
6 Electromagnetic Fields and Waves

James Clerk Maxwell’s unification of electromagnetic phenomena, published in 1865, is

perhaps the best example of a successful modern scientific theory [Maxwell, 1998]. In

just a few simple equations he was able to show that the apparently distinct phenomena of

electricity and magnetism were actually intimately related through a common theoretical

framework that contained unexpected predictions, such as electromagnetic waves, and led

to significant succeeding discoveries including the theory of special relativity. This chapter

studies these Maxwell’s equations for static and time-varying electric and magnetic

fields. This theory is called electrodynamics because it describes the time variation of

electromagnetic phenomena, and it will be the foundation of much the rest of the book.

6.1 VECTOR CALCULUS

Working with Maxwell’s equations will require differentiating and integrating field vec-

tors, and so our first step will be a review of the necessary vector calculus.

6.1.1 Vectors

Let ~x ≡ (x, y, z) ≡ (x1, x2, x3) be the coordinates of a point expressed as a vector in
rectangular coordinates (Figure 6.1). The magnitude of a vector is

|~x| =
√

x21 + x22 + x23 . (6.1)

For two vectors ~A and ~B with an angle θ between them, the dot product measures their
overlap:

~A · ~B = |A||B| cos(θ)

= A1B1 +A2B2 + A3B3

=

3∑

i=1

AiBi

≡ AiBi . (6.2)

Because such sums recur frequently in manipulating vectors, the last line introduces the

Einstein summation convention of summing over repeated indices.
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Figure 6.1. Rectangular, cylindrical, and spherical coordinate systems.

The cross product of these vectors is

~A× ~B =
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= (A2B3 −A3B2)x̂1 + (A3B1 −A1B3)x̂2 + (A1B2 − A2B1)x̂3 , (6.3)

where x̂1 (pronounced “x hat”) is a unit vector in the x1 direction. The magnitude of
the cross product is equal to the product of the lengths of the vectors times the sine of

the angle between them, and its direction is perpendicular to the plane containing the

vectors. The orientation can be remembered by the right hand rule: if the fingers of

your right hand curl from ~A towards ~B, your thumb points in the direction of their cross
product. The ith term of the cross product can be written in terms of the summation

convention as

( ~A× ~B)i = ǫijkAjBk (6.4)

by using the antisymmetric tensor

ǫijk =







1 if (ijk) = (123), (231), or (312) (cyclic permutation)
−1 if (ijk) = (132), (321), or (213) (anticyclic permutation)
0 otherwise

. (6.5)

Interchanging indices shows that the cross product is anticommutative:

~A× ~B = − ~B × ~A . (6.6)

A useful expansion for the product of antisymmetric tensors is

ǫijkǫklm = δilδjm − δimδjl , (6.7)

where δij is the Kroenecker delta

δij =

{
1 if i = j
0 otherwise

. (6.8)
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6.1.2 Differential Operators

Now let ϕ(~x) be a scalar function of ~x. The gradient of ϕ is defined to be

∇ϕ(~x) =
∂ϕ(~x)

∂x1
x̂1 +

∂ϕ(~x)

∂x2
x̂2 +

∂ϕ(~x)

∂x3
x̂3 . (6.9)

The gradient is a vector that points in the direction of the fastest change of ϕ, and its
magnitude is equal to the rate of change in that direction. If ϕ(~x) is the height of a hill,
then a ball released at ~x would roll down the hill in the direction −∇ϕ(~x). The vector
operator ∇ is called “del.”

For a vector-valued function ~A(~x) = (A1(~x), A2(~x), A3(~x)), the divergence is

∇ · ~A(~x) =
∂A1
∂x1

+
∂A2
∂x2

+
∂A3
∂x3

=
∑

i

∂Ai

∂xi

≡
∑

i

∂iAi

= ∂iAi . (6.10)

The divergence is a number that measures the rate at which the vector field is locally

expanding or contracting.

The curl of a vector field in three dimensions is defined to be

∇× ~A = (∂2A3 − ∂3A2)x̂1 + (∂3A1 − ∂1A3)x̂2 + (∂1A2 − ∂2A1)x̂3 . (6.11)

The curl points in the direction of circulation of the vector field. Written in the summation

convention,

(∇× ~A)i = ǫijk∂jAk . (6.12)

Plugging in the definitions shows that the curl of a gradient vanishes,

(∇×∇ϕ)i = ǫijk∂j∂kϕ = 0 , (6.13)

as does the divergence of a curl,

∇ · ∇ × ~A = ǫijk∂i∂jAk = 0 . (6.14)

The Laplacian of a scalar quantity is

∇2ϕ = ∇ · ∇ϕ

=
∂2ϕ

∂x21
+
∂2ϕ

∂x22
+
∂2ϕ

∂x23
= ∂i∂iϕ . (6.15)

It measures the curvature at a point. The Laplacian of a vector is a vector-valued quantity

defined to be the Laplacian of each of the components of the vector

(∇2 ~A)j = ∂i∂iAj . (6.16)

