^{-4/3}	=	
	=	

=

=

 $8^{-4/3} =$

=	
=	
=	

Example 3	Solve equations using nth roots
a. $2x^6 = 14$	b. $(x + 4)^3 = 12$
x ⁶ =	x + 4 =
<i>x</i> =	x =
x =	X ≈

Checkpoint Find the indicated real *n*th roots of *a*.

1. <i>n</i> = 4, <i>a</i> = 256	2. <i>n</i> = 3, <i>a</i> = 512
±4	8

RATIONAL EXPONENTS

Let *a* be a real number, and let *m* and *n* be positive integers with n > 1.

$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

and
$$a^{m/n} = (a^m)^{1/n} = (\sqrt[n]{a^m})$$

$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

Example 2 Evaluate an expression with rational exponents

Evaluate $8^{-4/3}$.

Solution

Rational Exponent Form

Radical Form

$$8^{-4/3} = \frac{1}{\frac{8^{4/3}}{8^{4/3}}} = \frac{1}{\frac{1}{(8^{1/3})^4}} = \frac{1}{\frac{1}{2^4}} = \frac{1}{16} = \frac{1}{16}$$

$$8^{-4/3} = \frac{1}{\frac{8^{4/3}}{8^{4/3}}} = \frac{1}{\frac{8^{4/3}}{8^{4/3}}} = \frac{1}{\frac{1}{8^{4/3}}} = \frac{1}{\frac{1}{16}}$$

Example 3	Solve equati	ons using nth roots
a. $2x^6 = 14$	158	b. $(x + 4)^3 = 12$
$x^{6} = _{7}$	29	$x + 4 = \sqrt[3]{12}$
x =	±% 729	$x = \sqrt[3]{12} - 4$
x = _±	±3	$x \approx -1.71$

Example 4 Use nth roots in problem solving

Animal Population The population *P* of a certain animal species after *t* months can be modeled by $P = C(1.21)^{t/3}$ where *C* is the initial population. Find the population after 19 months if the initial population was 75.

Solution

$P = C(1.21)^{t/3}$	Write model for population)n.
=	Substitute for C and t.	
≈	Use a calculator.	
The nonulation of th	a species is about aft	or

The population of the species is about _____ after 19 months.

3. Evaluate (-125) ^{-2/3} .	4. Solve $(y - 3)^4 = 200$.
5. The volume of a cone is	given by $V = \frac{\pi r^2 n}{3}$, where h
is the height of the cone and <i>r</i> is the radius. Find the radius of a cone whose volume is 25 cubic inches and whose height is 6 inches.	

Homework

Example 4 Use nth roots in problem solving

Animal Population The population *P* of a certain animal species after *t* months can be modeled by $P = C(1.21)^{t/3}$ where *C* is the initial population. Find the population after 19 months if the initial population was 75.

Solution

$P = C(1.21)^{t/3}$	Write model for population.
= 75(1.21) ^{19/3}	Substitute for C and t.
≈ _250.8	Use a calculator.

The population of the species is about <u>251</u> after 19 months.

Checkpoint Complete the following exercises.

3. Evaluate (-125) ^{-2/3} .	4. Solve $(y - 3)^4 = 200$.		
$\frac{1}{25}$	$\sqrt[4]{200}$ + 3 $pprox$ 6.76 or		
20	$-\sqrt[4]{200}$ + 3 \approx -0.76		
5. The volume of a cone is	given by $V = \frac{\pi r^2 h}{3}$, where h		
is the height of the cone and <i>r</i> is the radius. Find the radius of a cone whose volume is 25 cubic inches and whose height is 6 inches.			
1.99 in.			

Homework

6.2 Apply Properties of Rational Exponents

Goal • Simplify expressions involving rational exponents.

Your Notes

VOCABULARY

Simplest form of a radical

Like radicals

PROPERTIES OF RATIONAL EXPONENTS

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those in Lesson 5.1, but now apply to rational exponents.

Property

1. $a^{m} \cdot a^{n} = a^{m+n}$ $4^{1/2} \cdot 4^{3/2} = 4^{(1/2 + 3/2)}$ 2. $(a^{m})^{n} = a^{mn}$ $(2^{5/2})^{2} = 2^{(5/2 \cdot 2)}$ 3. $(ab)^{m} = a^{m}b^{m}$ $(16 \cdot 4)^{1/2} = 16^{1/2} \cdot 4^{1/2}$ 4. $a^{-m} = \frac{1}{a^{m}}, a \neq 0$ $25^{-1/2} = \frac{1}{25^{1/2}} =$ 5. $\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$ $\frac{3^{5/2}}{3^{1/2}} = 3^{(5/2 - 1/2)} =$ 6. $(\frac{a}{b})^{m} = \frac{a^{m}}{b^{m}}, b \neq 0$ $(\frac{27}{8})^{1/3} = \frac{27^{1/3}}{8^{1/3}} =$

6.2 Apply Properties of Rational Exponents

Goal • Simplify expressions involving rational exponents.

Your Notes

VOCABULARY

Simplest form of a radical A radical with index *n* is in simplest form if the radicand has no perfect *n*th powers as factors and any denominator has been rationalized.

