6-3 Angle Bisectors of Triangles

What You'll Learn

You'll learn to identify and use angle bisectors in triangles.
Why It's Important Engineering Angle bisectors of triangles can be found in bridges.
See Exercise 19.

Recall that the bisector of an angle is a ray that separates the angle into two congruent angles.

$$
\begin{aligned}
& \overrightarrow{P S} \text { bisects } \angle Q P R . \\
& \angle Q P S \cong S P R \\
& m \angle Q P S=m \angle S P R
\end{aligned}
$$

An angle bisector of a triangle is a segment that separates an angle of the triangle into two congruent angles. One of the endpoints of an angle bisector is a vertex of the triangle, and the other endpoint is on the side opposite that vertex.

$\overline{A B}$ is an angle bisector of $\triangle D A C$.

$$
\angle D A B \cong \angle C A B
$$

$$
m \angle D A B=m \angle C A B
$$

Just as every triangle has three medians, three altitudes, and three perpendicular bisectors, every triangle has three angle bisectors.

Special Segments in Triangles			
Segment	• altitude	- perpendicular bisector	• angle bisector
Type	- line segment	- line - line segment	- ray - line segment
Property	from the vertex, a line perpendicular to the opposite side	bisects the side of a triangle	bisects the angle of a triangle

An angle bisector of a triangle has all of the characteristics of any angle bisector. In $\triangle F G H, \overline{F J}$ bisects $\angle G F H$.

1. $\angle 1 \cong \angle 2$, so $m \angle 1=m \angle 2$.
2. $m \angle 1=\frac{1}{2}(m \angle G F H)$ or $2(m \angle 1)=m \angle G F H$
3. $m \angle 2=\frac{1}{2}(m \angle G F H)$ or $2(m \angle 2)=m \angle G F H$

In $\triangle M N P, \overline{M O}$ bisects $\angle N M P$. If $m \angle 1=33$, find $m \angle 2$.
Since $\overline{M O}$ bisects $\angle N M P, m \angle 1=m \angle 2$.
Since $m \angle 1=33, m \angle 2=33$.

2 In $\triangle P Q R, \overline{Q S}$ bisects $\angle P Q R$. If $m \angle P Q R=70$, what is $m \angle 2$?
$m \angle 2=\frac{1}{2}(m \angle P Q R) \quad$ Definition of bisector
$m \angle 2=\frac{1}{2}(70) \quad$ Substitution

$m \angle 2=35 \quad$ Multiply.

3 In $\triangle D E F, \overline{E G}$ bisects $\angle D E F$.
If $m \angle 1=43$, find $m \angle D E F$.
$m \angle D E F=2(m \angle 1) \quad$ Definition of bisector
$m \angle D E F=2(43) \quad$ Substitution
$m \angle D E F=86 \quad$ Multiply.

Your Turn

In $\triangle A B C, \overline{A D}$ bisects $\angle B A C$.
a. If $m \angle 1=32$, find $m \angle 2$.
b. Find $m \angle 1$ if $m \angle B A C=52$.
c. What is $m \angle C A B$ if $m \angle 1=28$?

Algebra Link

(4) In $\triangle R S T, \overline{S U}$ is an angle bisector. Find $m \angle U S T$.

$$
\begin{aligned}
m \angle U S T & =m \angle R S U & & \text { Definition of bisector } \\
5 x & =2 x+15 & & \text { Substitution } \\
5 x-2 x & =2 x+15-2 x & & \text { Subtract } 2 x \text { from each side. } \\
3 x & =15 & & \text { Simplify. } \\
\frac{3 x}{3} & =\frac{15}{3} & & \text { Divide each side by } 3 . \\
x & =5 & & \text { Simplify. }
\end{aligned}
$$

So, $m \angle U S T=5(5)$ or 25 .

Gheck for Understanding

Communicating Mathematics

Guided Practice

Examples 1-3

Example 4

1. Describe an angle bisector of a triangle.
2. Draw an acute scalene triangle. Then use a Vocabulary angle bisector compass and straightedge to construct the angle bisector of one of the angles.

In $\triangle D E F, \overline{E G}$ bisects $\angle D E F$, and

 $\overline{F H}$ bisects $\angle E F D$.3. If $m \angle 4=24$, what is $m \angle D E F$?
4. Find $m \angle 2$ if $m \angle 1=36$.
5. What is $m \angle E F D$ if $m \angle 1=42$?

6. Algebra In $\triangle X Y Z, \overline{Z W}$ bisects $\angle Y Z X$. If $m \angle 1=5 x+9$ and $m \angle 2=39$, find x.

Exercises

Practice

Homework Help	
For Exercises	See Examples
$7,11,15,17$	3
$8,10,13,14$, 16,20	2
9,12	1
18	4
19	2,3
Extra Practice	
See page 736.	

In $\triangle A B C, \overline{B D}$ bisects $\angle A B C$, and $\overline{A E}$ bisects $\angle B A C$.
7. If $m \angle 1=55$, what is $m \angle A B C$?
8. Find $m \angle 3$ if $m \angle B A C=38$.
9. What is $m \angle 4$ if $m \angle 3=22$?
10. Find $m \angle 2$ if $m \angle A B C=118$.
11. What is $m \angle B A C$ if $m \angle 3=20$?