In addition to rectangular coordinates, there are two other common coordinate systems,

cylindrical (r, ϕ, z) and spherical (r, θ, ϕ), also shown in Figure 6.1.When the coordinate
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system reflects the symmetries of a problem the math is much simpler. Inserting the

trigonometric relationships among the variables into the definitions of the differential

operators in rectangular coordinates, and taking the appropriate partial derivatives, shows

that in cylindrical and spherical coordinates a differential volume element is

dV = dx dy dz

= r dr dϕ dz

= r2 sin θ dr dθ dϕ , (6.17)

the gradient is

∇Φ =
∂Φ

∂x
x̂ +

∂Φ

∂y
ŷ +

∂Φ

∂z
ẑ

=
∂Φ

∂r
r̂ +

1

r

∂Φ

∂ϕ
ϕ̂ +

∂Φ

∂z
ẑ

=
∂Φ

∂r
r̂ +

1

r

∂Φ

∂θ
θ̂ +

1

r sin θ

∂Φ

∂ϕ
ϕ̂ , (6.18)

the divergence is

∇ · ~A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

=
1

r

∂

∂r
(rAr) +

1

r

∂Aϕ

∂ϕ
+
∂Az

∂z

=
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂Aϕ

∂ϕ
, (6.19)

the Laplacian is

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+
∂2Φ

∂z2

=
1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2
∂2Φ

∂ϕ2
+

∂2Φ

∂z2

=
1

r2
∂

∂r

(

r2
∂Φ

∂r

)

︸ ︷︷ ︸

1

r

∂2

∂r2
(rΦ)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
1

r2 sin2 θ

∂2Φ

∂ϕ2
, (6.20)

and the curl is

∇× ~A =

(
∂Az

∂y
−

∂Ay

∂z

)

x̂ +

(
∂Ax

∂z
−

∂Az

∂x

)

ŷ +

(
∂Ay

∂x
−

∂Ax

∂y

)

ẑ

=

(
1

r

∂Az

∂ϕ
−

∂Aϕ

∂z

)

r̂ +

(
∂Ar

∂z
−

∂Az

∂r

)

ϕ̂ +
1

r

(
∂(rAϕ)

∂r
−

∂Ar

∂ϕ

)

ẑ

=
1

r sin θ

(
∂(Aϕ sin θ)

∂θ
−

∂Aθ

∂ϕ

)

r̂ +
1

r

(
1

sin θ

∂Ar

∂ϕ
−

∂(rAϕ)

∂r

)

θ̂

+
1

r

(
∂(rAθ )

∂r
−

∂Ar

∂θ

)

ϕ̂ . (6.21)



58 Electromagnetic Fields and Waves

Finally, Table 6.1 lists some vector and trigonometric relationships that will be needed

later.

Table 6.1. Vector and trigonometric identities.

∇×∇ϕ = 0

∇ · (∇× ~A) = 0

∇ · (ϕ ~A) = ~A · ∇ϕ + ϕ∇ · ~A

∇× (ϕ ~A) = ∇ϕ× ~A + ϕ∇× ~A
~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B)

∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B)
cos(A±B) = cosA cosB ∓ sinA sinB
sin(A±B) = sinA cosB ± cosA sinB

cos(2A) = cos2A− sin2A
sin(2A) = 2 sinA cosA
sin2A + cos2A = 1

6.1.3 Integral Relationships

The differential operators introduced in the last section measure the local properties

of scalar and vector fields. Not surprisingly, there are intimate relationships between

these local properties and the global properties of the fields. These will be very useful

for relating fields to their sources. Without proof, here are important cases of general

theorems relating local and global properties:

• Divergence Theorem (or Gauss’ Theorem)
∫

V

∇ · ~E dV =

∫

S

~E · d ~A . (6.22)

The volume integral of the divergence is equal to the surface integral of the normal

component of the field. V is an arbitrary volume, S is its surface, dV is a volume

element, and d ~A is a surface area element. d ~A is the same as n̂ dA, where n̂ is an
outward-pointing unit vector that is perpendicular to the patch dA. Adding up the
net flux into or out of the volume is equivalent to adding up all the local sources

and sinks.

• Stokes’ theorem
∫

S

∇× ~E · d ~A =

∮

l

~E · d~l . (6.23)

The line integral around a closed path is equal to the surface integral of the curl

over any arbitrary surface bounded by the path (Figure 6.2). If your fingers curl in

the direction of the line integral, your thumb points in the direction of the surface

normal. The total circulation around the path is equal to the sum of all the local

circulations.
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Figure 6.2. Definition of Stokes’ Theorem.

• Green’s theorem
∫

S

(
∂Ey

∂x
−

∂Ex

∂y

)

dx dy =

∮

l

Exdx +Eydy . (6.24)

This follows as a special case of Stokes’ theorem in 2D.

6.2 STATICS

This section reviews the governing equations for time-independent electromagnetic phe-

nomena; the following one turns on time dependence to arrive at Maxwell’s equations.