Like radicals Two radical expressions with the same index and radicand.

PROPERTIES OF RATIONAL EXPONENTS

Let *a* and *b* be real numbers and let *m* and *n* be rational numbers. The following properties have the same names as those in Lesson 5.1, but now apply to rational exponents.

Property

1. $a^{m} \cdot a^{n} = a^{m+n}$ $4^{1/2} \cdot 4^{3/2} = 4^{(1/2+3/2)}$ $= 4^{2} = 16$ 2. $(a^{m})^{n} = a^{mn}$ $(2^{5/2})^{2} = 2^{(5/2 \cdot 2)} = 2^{5} = 32$ 3. $(ab)^{m} = a^{m}b^{m}$ $(16 \cdot 4)^{1/2} = 16^{1/2} \cdot 4^{1/2}$ $= 4 \cdot 2 = 8$ 4. $a^{-m} = \frac{1}{a^{m}}, a \neq 0$ $25^{-1/2} = \frac{1}{25^{1/2}} = \frac{1}{5}$ 5. $\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$ $\frac{3^{5/2}}{3^{1/2}} = 3^{(5/2-1/2)} = 3^{2} = 9$ 6. $(\frac{a}{b})^{m} = \frac{a^{m}}{b^{m}}, b \neq 0$ $(\frac{27}{8})^{1/3} = \frac{27^{1/3}}{8^{1/3}} = \frac{3}{2}$

Your Notes

Example 1 Use properties of exponents

Use the properties of rational exponents to simplify the expression.

PROPERTIES OF RADICALSProduct Property of RadicalsQuotient Property of Radicals $\sqrt[n]{a \cdot b} =$ _____ $\sqrt[n]{\frac{a}{b}} =$ _____, $b \neq 0$

Example 2 Use properties of radicals

Use the properties of radicals to simplify the expression.

a.
$$\sqrt[5]{27} \cdot \sqrt[5]{9} =$$
==Product
propertyb. $\frac{\sqrt[3]{192}}{\sqrt[3]{3}} =$ ==Quotient
property

Checkpoint Simplify the expression.

1. $(6^6 \cdot 5^6)^{-1/6}$	2. $\frac{\sqrt{245}}{\sqrt{5}}$

Example 1 Use properties of exponents

Use the properties of rational exponents to simplify the expression.

a.
$$9^{1/2} \cdot 9^{3/4} = 9^{(1/2 + 3/4)} = 9^{5/4}$$

b. $(7^{2/3} \cdot 5^{1/6})^3 = (7^{2/3})^3 \cdot (5^{1/6})^3$
 $= 7^{(2/3 \cdot 3)} \cdot 5^{(1/6 \cdot 3)}$
 $= 7^2 \cdot 5^{1/2} = 49 \cdot 5^{1/2}$
c. $\frac{3^{5/6}}{3^{1/3}} = 3^{(5/6 - 1/3)} = 3^{3/6} = 3^{1/2}$
d. $\left(\frac{16^{2/3}}{4^{2/3}}\right)^4 = \left[\left(\frac{16}{4}\right)^{2/3}\right]^4 = (4^{2/3})^4 = 4^{(2/3 \cdot 4)} = 4^{8/3}$

PROPERTIES OF RADICALS

Product Property of Radicals Quotient Property of Radicals $\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$ $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$, $b \neq 0$

Example 2 Use properties of radicals

Use the properties of radicals to simplify the expression.

a.
$$\sqrt[5]{27} \cdot \sqrt[5]{9} = \sqrt[5]{27 \cdot 9} = \sqrt[5]{243} = 3$$
 Product
property
b. $\frac{\sqrt[3]{192}}{\sqrt[3]{3}} = \sqrt[3]{\frac{192}{3}} = \sqrt[3]{64} = 4$ Quotient
property

Checkpoint Simplify the expression.

Example 3 Write radicals in simplest form

Write the expression in simplest form.

 $\sqrt[5]{128} =$ = = = Factor out perfect fifth power.
Froduct property
Froduct pr

Simplify the expression.

Checkpoint Write the expression in simplest form.

3. $\sqrt[3]{\frac{5}{9}}$	4. $6\sqrt[4]{6} + 2\sqrt[4]{6}$

Example 5 Simplify expressions involving variables

Simplify the expression. Assume all variables are positive.

Example 3 Write radicals in simplest form

Write the expression in simplest form.

$$\sqrt[5]{128} = \sqrt[5]{32 \cdot 4}$$

= $\sqrt[5]{32} \cdot \sqrt[5]{4}$
= $2\sqrt[5]{4}$

Factor out perfect fifth power. Product property

Simplify.