In $\triangle M N P, \overline{N S}$ bisects $\angle M N P, \overline{M R}$ bisects $\angle N M P$, and $\overline{P Q}$ bisects $\angle M P N$.
12. Find $m \angle 4$ if $m \angle 3=31$.
13. If $m \angle M P N=34$, what is $m \angle 6$?
14. What is $m \angle 3$ if $m \angle N M P=64$?
15. Find $m \angle M N P$ if $m \angle 1=44$.
16. What is $m \angle 2$ if $\angle M N P$ is a right angle?
17. In $\triangle X Y Z, \overline{Y W}$ bisects $\angle X Y Z$. What is $m \angle X Y Z$ if $m \angle 2=62$?
18. Algebra In $\triangle D E F, \overline{E C}$ is an angle bisector. If $m \angle C E F=2 x+10$ and $m \angle D E C=x+25$, find $m \angle D E C$.

Tallmadge Bridge, Savannah, Georgia

Mixed Review

Standardized

 Test Practice20. Critical Thinking What kind of angles are formed when you bisect an obtuse angle of a triangle? Explain.
21. Tell whether the red segment in $\triangle A B C$ is an altitude, a perpendicular bisector, both, or neither. (Lesson 6-2)

22. In $\triangle M N P, \overline{M C}, \overline{N B}$, and $\overline{P A}$ are medians. Find $P D$ if $D A=6$. (Lesson 6-1)
23. Algebra The measures of the angles of a triangle are $x+2,4 x+3$, and $x+7$. Find the measure of each angle. (Lesson 5-2)

Exercise 22
24. Short Response Triangle $D E F$ has sides that measure 6 feet, 6 feet, and 9 feet. Classify the triangle by its sides. (Lesson 5-1)
25. Multiple Choice Multiply $2 r+s$ by $r-3 s$. (Algebra Review) (A) $2 r^{2}-3 s^{2}$ (B) $2 r^{2}-5 r s-3 s^{2}$ (C) $2 r^{2}-3 r s$ (D) $-6 r^{2} s^{2}$

Quiz 1 Lessons 6-1 through 6-3

In $\triangle \mathbf{A B C}, \overline{\mathbf{A E}}, \overline{\mathbf{B F}}$, and $\overline{\mathbf{C D}}$ are medians. (Lesson 6-1)

1. Find $G E$ if $A G=9$.
2. What is $B F$ if $B G=5$?
3. If $D G=12$, what is the measure of $\overline{D C}$?
4. Tell whether $\overline{P O}$ is an altitude, a perpendicular bisector, both, or neither. (Lesson 6-2)

5. Algebra In $\triangle D E F, \overline{E G}$ is an angle bisector. If $m \angle D E G=2 x+7$ and $m \angle G E F=4 x-1$, find $m \angle G E F$. (Lesson 6-3)

Chapter 6 Investigation

What a CiRCLE!

Materials

ruler
protractor
compass

Circumcenter, Centroid, Orthocenter, and Incenter

Is there a relationship between the perpendicular bisectors of the sides of a triangle, the medians, the altitudes, and the angle bisectors of a triangle? Let's find out!

Investigate

1. Use construction tools to locate some interesting points on a triangle.
a. Draw a large acute scalene triangle.
b. On a separate sheet of paper, copy the following table.

Description of Points	Label of Points
midpoints of the three sides (3)	
circumcenter (1)	
centroid (1)	
intersection points of altitudes with the sides (3)	
orthocenter (1)	
midpoints of segments from orthocenter to each vertex (3)	
incenter (1)	
midpoint of segment joining circumcenter and orthocenter (1)	

c. Construct the perpendicular bisector of each side of your triangle. Label the midpoints E, F, and G. Record these letters in your table. The circumcenter is the point where the perpendicular bisectors meet. Label this point J and record it. To avoid confusion, erase the perpendicular bisectors, but not the circumcenter.
d. Draw the medians of your triangle. The point where the medians meet is the centroid. Label this point M and record it in your table. Erase the medians, but not the centroid.
e. Construct the altitudes of the triangle. Label the points where the altitudes intersect the sides N, P, and Q. Record these points. The point where the altitudes meet is the orthocenter. Label this point S and record it. Erase the altitudes, but not the orthocenter.

f. Draw three segments, each having the orthocenter as one endpoint and a vertex of your triangle as the other endpoint. Find the midpoint of each segment. Label the midpoints U, V, and W and record these points in your table. Erase the segments.
g. Construct the bisector of each angle of the triangle. The point where the angle bisectors meet is the incenter. Label this point X and record it. Erase the angle bisectors, but not the incenter.
2. You should now have 13 points labeled. Follow these steps to construct a special circle, called a nine-point circle.
a. Locate the circumcenter and orthocenter. Draw a line segment connecting these two points. Bisect this line segment. Label the midpoint Z and record it in the table. Do not erase this segment.
b. Draw a circle whose center is point Z and whose radius extends to a midpoint of the side of your triangle. How many of your labeled points lie on or very close to this circle?
c. Extend the segment drawn in Step 2a. This line is called the Euler (OY-ler) line. How many points are on the Euler line?

Extending the Investigation

In this extension, you will determine whether a special circle exists for other types of triangles.
Use paper and construction tools to investigate these cases.

1. an obtuse scalene triangle
2. a right triangle
3. an equilateral triangle

Presenting Your Conclusions

Here are some ideas to help you present your conclusions to the class.

- Make a booklet of your constructions. For each triangle, include a table in which all of the points are recorded.
- Research Leonhard Euler. Write a brief report on his contributions to mathematics, including the nine-point circle.

Investigation For more information on the nine-point circle,
visit: www.geomconcepts.com