Together these will serve as the foundation for much of the rest of the book. As surprising

as the remarkable phenomenology contained in these apparently simple relationships is

the sophistication of the techniques needed to reveal it.

6.2.1 Electrostatics

The force in a vacuum between two charges is given by Coulomb’s Law:

~F =
1

4πǫ0

q1q2
r2

r̂ (N) . (6.25)

ǫ0 = 10
7/(4πc2) = 8.854×10−12 F/m is a constant called the permittivity of free space,

q1 and q2 are the size of the charges in coulombs, r
2 is the distance between them in

meters, and r̂ is a unit vector pointing between them. This relationship was determined
experimentally by Charles Augustin Coulomb in 1785.

The force on one charge due to an applied electric field is

~F = q ~E (6.26)

and so the electric field due to a single charge is

~E =
q

4πǫ0r2
r̂

(
V

m

)

. (6.27)

With this definition the electric field points from positive charge towards negative charge.

The field diverges as you approach the charge; very close to a charge the expression is

no longer valid and quantum electrodynamics is needed to describe the field.
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We will shortly see that the curl of the electric field vanishes if there are no time-

varying magnetic fields, which according to equation (6.13) means that the electric field

can be written as the gradient of a potential Φ

~E = −∇Φ . (6.28)

Given this definition, the potential from a point charge is

Φ =
q

4πǫ0r
(V) . (6.29)

Since the electric field is the gradient of the potential, the potential difference (voltage)

between two points ~x and ~y can be found by integrating the electric field along an arbitrary
path between the points

V (~x, ~y) = Φ(~y)− Φ(~x)

= −

∫ ~y

~x

~E · d~l (V) . (6.30)

It is convenient to view the electric field in terms of fictitious field lines, which are

perpendicular to the lines of constant potential and have an areal density proportional to

the field strength.

An electric field inside a material is modified by the response of the material to the

field. In a dielectric, the charge is bound so that it is not free to move, but an applied

electric field will polarize the bound charge. Because of this polarization, the strength of

the field generated by a free charge in the material will be reduced by a factor called the

permittivity ǫ

~E =
q

4πǫr2
r̂ . (6.31)

The permittivity ǫ equals the relative permittivity of the material ǫr times the permit-
tivity of free space

ǫ = ǫ0ǫr . (6.32)

ǫr, also called the dielectric constant, is 1 in a vacuum, between 2 and 5 for typical
plastics, and can be over 100 in a material such as SrTiO3. Depending on the symmetry

of the material the permittivity can be a tensor that depends on direction, and for strong

fields (such as those generated by a laser, Problem 6.6) it will depend nonlinearly on the

field. This latter property is very useful for mixing and generating harmonics of incident

beams of light.

Let’s take the divergence of the field due to a charge and integrate over an infinitesimal

spherical volume of radius r around the charge. According to Gauss’ Theorem,
∫

V

∇ · ~E dV =

∫

S

~E · d ~A

=

∫

S

q

4πǫr2
r̂ · r̂ dA

=
q

4πǫr2
4πr2

=
q

ǫ
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Figure 6.3. Relationship between an electric field with a gradient, the resulting spatial

variation of the polarization, and the net charge induced by the local charge imbalance.

=

∫

V

ρ

ǫ
dV . (6.33)

In the last line we’ve introduced the charge density ρ, which for this point charge is just
a delta function. Since the left side must equal the right side independent of the volume,

the integrands must be equal, and we see that

∇ · ~E =
ρ

ǫ
=

ρ

ǫ0ǫr
. (6.34)

If we define ~D = ǫ ~E, and if ǫ is a constant, this reads

∇ · ~D = ρ . (6.35)

~D is called the displacement field, and this is the differential form of Gauss’ Law. ~E is

the real physical field that exerts a force on charges; ~D is the effective field that results

from source charges.

If the ~E field in the material is uniform, the induced polarization will be constant.

However, if the ~E field varies in space (Figure 6.3) then there will be a spatially varying

induced polarization, leading to an average induced charge density. To understand this,

let’s return to equation (6.34). The electric field in the material can be viewed as being

the sum of the field due to any free charge ρfree that would be there if the material was
not present (ǫr = 1), and the field due to the induced charge ρinduced. The induced charge
is conventionally defined in terms of a polarization vector ~P

ρinduced ≡ −∇ · ~P , (6.36)

and so

∇ · ǫ0 ~E = ρfree + ρinduced (6.37)

= ρfree −∇ · ~P

or

∇ · (ǫ0 ~E + ~P )
︸ ︷︷ ︸

≡ ~D

= ρfree . (6.38)

If the field is not too strong then ~P will be linearly related to ~E, and this relationship
defines the electric susceptibility χe

~D ≡ ǫ0 ~E + ~P = ǫ0(1 + χe)~E = ǫ0ǫr ~E = ǫ ~E . (6.39)

The dipole moment of a charge distribution is defined as the integral of the charge
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times the position
∫
~xρ(~x) dV . To relate this to ~P , first note that by differentiating x~P

and writing out the terms,

∇ · (x~P ) = x∇ · ~P + Px . (6.40)

Therefore,
∫

xρinduced dV = −

∫

x∇ · ~P dV

=

∫

Px dV −

∫

∇ · (x~P ) dV

=

∫

Px dV −

∫

x~P · d ~A . (6.41)

In the limit that the volume goes to zero, ~P will be uniform and so the second term will

vanish. Dropping it and repeating the calculation for the y and z components gives
∫

~xρinduced dV =

∫

~P dV . (6.42)

Since this must be true for any volume, we see that the polarization vector is equal to

the local density of the dipole moment. Note that unlike the ~E field, the dipole moment

is defined to point from negative charge to positive charge.