Example 4 Add and subtract like radicals and roots Simplify the expression. a. $2(12^{2/3}) + 7(12^{2/3}) = (2 + 7)(12^{2/3}) = 9(12^{2/3})$ b. $\sqrt[4]{48} - \sqrt[4]{3} = \sqrt[4]{16} \cdot \sqrt[4]{3} - \sqrt[4]{3}$ $= 2\sqrt[4]{3} - \sqrt[4]{3} = (2 - 1)\sqrt[4]{3} = \sqrt[4]{3}$

3. $\sqrt[3]{\frac{5}{9}}$	4. $6\sqrt[4]{6} + 2\sqrt[4]{6}$
$\frac{\sqrt[3]{15}}{3}$	8 ⁴ ⁄6

Example 5 Simplify expressions involving variables

Simplify the expression. Assume all variables are positive.

a.
$$\sqrt[5]{32x^{15}} = \sqrt[5]{2^5 \cdot (x^3)^5} = \sqrt[5]{2^5} \cdot \sqrt[5]{(x^3)^5} = 2x^3$$

b. $(36m^4n^{10})^{1/2} = \frac{36^{1/2}(m^4)^{1/2}(n^{10})^{1/2}}{6m^{(4 \cdot 1/2)}n^{(10 \cdot 1/2)} = 6m^2n^5}$
c. $\sqrt[3]{\frac{a^9}{b^6}} = \frac{\sqrt[3]{a^9}}{\sqrt[3]{b^6}} = \frac{\sqrt[3]{(a^3)^3}}{\sqrt[3]{(b^2)^3}} = \frac{a^3}{b^2}$
d. $\frac{42x^4z^7}{6x^{3/2}y^{-3}z^5} = \frac{7x^{(4-3/2)}y^{-(-3)}z^{(7-5)} = 7x^{5/2}y^3z^2}{2}$

Example 7 Add and subtract expressions involving variables

Perform the indicated operation. Assume all variables are positive.

a.
$$10\sqrt[5]{y} - 6\sqrt[5]{y} =$$

b. $3a^2b^{1/4} + 4a^2b^{1/4} =$

	5. $\sqrt[3]{8x^7y^3z^{11}}$	6. $7\sqrt[3]{2a^5} - a\sqrt[3]{128a^2}$
Homework		

Example 7 Add and subtract expressions involving variables

Perform the indicated operation. Assume all variables are positive.

a.
$$10\sqrt[5]{y} - 6\sqrt[5]{y} = (10 - 6)\sqrt[5]{y} = 4\sqrt[5]{y}$$

b. $3a^2b^{1/4} + 4a^2b^{1/4} = (3 + 4)a^2b^{1/4} = 7a^2b^{1/4}$

Checkpoint Simplify the expression. Assume all variables are positive.

6. $7\sqrt[3]{2a^5} - a\sqrt[3]{128a^2}$	5. $\sqrt[3]{8x^7y^3z^{11}}$	
3a V 2a ²	$2x^2yz^3 \vee xz^2$	
		Homework
		Homework

6.3 Perform Function Operations and Composition

Goal • Perform operations with functions.

Your Notes

VOCABULARY

Power function

Composition

OPERATIONS ON FUNCTIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.

Operation and Definition Example: f(x) = 3x, g(x) = x + 3

Addition h(x) = f(x) + g(x) h(x) = 3x + (x + 3)

Subtraction h(x) = f(x) - g(x)

Multiplication $h(x) = f(x) \cdot g(x)$

h(x) = 3x(x + 3)=

h(x) = 3x - (x + 3)

=

= _____

Division

 $h(x) = \frac{f(x)}{g(x)}$

The domain of *h* consists of the *x*-values that are in the domains of ______. Additionally, the domain of a quotient does not include *x*-values for which $g(x) = ___$.

h(x) =

6.3 Perform Function Operations and Composition

Goal • Perform operations with functions.

Your Notes

VOCABULARY

Power function A function of the form $y = ax^b$ where *a* is a real number and *b* is a rational number

Composition The composition of a function g with a function f is h(x) = g(f(x)). The domain of h is the set of all x-values such that x is in the domain of f and f(x) is in the domain of g.

OPERATIONS ON FUNCTIONS

Let f and g be any two functions. A new function h can be defined by performing any of the four basic operations on f and g.

Operation and Definition Example: f(x) = 3x, g(x) = x + 3

Addition
$$h(x) = f(x) + g(x)$$
 $h(x) = 3x + (x + 3)$

Subtraction h(x) = f(x) - g(x)

Multiplication $h(x) = f(x) \cdot g(x)$ h(x) = 3x - (x + 3)= 2x - 3

= 4x + 3

$$h(x) = 3x(x + 3)$$
$$= 3x^2 + 9x$$

Division

$$h(x) = \frac{f(x)}{g(x)}$$

 $h(x) = \frac{3x}{x+3}$

The domain of *h* consists of the *x*-values that are in the domains of <u>both *f* and *g*</u>. Additionally, the domain of a quotient does not include *x*-values for which g(x) = 0.

Let $f(x) = 3x^{1/2}$ and $g(x) = -5x^{1/2}$. Find the following. a. f(x) + g(x)b. f(x) - g(x)c. the domains of f + g and f - gSolution a. $f(x) + g(x) = 3x^{1/2} + (-5x^{1/2})$ =b. $f(x) - g(x) = 3x^{1/2} - (-5x^{1/2})$ =c. The functions f and g each have the same domain: f + g and f - g also consist of ______.