Substituting the definition of the potential into Gauss’ Law and assuming a homoge-

neous polarizibility gives Poisson’s equation

∇2Φ(~x) = −
ρ(~x)

ǫ
(6.43)

For a point charge located at ~x0, ρ(~x) = q δ(|~x − ~x0|), and the potential is given by
equation (6.29). Plugging these into Poisson’s equation,

∇2Φ(~x) = −
ρ(~x)

ǫ

∇2 q

4πǫ|~x− ~x0|
= −

q

ǫ
δ(|~x− ~x0|)

∇2 1

|~x− ~x0|
= −4π δ(|~x− ~x0|) . (6.44)

This relationship can then be used to show that

Φ(~x) =
1

4πǫ

∫
ρ(~x′)

|~x− ~x′|
d3x′ (6.45)

solves Poisson’s equation. 1/|~x− ~x′| is a Green’s function for this problem, relating the
field to an integral over its source. A similar solution can be found for ~E by using

∇
1

|~x− ~x′|
= −

~x− ~x′

|~x− ~x′|3

⇒ ~E(~x) = −∇Φ(~x)

=
1

4πǫ

∫

ρ(~x′)
~x− ~x′

|~x− ~x′|3
d3x′ . (6.46)
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In free space, Poisson’s equation reduces to

∇2Φ(~x) = 0 . (6.47)

This is called Laplace’s equation, and governs many other phenomena including the

profile of a membrane such as a drumhead stretched around a boundary. One of the

properties of its solution is that it can take on an extremum only on the boundary, and

so electromagnetic particle traps require time-varying fields. The solution of Laplace’s

equation requires the specification these boundary conditions, usually given by either

the distribution of the potential on the boundary (Dirichlet boundary conditions) or its

normal derivative (Neumann boundary conditions).

Note that we found these equations by integrating Coulomb’s Law, which involved

canceling the r2 dependence of a three-dimensional surface area with the r−2 dependence
of the field. In anything other than three dimensions this would not work. Laplace’s

equation is routinely solved numerically, and to make it tractable it is frequently solved

in two dimensions, but it is very important to remember that solving Laplace’s equation

in two dimensions corresponds to taking Coulomb’s law to have a r−1 form because

the length of a two-dimensional perimeter is proportional to r. This may effectively be
correct if the problem has two-dimensional symmetry so that each point corresponds

to a line of charge, but it will be incorrect for an arbitrary two-dimensional slice of a

three-dimensional problem.

The capacitance between two electrodes relates the charge Q on each of them to the

potential difference V between them:

C =
Q

V
. (6.48)

The relationship to current is found by differentiating:

C
dV

dt
=

dQ

dt
= I . (6.49)

6.2.2 Magnetostatics

Electric fields are produced by stationary charges; magnetic fields are produced by moving

charges. The strength of the magnetic field ~H due to an infinitesimal section of a wire

carrying a current (Figure 6.4) was found experimentally in 1820 to be governed by the

Biot–Savart Law

d ~H =
I d~l × r̂

4πr2
, (6.50)

or integrated over space

~H =

∫
I d~l × r̂

4πr2

=
1

4π

∫

~J (~x′)×
~x− ~x′

|~x− ~x′|3
d3x′ (A/m) , (6.51)

where ~J is the current density. Using the right hand rule, if your thumb points in the
direction of current flow then you fingers will curl in the direction of the field.
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Figure 6.4. The magnetic field due to a differential current element.

The relationship between ~H and ~J can be written more simply by taking the curl,

~H(~x) =
1

4π

∫

~J(~x′)×
~x− ~x′

|~x− ~x′|3
d3x′

=
1

4π

∫

~J(~x′)×∇~x
1

|~x− ~x′|
d3x′

∇~x × ~H(~x) =
1

4π

∫

∇~x × ~J(~x′)×∇~x
1

|~x− ~x′|
d3x′

=
1

4π

∫

~J(~x′) ∇2
~x

1

|~x− ~x′|
︸ ︷︷ ︸

δ(~x− ~x′)

−∇~x
1

|~x− ~x′|
∇~x · ~J(~x

′)
︸ ︷︷ ︸

0

d3x′

∇× ~H = ~J (6.52)

(using the BAC–CAB rule ~A × ( ~B × ~C) = ~B( ~A · ~C) − ~C( ~A · ~B), Problem 6.1). We
will soon see that a term must be added to this equation if the fields are time-varying.