Example 2 Multiply and divide functions

Let f(x) = 7x and $g(x) = x^{1/6}$. Find the following. a. $f(x) \cdot g(x)$ b. $\frac{f(x)}{g(x)}$ c. the domains of $f \cdot g$ and $\frac{f}{g}$ Solution a. $f(x) \cdot g(x) = (7x)(x^{1/6}) =$ ______ b. $\frac{f(x)}{g(x)} =$ _____ c. The domain of f consists of ______, and the domain of g consists of ______, and the domain of g consists of ______, Because g(0) =_____, the domain of $\frac{f}{g}$ is restricted to ______

Example 1 Add and subtract functions

Let $f(x) = 3x^{1/2}$ and $g(x) = -5x^{1/2}$. Find the following. **a.** f(x) + g(x)**b.** f(x) - g(x)**c.** the domains of f + g and f - gSolution a. $f(x) + g(x) = 3x^{1/2} + (-5x^{1/2})$ $= \frac{[3 + (-5)]x^{1/2}}{[3 - (-5)]x^{1/2}}$ b. $f(x) - g(x) = 3x^{1/2} - (-5x^{1/2})$ $= \frac{[3 - (-5)]x^{1/2}}{[3 - (-5)]x^{1/2}}$ **c.** The functions *f* and *g* each have the same domain:

all nonnegative real numbers . So, the domains of f + g and f - g also consist of all nonnegative real numbers .

Example 2 Multiply and divide functions

Let f(x) = 7x and $g(x) = x^{1/6}$. Find the following.

- **a.** $f(x) \cdot g(x)$
- **b.** $\frac{f(x)}{g(x)}$
- **c.** the domains of $f \cdot g$ and $\frac{f}{g}$

- Solution a. $f(x) \cdot g(x) = (7x)(x^{1/6}) = \underline{7x^{(1 + 1/6)}} = \underline{7x^{7/6}}$ b. $\frac{f(x)}{g(x)} = \underline{\frac{7x}{x^{1/6}}} = 7x^{(1 1/6)} = 7x^{5/6}$
- c. The domain of f consists of all real numbers, and the domain of g consists of all nonnegative real numbers . So, the domain of $f \cdot g$ consists of all <u>nonnegative real numbers</u>. Because g(0) = 0, the domain of $\frac{f}{g}$ is restricted to <u>all positive real</u> numbers .

Checkpoint Complete the following exercise.

1.	Let $f(x) = 5x^{3/2}$ and $g(x) = -2x^{3/2}$. Find (a) $f + g$,		
	(b) $f - g$, (c) $f \cdot g$, (d) $\frac{f}{\sigma}$, and (e) the domains.		
	g de la g		

Checkpoint Complete the following exercise.

- **1.** Let $f(x) = 5x^{3/2}$ and $g(x) = -2x^{3/2}$. Find (a) f + g, (b) f - g, (c) $f \cdot g$, (d) $\frac{f}{g}$, and (e) the domains. a. $3x^{3/2}$ b. $7x^{3/2}$ c. $-10x^3$ d. $-\frac{5}{2}$
 - e. The domain of f + g, f g, and $f \cdot g$ is all nonnegative real numbers. The domain of $\frac{f}{g}$ is all positive real numbers.

COMPOSITION OF FUNCTIONS Domain of *f* Range of f The composition of a function g with a function Input Output f is h(x) = g(f(x)). of f of f The domain of *h* is the set of all x-values such f(x)g(f(x))χ. that *x* is in the domain of f and f(x) is in the Input Output of g of g domain of g. Domain of g Range of g

Your Notes	Example 3 Find compositions of functions
	Let $f(x) = 6x^{-1}$ and $g(x) = 3x + 5$. Find the following.
	a. $f(g(x))$ b. $g(f(x))$ c. $f(f(x))$
	d. the domain of each composition
	Solution
	a. $f(g(x)) = f(3x + 5) =$
	b. $g(f(x)) = g(6x^{-1})$
	=
	c. $f(f(x)) = f(6x^{-1}) =$
	d. The domain of <i>f</i> (<i>g</i> (<i>x</i>)) consists of
	except $x =$ because $g() = 0$ is not in
	the (Note that $f(0) = 0$, which
	is) The domains of $g(f(x))$ and $f(f(x))$
	consist of except x =, again
	because

Checkpoint Complete the following exercise.

2. Let f(x) = 5x - 4 and $g(x) = 3x^{-1}$. Find (a) f(g(x)), (b) g(f(x)), (c) f(f(x)), and (d) the domain of each composition.

Homework

Solution

a. $f(g(x)) = f(3x + 5) = \frac{6(3x + 5)^{-1}}{3x + 5}$ **b.** $g(f(x)) = g(6x^{-1})$ $= 3(6x^{-1}) + 5 = 18x^{-1} + 5 = \frac{18}{x} + 5$ **c.** $f(f(x)) = f(6x^{-1}) = 6(6x^{-1})^{-1} = 6(6^{-1}x) = 6^{0}x = x$ **d.** The domain of f(g(x)) consists of all real numbers except $x = -\frac{5}{3}$ because $g\left(-\frac{5}{3}\right) = 0$ is not in the <u>domain of f</u>. (Note that $f(0) = \frac{6}{0}$, which is undefined .) The domains of g(f(x)) and f(f(x))consist of all real numbers except x = 0, again because 0 is not in the domain of f.

Checkpoint Complete the following exercise.

2. Let f(x) = 5x - 4 and $g(x) = 3x^{-1}$. Find (a) f(g(x)), (b) g(f(x)), (c) f(f(x)), and (d) the domain of each composition.

a.
$$\frac{15}{x} - 4$$
 b. $\frac{3}{5x - 4}$ c. $25x - 24$

d. The domain of f(q(x)) and f(f(x)) is all real numbers except x = 0. The domain of g(f(x))is all real numbers except $x = \frac{4}{5}$.

Homework

6.4 Use Inverse Functions

Goal • Find inverse functions.

Your Notes

VOCABULARY

Inverse relation

Inverse function

Example 1 Find an inverse relation

Find an equation for the inverse of the relation y = 7x - 4.

y=7x-4	Write original equation. Switch <i>x</i> and <i>y</i> .	
	Add to each side.	
	Solve for y. This is the inverse relation.	

INVERSE FUNCTIONS

Functions *f* and *g* are inverses of each other provided:

 $f(g(x)) = _$ and $g(f(x)) = _$

The function g is denoted by f^{-1} , read as "f inverse."

Example 2 Verify that functions are inverses

Verify that f(x) = 7x - 4 and $f^{-1}(x) = \frac{1}{7}x + \frac{4}{7}$ are inverses. Show that $f(f^{-1}(x)) = x$. Show that $f^{-1}(f(x)) = x$. $f(f^{-1}(x)) = f(\frac{1}{7}x + \frac{4}{7})$ $f^{-1}(f(x)) = f^{-1}(7x - 4)$ =______ =______ =______ =_______ =_______

Use Inverse Functions

Goal • Find inverse functions.

Your Notes

VOCABULARY

Inverse relation A relation that interchanges the input and output values of the original relation

Inverse function The original relation and its inverse relation whenever both relations are functions

Example 1 Find an inverse relation

Find an equation for the inverse of the relation y=7x-4.

x = 7y - 4Switch x and y. x + 4 = 7yAdd 4 to each side. $\frac{1}{7}x + \frac{4}{7} = y$ Solve for y. This is the i

y = 7x - 4 Write original equation.

Solve for y. This is the inverse relation.

INVERSE FUNCTIONS

Functions f and g are inverses of each other provided:

f(g(x)) = x and g(f(x)) = x

The function g is denoted by f^{-1} , read as "f inverse."

Example 2 Verify that functions are inverses

Verify that f(x) = 7x - 4 and $f^{-1}(x) = \frac{1}{7}x + \frac{4}{7}$ are inverses.

Show that $f(f^{-1}(x)) = x$. $f(f^{-1}(x)) = f(\frac{1}{7}x + \frac{4}{7})$ Show that $f^{-1}(f(x)) = x$. $f^{-1}(f(x)) = f^{-1}(7x - 4)$ $= \frac{7(\frac{1}{7}x + \frac{4}{7}) - 4}{= x - \frac{4}{7} + \frac{4}{7}}$ $= x - \frac{4}{7} + \frac{4}{7}$ = x + 4 - 4= X = X

Checkpoint Find the inverse of the function. Then verify that your result and the original function are inverses.

1.
$$f(x) = -3x + 5$$

HORIZONTAL LINE TEST

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f

 f^{-}

Checkpoint Find the inverse of the function. Then verify that your result and the original function are inverses.

1.
$$f(x) = -3x + 5$$

 $f^{-1}(x) = -\frac{1}{3}x + \frac{5}{3}$

Vou can check the
solution by noting
that the graph of
$$f(x) = 4x^2$$
, $x \le 0$. Then graph f
and f^{-1} .You can check the
solution by noting
that the graph of
 $f^{-1}(x) = -\frac{1}{2}\sqrt{x}$ is
the reflection of
the graph of
 $f(x) = 4x^2$, $x \le 0$,
in the line $y = x$.You can check the
solution by noting
that the graph of
 $f^{-1}(x) = -\frac{1}{2}\sqrt{x}$ is
the reflection of
the graph of
 $f(x) = 4x^2, x \le 0$,
in the line $y = x$.You can check the
solution by noting
that the graph of
 $f(x) = 4x^2, x \le 0$,
in the line $y = x$.The domain of f is restricted to
negative values, and therefore the
inverse is $f^{-1}(x) = -\frac{1}{2}\sqrt{x}$. (If the
domain were restricted to $x \ge 0$, you
would choose $f^{-1}(x) = -\frac{1}{2}\sqrt{x}$.)

HORIZONTAL LINE TEST

The inverse of a function *f* is also a function if and only if no horizontal line intersects the graph of *f* more than once .

Consider the function $f(x) = \frac{1}{4}x^3 + 3$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function f. Notice that no intersects the graph more than once. So, the inverse of f is itself a _____. To find an equation for f^{-1} , complete the following steps.

			y		
		-1-			
-			1	l	x
	 	,	,		

$f(x) = \frac{1}{4}x^3 + 3$	Write original function.
$y = \frac{1}{4}x^3 + 3$	Replace $f(x)$ with y.
	Switch <i>x</i> and <i>y</i> .
	Subtract from each side.
	Multiply each side by
	Take cube root of each side.
The inverse of f is $f^{-1}(x)$	=

Checkpoint Find the inverse of the function.