The force on an infinitesimal current element is given in terms of the magnetic flux

density ~B by

d~F = Id~l × ~B , (6.53)

or for a single moving charge

~F = q~v × ~B . (6.54)

The continuum version is

~F =

∫

~J × ~B dV . (6.55)

Analogous to the relationship between ~D and ~E, in a material ~H and ~B are related

by the permeability µ:

~B = µ0( ~H + ~M ) = µ0(1 + χm) ~H = µ0µr ~H = µ ~H (T) . (6.56)

µ0 = 4π×10
−7 H/m is the permeability of free space, ~M is the magnetization, the

relative permeability µr = 1 for a vacuum, and χm is the magnetic susceptibility. ~H
is the effective field that results from source currents, and ~B is the physical field that

exerts a force on charges. As with ~D = ǫ ~E, the linear relationship ~B = µ ~H applies only
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to weak fields; magnetic recording depends on the nonlinear hysteresis in µ. Chapter
13 will explain the origin of this, as well as the reason why χm < 0 for diamagnetic

materials but χm > 0 for paramagnetic, ferromagnetic, and ferrimagnetic materials. For

iron χm ∼ 103; for non-magnetic materials χm ∼ 10−5 and so µr ∼ 1 for them. In a

high-permeability alloy such as mumetal (Fe18Ni75Cu5Cr2) the relative permeability is

∼ 105.

Taking the curl of ~H,

∇× ~H = ~J

= ∇×
1

µ0
~B −∇× ~M

= Jfree − Jinduced . (6.57)

As with the electrostatic case, the effective current in the material can be decomposed

into free and induced currents. The induced current can be understood in terms of the

magnetic moment of a current distribution, defined to be

~m =
1

2

∫

~x× ~J (~x) dV . (6.58)

For example, for a circular current loop for radius r,

|~m| =
1

2
r I 2πr

= Iπr2

= I · area . (6.59)

The magnetic moment associated with the induced current is equal to

~minduced =
1

2

∫

~x× ~Jinduced(~x) dV

=
1

2

∫

~x× (∇× ~M ) dV , (6.60)

or for the ith component

mi,induced =
1

2

∫

ǫijkxjǫklm∂lMm dV . (6.61)

Since

∂l(xjMm) = xj∂lMm +Mm ∂lxj
︸︷︷︸

δjl

, (6.62)

this can be rewritten as

mi,induced =
1

2

∫

ǫijkǫklm
[
∂l(xjMm)−Mmδjl

]
dV . (6.63)

The integral over all space of the first term in the brackets will vanish. This is because the

integral over all space of the magnetization M is bounded, therefore asymptotically M
must fall off faster than 1/x. Hence limx→∞ xM (x) = 0, so the integral of the derivative
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of this quantity is just its value at ±∞, which is 0. That leaves the remaining term

mi,induced = −
1

2

∫

ǫijkǫklmMmδjl dV

= −
1

2

∫
(
δilδjm − δimδjl

)
Mmδjl dV

= −
1

2

∫

δilδjmδjlMm − δimδjlδjlMm dV

= −
1

2

∫

δilδmlMm − δim3Mm dV

= −
1

2

∫

Mi − 3Mi dV

=

∫

Mi dV , (6.64)

or for all components

~minduced =

∫

~M dV . (6.65)

The magnetic dipole moment is equal to the integral of the magnetization, therefore the

magnetization is the local density of the dipole moment.

As far as we know there is no such thing as a magnetic “charge”, called a magnetic

monopole, so ∇ · ~B = 0. This means that ~B can be written as the curl of a vector field
~A (equation 6.14):

~B = ∇× ~A , (6.66)

called the vector potential. ~A is related to source currents by

~A(~x) =
µ

4π

∫ ~J (~x′)

|~x− ~x′|
d3x′ , (6.67)

verified by taking the curl to obtain equation (6.51). This relation holds for static current

distributions; Section 8.1 will extend the scalar and vector potentials to time-dependent

sources.

In quantum mechanics the vector potential takes on a deep significance beyond this

formal definition. The Aharonov–Bohm effect considers a particle moving outside an

infinite solenoid; the magnetic field vanishes there but the vector potential does not,

and this leads to observable quantum interference effects [Sakurai, 1967]. This effect

demonstrates the physical reality of the vector potential.

6.2.3 Multipoles

The theory ofmultipoles provides a systematic way to approximate the fields produced by

more complex charge and current distributions. One way to understand it is by expanding

the inverse distance

1

|~r − ~x|
=
1

|~r|
+
~r · ~x

|~r|3
+ · · ·

=
1

r
+
~r · ~x

r3
+ · · · , (6.68)
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where ~r is the distance from the source to where the field is being evaluated, ~x is the
location within the source relative to its origin, and ~x is assumed to be much smaller than
~r. Substituting this series into the potential rewrites it as

Φ(~r) =
1

4πǫ

∫
ρ(~x)

|~r − ~x|
dV

=
1

4πǫ

(
1

r

∫

ρ(~x) dV +
~r

r3
·

∫

ρ(~x)~x dV + · · ·

)