2. $f(x) = 2x^4 + 1$	3. $g(x) = \frac{1}{32}x^5$

Homework

Consider the function $f(x) = \frac{1}{4}x^3 + 3$. Determine whether the inverse of f is a function. Then find the inverse.

Solution

Graph the function *f*. Notice that no horizontal line intersects the graph more than once. So, the inverse of *f* is itself a <u>function</u>. To find an equation for f^{-1} , complete the following steps.

$f(x) = \frac{1}{4}x^3 + 3$	Write original function.
$y = \frac{1}{4}x^3 + 3$	Replace $f(x)$ with y.
$x = \frac{1}{4}y^3 + 3$	Switch x and y.
$x - 3 = \frac{1}{4}y^3$	Subtract <u>3</u> from each side.
$4x - 12 = y^3$	Multiply each side by 4 .
$\sqrt[3]{4x-12} = y$	Take cube root of each side.
The inverse of <i>f</i> is $f^{-1}(x)$	$= \sqrt[3]{4x-12}$.

Checkpoint Find the inverse of the function.

2. $f(x) = 2x^4 + 1$ $f^{-1}(x) = \sqrt[4]{\frac{1}{2}x - \frac{1}{2}}$	3. $g(x) = \frac{1}{32}x^5$ $g^{-1}(x) = 2\sqrt[5]{x}$

Homework

6.5 Graph Square Root and Cube Root Functions

Goal • Graph square root and cube root functions.

Your Notes

VOCABULARY

Radical function

PARENT FUNCTIONS FOR SQUARE ROOT AND CUBE ROOT FUNCTIONS

- The parent function for the family of square root functions is $f(x) = \sqrt{x}$. The domain is x _____, and the range is y _____.
- The parent function for the family of cube root functions is $g(x) = \sqrt[3]{x}$. The domain and range are _____.

Example 1 Graph a square root function

Graph $y = 2\sqrt{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt{x}$.

Solution

Make a table of values and sketch the graph.

x	0	1	2	3	4
y					

The radicand of a square root is always nonnegative. So, the domain is $x _ 0$. The range is $y _ 0$.

The graph of $y = 2\sqrt{x}$ is a vertical _____ of the parent graph of $y = \sqrt{x}$.

6.5 Graph Square Root and Cube Root Functions

Goal • Graph square root and cube root functions.

Your Notes

VOCABULARY

Radical function A function containing a radical such as $y = \sqrt{x}$

PARENT FUNCTIONS FOR SQUARE ROOT AND CUBE ROOT FUNCTIONS

- The parent function for the family of square root functions is $f(x) = \sqrt{x}$. The domain is $x \ge 0$, and the range is $y \ge 0$.
- The parent function for the family of cube root functions is $g(x) = \sqrt[3]{x}$. The domain and range are <u>all real numbers</u>.

Example 1 Graph a square root function

Graph $y = 2\sqrt{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt{x}$.

Solution

Make a table of values and sketch the graph.

X	0	1	2	3	4
у	0	2	2.83	3.46	_4

The radicand of a square root is always nonnegative. So, the domain is $x \ge 0$. The range is $y \ge 0$.

The graph of $y = 2\sqrt{x}$ is a vertical <u>stretch</u> of the parent graph of $y = \sqrt{x}$.

Graph $y = -\frac{1}{2}\sqrt[3]{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt[3]{x}$.

Solution

Make a table of values and sketch the graph.

parent graph of $y = \sqrt[3]{x}$ by a factor of ______ followed by a reflection in the *x*-axis. ______

Checkpoint Graph the function. Then state the domain and range.

Graph $y = -\frac{1}{2}\sqrt[3]{x}$, and state the domain and range. Compare the graph with the graph of $y = \sqrt[3]{x}$.

Solution

Make a table of values and sketch the graph.

The domain and range are <u>all real numbers</u>.

The graph of $y = -\frac{1}{2}\sqrt[3]{x}$ is a vertical <u>shrink</u> of the parent graph of $y = \sqrt[3]{x}$ by a factor of $\frac{1}{2}$ followed by a reflection in the *x*-axis.

Checkpoint Graph the function. Then state the domain and range.

GRAPHS OF RADICAL FUNCTIONS

To graph $y = a\sqrt{x - h} + k$ or $y = a\sqrt[3]{x - h} + k$, follow these steps:

Step 1 _____ the graph of $y = a\sqrt{x}$ or $y = a\sqrt[3]{x}$.

Step 2 Translate the graph ____ units horizontally and ____ units vertically.

Graph $y = 3\sqrt{x - 1} + 2$. Then state the domain and range.

Solution

1. Sketch the graph of $y = 3\sqrt{x}$. Notice that it begins at the origin and passes through the point (1,).

 $y = 3\sqrt{x - 1 + 2}, h = ___ and$

2. Translate the graph. For

k =___. So, shift the graph _____ and ___

_____. The resulting graph starts at (____, ____) and passes through (____, ___).

From the graph, you can see that the domain of the function is _____ and the range of the function is

GRAPHS OF RADICAL FUNCTIONS

To graph $y = a\sqrt{x - h} + k$ or $y = a\sqrt[3]{x - h} + k$, follow these steps:

Step 1 <u>Sketch</u> the graph of $y = a\sqrt{x}$ or $y = a\sqrt[3]{x}$.

Step 2 Translate the graph \underline{h} units horizontally and \underline{k} units vertically.

Example 3 Graph a translated square root function

Graph $y = 3\sqrt{x - 1} + 2$. Then state the domain and range.

Solution

1. Sketch the graph of $y = 3\sqrt{x}$. Notice that it begins at the origin and passes through the point (1, 3).

2. Translate the graph. For $y = 3\sqrt{x - 1} + 2$, h = 1 and k = 2. So, shift the graph <u>right 1 unit</u> and <u>up 2</u> <u>units</u>. The resulting graph starts at (1, 2) and passes through (2, 5).

From the graph, you can see that the domain of the function is $\underline{x \ge 1}$ and the range of the function is $\underline{y \ge 2}$.

Graph $y = -2\sqrt[3]{x+3} - 2$. Then state the domain and range.

Solution

1. Sketch the graph of $y = -2\sqrt[3]{x}$. Notice that it passes through the origin and the points (____, ___) and (___, ___).

2. Note that for $y = -2\sqrt[3]{x+3} - 2$, $h = _$ and $k = _$. So, shift the graph _____

 and ______. The resulting graph passes

 through the points (_____, ___), (_____, ___), and

 (_____, ___).

From the graph, you can see that the domain and range of the function are both _____.

Checkpoint Graph the function. Then state the domain and range.

Graph $y = -2\sqrt[3]{x+3} - 2$. Then state the domain and range.

Solution

1. Sketch the graph of $y = -2\sqrt[3]{x}$. Notice that it passes through the origin and the points (-1, 2) and (1, -2).

2. Note that for $y = -2\sqrt[3]{x+3} - 2$, $h = \underline{-3}$ and $k = \underline{-2}$. So, shift the graph <u>left 3 units</u> and <u>down 2 units</u>. The resulting graph passes through the points $(\underline{-4}, \underline{0}), (\underline{-3}, \underline{-2})$, and $(\underline{-2}, \underline{-4})$.

From the graph, you can see that the domain and range of the function are both <u>all real numbers</u>.

Checkpoint Graph the function. Then state the domain and range.

6.6 Solve Radical Equations

Goal • Solve radical equations.

Your Notes

VOCABULARY

Radical equation

SOLVING RADICAL EQUATIONS

To solve a radical equation, follow these steps:

- Step 1 _____ the radical on one side of the equation, if necessary.
- **Step 2 Raise** each side of the equation to the same to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.
- **Step 3** _____ the polynomial equation using techniques you learned in previous chapters. Check your solution.

Example 1 Solve a radical equation		
Solve $\sqrt{x+6} = 3$.		
$\sqrt{x+6}=3$	Write original equation.	
=	Square each side to eliminate the radical.	
=	Simplify.	
=	Subtract from each side.	
The solution is Che	ck this in the original equation.	

Checkpoint Solve the equation. Check your solution.

1.
$$\sqrt[3]{x-5} + 1 = -1$$

6.6 Solve Radical Equations

Goal • Solve radical equations.

Your Notes

VOCABULARY

Radical equation An equation with a radical that has variables in the radicand

SOLVING RADICAL EQUATIONS

To solve a radical equation, follow these steps:

- **Step 1** <u>Isolate</u> the radical on one side of the equation, if necessary.
- **Step 2 Raise** each side of the equation to the same <u>power</u> to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.
- **Step 3** Solve the polynomial equation using techniques you learned in previous chapters. Check your solution.

Example 1 Solve a radical equation		
Solve $\sqrt{x+6} = 3$.		
$\sqrt{x+6}=3$	Write original equation.	
$(\sqrt{x+6})^2 = 3^2$	Square each side to eliminate the radical.	
<u>x + 6</u> = 9	Simplify.	
<u>x</u> = <u>3</u>	Subtract 6 from each side.	
The solution is 3 . Che	eck this in the original equation.	

Checkpoint Solve the equation. Check your solution.

1.
$$\sqrt[3]{x-5} + 1 = -1$$

-3

Example 3 Solve an equation with a	n extraneous solution
$x-2=\sqrt{x+10}$	Original equation
=	Square each side.
=	Expand left side and simplify right side.
= 0	Write in standard form.
= 0	Factor.
= 0 or = 0	Zero product property
<i>x</i> = or <i>x</i> =	Solve for <i>x</i> .
CHECK	
Check $x = $ Check y	x = -
$x - 2 = \sqrt{x + 10} \qquad x$	$-2 = \sqrt{x + 10}$
<u>?</u>	<u>?</u>
<u>?</u>	<u>?</u>
The only solution is (The apparer extraneous.)	nt solution is

Example 2 Solve an equation with a rational exponent

$(3x + 4)^{2/3} = 16$	Original equation
$[(3x+4)^{2/3}]^{3/2} = 16^{3/2}$	Raise each side to the power $\frac{3}{2}$.
$3x + 4 = (16^{1/2})^3$	Apply properties of exponents.
3x + 4 = 64	Simplify.
3x = 60	Subtract <u>4</u> from each side.
<u>x</u> = <u>20</u>	Divide each side by 3 .
The solution is 20 . Check this	in the original equation.