≡
1

4πǫ

(
q

r
+

~p · ~r

r3
+ · · ·

)

. (6.69)

q is the monopole term, ~p is the dipole moment, and the next term would be the

quadrupole moment. The corresponding electric field can be found by taking the gradient

~E = −∇Φ

=
qr̂

4πǫr2
+
3r̂(~p · r̂)− ~p

4πǫr3
+ · · ·

=
q

4πǫr2
r̂ +

2p cos θ

4πǫr3
r̂ +

p sin θ

4πǫr3
θ̂ + · · · , (6.70)

and the energy associated with the charge distribution is

U =

∫

ρ(~x)Φ(~x) dV

=

∫

ρ(~x)
[
Φ(0) + ~x · ∇Φ(~x)|~x=0 + · · ·

]
dV

= qΦ(0)− ~p · ~E(0) + · · · . (6.71)

The same expansion can be used with the vector potential,

Ai(~r) =
µ

4π

∫
Ji(~x)

|~r − ~x|
dV

=
µ

4π

(
1

r

∫

Ji(~x) dV +
~r

r3
·

∫

Ji(~x)~x dV + · · ·

)

. (6.72)

Because of the vectorial character, finding this field is a bit more tricky. To start, notice

that for arbitrary functions f and g, integration by parts shows that
∫

f ~J · ∇g dV = 0−

∫

g∇ · (f ~J ) dV

= −

∫

g ~J · ∇f dV −

∫

fg∇ · ~J dV , (6.73)

where the integrals are over all space, and the only assumption that’s been made is that

J vanishes at infinity. Rearranging terms,
∫ (

f ~J · ∇g + g ~J · ∇f + fg∇ · ~J
)

dV = 0 . (6.74)

If we plug in ∇ · ~J = 0, and take f = 1, g = xi, then
∫

Ji dV = 0 (6.75)
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and so the monopole vector potential term vanishes (there are no free magnetic charges).

Now taking f = xi and g = xj ,
∫
(
xiJj + xjJi

)
dV = 0 (6.76)

or

1

2

∫
(
xiJj − xjJi

)
dV =

∫

xiJj dV . (6.77)

This can be substituted into the dipole term to relate it to the vector potential:

Ai(~r) =
µ

4π

~r

r3
·

∫

~xJi(~x) dV

=
µ

4π

1

r3

∫

rjxjJi dV

= −
1

2

µ

4π

1

r3

∫

(rjxiJj − rjxjJi) dV

~A(~r) = −
1

2

µ

4π

~r

r3
×

∫

~x× ~J (~x) dV

=
µ

4π

~m× ~r

r3
. (6.78)

The magnetic field is found from the curl

~B = ∇× ~A

=
µ

4π
∇×

~m× ~r

r3

Bi =
µ

4π
ǫijk∂j

1

r3
ǫklmmlrm

=
µ

4π
ǫijkǫklmml∂j

rm
r3

=
µ

4π

(
δilδjm − δimδjl

)
ml

(
δjm
r3

−
3rjrm
r5

)

=
µ

4π

(
3mi

r3
−

mi

r3
−
3mi

r3
+
3rimjrj

r5

)

~B =
µ

4π

3r̂(~m · r̂)− ~m

r3
. (6.79)

This is exactly the same as the electrostatic dipole field (equation 6.70).

The force on a magnetic dipole can be derived by applying the substitution used to

find the vector potential:

~F =

∫

~J × ~B dV

Fi =

∫

( ~J × ~B)i dV

= ǫijk

∫

JjBk dV

= ǫijk

∫

Jj [Bk(0) + ~x · ∇Bk(~x)|~x=0] dV
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= 0 + ǫijk

∫

Jj~x · ∇Bk dV

= ǫijk∇Bk ·

∫

Jj~x dV

= ǫijk (~m×∇Bk)j

= ǫijkǫjlmml∂mBk

= (δimδkl − δilδkm)ml∂mBk

= mk∂iBk −mi∂kBk

~F = ∇(~m · ~B)− ~m (∇ · ~B)
︸ ︷︷ ︸

0

. (6.80)

Since a conservative force is the gradient of the potential energy, the energy of a magnetic

dipole in a field is

U = −~m · ~B

= −mB cos θ , (6.81)

where θ is the angle between the dipole and the local field. There is an angular dependence
to this that will seek to align the dipole with the field,

∂U

∂θ
= mB sin θ , (6.82)

i.e., there will be a torque about the axis perpendicular to them of

~τ = ~m× ~B . (6.83)

Note that all of these calculations have assumed that the distance to the point where

the field is being evaluated is large compared to the special extent of this source. If the

fields are needed closer to the source it’s necessary to either use the full distribution or

carry the multipole approximation out to a high order.