Example 3 Solve an equation	with an extraneous solution
$x-2=\sqrt{x+10}$	Original equation
$(x-2)^2 = (\sqrt{x+10})^2$	Square each side.
$x^2 - 4x + 4 = x + 10$	Expand left side and simplify right side.
$x^2 - 5x - 6 = 0$	Write in standard form.
(x-6)(x+1) = 0	Factor.
<u>x - 6</u> = 0 or <u>x + 1</u> = 0	Zero product property
x = 6 or $x = 2$	-1 Solve for <i>x</i> .
CHECK	
Check $x = 6$.	Check $x = -1$.
$x-2=\sqrt{x+10}$	$x-2=\sqrt{x+10}$
$6-2 \stackrel{?}{=} \sqrt{6+10}$	$-1 - 2 \stackrel{?}{=} \sqrt{-1 + 10}$
<u>4</u> ≟ √ <u>16</u>	<u>−3</u> <u>≩</u> <u>√9</u>
4 = 4	−3 ≠ 3
The only solution is $\underline{4}$. (The a	apparent solution -1 is

extraneous.)

Solve $\sqrt{x} + 6 + 2 = \sqrt{10} - 3x$.	
$\sqrt{x+6} + 2 = \sqrt{10 - 3x}$	Write original equation.
=	Square each — side.
=	Expand left side and simplify right side.
=	Isolate radical expression.
=	Divide each side by 4.
=	Square each side again.
=	Simplify.
0 =	Write in - standard form.
0 =	Factor.
= 0 or = 0	Zero product property
<i>x</i> = or	Solve for <i>x</i> .
CHECK Check $x = $	
<u>?</u>	-
=	
Check $x = -$?	
= ?	
=	
The only solution is (The apparent	solution

Example 4 Solve an equation with two radicals		
Solve $\sqrt{x+6} + 2 = \sqrt{10 - 3x}$.		
$\sqrt{x+6} + 2 = \sqrt{10 - 3x}$	Write original equation.	
$(\sqrt{x+6}+2)^2 = (\sqrt{10-3x})^2$	Square each side.	
$x + 6 + 4\sqrt{x + 6} + 4 = 10 - 3x$	Expand left side and simplify right side.	
$4\sqrt{x+6} = -4x$	Isolate radical expression.	
$\sqrt{x+6} = -x$	Divide each side by 4.	
$(\sqrt{x+6})^2 = (-x)^2$	Square each side again.	
$x + 6 = x^2$	Simplify.	
$0 = \underline{x^2 - x - 6}$	Write in standard form.	
0 = (x - 3)(x + 2)	Factor.	
x - 3 = 0 or $x + 2 = 0$	Zero product property	
x = 3 or $x = -2$	Solve for <i>x</i> .	
CHECK Check $x = 3$.		
$\sqrt{3+6}+2 \stackrel{2}{=} \sqrt{10-3(3)}$		
$\sqrt{9} + 2 \stackrel{2}{=} \sqrt{1}$		
<u>5</u> = <u>1</u>		
Check $x ={-2}$.		
$\sqrt{(-2)+6} + 2 \stackrel{?}{=} \sqrt{10 - 3(-2)}$		
$\sqrt{4} + 2 \stackrel{?}{=} \sqrt{16}$		
4 = 4		
The only solution is -2 . (The apparent solution is extraneous.)	ition <u>3</u>	

Checkpoint Solve the equation. Check for extraneous solutions.

Checkpoint Solve the equation. Check for extraneous solutions.

Words to Review

Give an example of the vocabulary word.

<i>n</i> th root of <i>a</i>	Index of a radical
Simplest form of a radical	Like radicals
Power function	Composition
Inverse relation	Inverse function
Radical function	Radical equation

Review your notes and Chapter 6 by using the Chapter Review on pages 459–461 of your textbook.

Words to Review

Give an example of the vocabulary word.

<i>n</i> th root of <i>a</i>	Index of a radical
3 is the cube root of 27.	3 is the index of $\sqrt[3]{27}$.
Simplest form of a radical	Like radicals
$3\sqrt{2x}$ is the simplest form of $\sqrt{18x}$.	7(11 ^{1/3}) and 18(11 ^{1/3}) are like radicals.
Power function	Composition
$f(x) = 6x^4$	If $f(x) = 3x^2$ and
	g(x) = x - 1, then $g(f(x)) = 3x^2 - 1$.
Inverse relation	Inverse function
$y = \frac{1}{6}x + \frac{1}{3}$ is the	f(x) = 3x + 6 and
inverse relation for	$f^{-1}(x) = \frac{1}{3}x - 2$ are
y=6x-2.	inverse functions.
Radical function	Radical equation
$y = \sqrt[3]{y + 5} = 6$	$\sqrt{\mathbf{x}+7}2$
y - v x + 0 = 0	

Review your notes and Chapter 6 by using the Chapter Review on pages 459–461 of your textbook.