6.3 DYNAMICS

6.3.1 Maxwell’s Equations

We’re now ready for Maxwell’s contribution. The statics equations tell us that the di-

vergence of ~B and the curl of ~E vanish, and relate the divergence of ~D and the curl of
~H to their sources. Faraday had found that a varying magnetic field induces a current in

a wire, and Ampère that a current produces a magnetic field; Maxwell realized that for

these equations to be consistent (Problem 6.2) there must also be a time derivative of ~D:

∇ · ~D = ρ(~x)

∇ · ~B = 0

∇× ~E = −
∂ ~B

∂t

∇× ~H = ~J (~x) +
∂ ~D

∂t
. (6.84)
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Figure 6.5. The magnetic field around a current-carrying wire.

These are now called Maxwell’s equations; they show that electric and magnetic fields

are connected through a more general theory of electromagnetic phenomena.

Material properties appear in Maxwell’s equations through ~D = ǫ ~E and ~B = µ ~H. In
addition, the current ~J is related to the electric field by ~J = σ ~E. The coefficient σ is
the conductivity, equal to the inverse of the resistivity ρ. In real materials ǫ, µ, and σ
can become tensors that depend on direction, and can be complex quantities because of

loss mechanisms.

We’ve already seen the first of Maxwell’s equations; integrating it over a volume gives

the integral form of Gauss’ Law

∫

S

~D · d ~A =

∫

V

ρ dV = Q . (6.85)

The surface integral of the normal component of ~D is equal to the charge Q enclosed.

The second equation lacks a source term and the third one lacks a current term because

there are no (known) magnetic monopoles. Integrating the last equation over a surface

gives Stokes’ Law

∮

~H · d~l =

∫

S

(

~J +
∂ ~D

∂t

)

· d ~A . (6.86)

The line integral of the magnetic field around a path is equal to the current crossing an

arbitrary surface bounded by the path. The first term on the right hand side of equation

(6.86) is the conventional current, and the second term ∂ ~D/∂t is called the displacement
current. This acts just like a real current, but instead of charge moving it is associated

with an electric field changing. The current that flows into and out of a capacitor appears

to travel through the space between the capacitor plates; Problem 6.2 shows that this is

accounted for by the displacement current. Anyone who has been shocked by a charged

capacitor can attest to the reality of this current.

It can be possible to use Stokes’ Law to find magnetic fields without direct integration.

For example, if a wire is carrying a current I, by symmetry according to the Biot–Savart
Law the magnetic field must be directed circumferentially around the wire (Figure 6.5).

This means that the line integral is just the field strength times the circumference, and

the surface integral of the current density is equal to the current flowing through the

wire, therefore

2πrH = I ⇒ H =
I

2πr
. (6.87)
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Figure 6.6. Loop and volume used for evaluating boundary conditions.

6.3.2 Boundary Conditions

The integral forms of Maxwell’s equations can be used to find the conditions that the

fields must satisfy at interfaces between materials, as specified by the dielectric constant

ǫ, the conductivity σ, and the permeability µ. Start by integrating Gauss’ Law over the
volume V in Figure 6.6:

∫

∇ · ~D dV =

∫

~D · d ~A =

∫

ρ dV . (6.88)

In the limit that the height of the box h → 0, the only contributions to the surface

integral will come from the top and bottom. If the box if infinitesimal then the fields can

be taken to be constant, and so the surface integral is just the normal component of the

field times the area:

( ~D1 − ~D2) · n̂A =

∫

V

ρ dV , (6.89)

where n̂ is a unit vector normal to the interface. There is a sign change between the
integrals over the top and the bottom because the surface normal changes directions. If

there is charge at the interface with an areal density ρs, then
∫

V

ρ d~V = ρsA . (6.90)

Therefore,

( ~D1 − ~D2) · n̂ = ρs . (6.91)

The change in the normal component of ~D across the interface is equal to the charge

density at the interface. An applied field will create such surface charge to match the

boundary conditions.

Next, integrate the curl of ~E over the surface S in Figure 6.6:

∫

∇× ~E · d ~A =

∮

~E · d~l = −

∫

S

∂ ~B

∂t
· d ~A . (6.92)
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As before, if the height h of the loop goes to zero then the only contribution to the line
integral comes from the top and bottom, and the integral over the surface on the right

hand side vanishes. Therefore

(~E1 − ~E2)× n̂ l = 0 (6.93)

or

(~E1 − ~E2)× n̂ = 0 . (6.94)

The tangential component of ~E is continuous across the interface.

Since ~J = σ ~E, and in a perfect conductor σ =∞, there can be no ~E field in an ideal

conductor otherwise there would be an infinite current. According to equation (6.94), this

means that there can be no tangential component on either side of the interface. Equation

(6.91) does permit a normal component outside the interface, but it must be screened

by a surface charge ρs = D1. We see that the electric field must be perpendicular to the

surface of a perfect conductor, and that a surface charge is induced to screen the interior

from the field.

Integrating the divergence of ~B over the volume as we did for the divergence of ~D
shows that

( ~B1 − ~B2) · n̂ = 0 . (6.95)

The normal component of the ~B field is continuous across the interface. Similarly, inte-

grating the curl of ~H over the surface instead of the curl of ~E gives

( ~H1 − ~H2)× n̂ = ~Js , (6.96)

where ~Js is the density of current at the surface. The tangential component of ~H changes

by the surface current density across the interface.

The solution to Laplace’s equation is unique. This means that any solution that satisfies

the boundary conditions, no matter how it is found, is the solution. This observation leads

to the useful method of images. Consider a point charge about an infinite ground plane,

shown in Figure 6.7. A fictitious image charge is shown equidistant below the plane.

By symmetry, the electric field lines are perdendicular to the surface. This is exactly the

boundary condition that must be satisfied for a perfect conductor, hence to find the field

above the plane the continuous surface charge distribution can be replaced by the single

image charge. There are some geometries like this for which it’s possible to use an image

charge to easily solve for the fields; in more complex geometries image charges are still

useful as an expansion technique based on iterating the induced image charge produced

by the source image charge.

6.3.3 Electromagnetic Units

There are two common systems of electromagnetic units: MKS that we’ve used here, and

Gaussian or CGS. MKS uses familiar macroscopic quantities (volts, amps, ohms) and

hence is most suitable for macroscopic phenomena and is commonly used in engineering;

CGS is better matched to microscopic phenomena and is commonly used in physics.

Table 6.2 gives the governing equations in these two systems, and in Table 6.3 the (non-

obvious) conversion factors are summarized. In addition to these conventional definitions
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Figure 6.7. Image charge solution for the field of a charge above a ground plane.

there are many other possible systems offering endless opportunities to go astray, ranging

from minor variations of these to the theorist’s favorite system in which all fundamental

constants are set equal to 1, with units being put back in at the end of a calculation based

on dimensional grounds. [Jackson, 1999] has a thorough discussion of the logic of, and

the relationships among, the systems.

Table 6.2. MKS and CGS governing equations.

MKS CGS

~D = ǫ0 ~E + ~P ~D = ~E + 4π ~P

~H =
1

µ0
~B − ~M ~H = ~B − 4π ~M

∇ · ~D = ρ ∇ · ~D = 4πρ

∇ · ~B = 0 ∇ · ~B = 0

∇× ~E = −
∂ ~B

∂t
∇× ~E = −

1

c

∂ ~B

∂t

∇× ~H = ~J +
∂ ~D

∂t
∇× ~H =

4π

c
~J +

1

c

∂ ~D

∂t

~F = q ~E + q~v × ~B ~F = q ~E + q
~v

c
× ~B
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Table 6.3. Conversion between MKS and CGS units. All prefactors of 3 are

actually 2.99792..., from the speed of light.

Quantity Symbol MKS CGS

charge q 1 coulomb 3×109 statcoulombs
current I 1 ampere 3×109 statamps
potential V 1 volt 1/300 statvolt

polarization P 1 coulomb/m2 3×105 dipole moment/cm3

electric field E 1 volt/m 1
3
× 10−4 statvolt/cm

displacement D 1 coulomb/m2 4π × 3×105 statvolt/cm
resistance R 1 ohm 1

32
×10−11 s/cm

capacitance C 1 farad 32×1011 cm
magnetic flux ϕ 1 weber 108 gauss·cm2 (maxwells)
magnetic induction B 1 tesla 104 gauss

magnetic field H 1 ampere/m 4π×10−3 oersted
magnetization M 1 ampere/m 10−3 magnetic moment/cm3

inductance L 1 henry 1
32
×10−11 stathenry

6.4 RADIATION AND ENERGY

6.4.1 Waves

Perhaps the single most remarkable feature of Maxwell’s equations is that they contain a

wave solution. To see this, start with the equations for free space

∇ · ~D = 0

∇ · ~B = 0

∇× ~E = −µ0
∂ ~H

∂t

∇× ~H = ǫ0
∂ ~E

∂t
. (6.97)

Take the curl of the last two equations:

∇×∇× ~E = −µ0
∂

∂t
∇× ~H

∇×∇× ~H = ǫ0
∂

∂t
∇× ~E . (6.98)

These can be simplified with the identity (Problem 6.1)

∇×∇× ~E = ∇(∇ · ~E)−∇2 ~E (6.99)

to give

−∇2 ~E = −µ0
∂

∂t
∇× ~H

−∇2 ~H = ǫ0
∂

∂t
∇× ~E , (6.100)



6.4 Radiation and Energy 75

noting that the divergences will be 0 for ~E and ~B. Substituting in the curls from equation
(6.97),

∇2 ~E = µ0ǫ0
∂2 ~E

∂t2

∇2 ~H = µ0ǫ0
∂2 ~H

∂t2
. (6.101)

These are wave equations, solved by a plane wave for the electric field

~E(~x, t) = ~E0e
i(~k·~x−ωt) , (6.102)

with the wave vector ~k pointing in the direction of propagation with a magnitude |k| =
2π/λ, and the velocity c = ω/|k| = (µ0ǫ0)

−1/2. Let there be light.

If we take ~E = ~E0e
i(~k·~x−ωt) and ~H = ~H0e

i(~k·~x−ωt),

∇× ~E = −µ0
∂ ~H

∂t

i~k × ~E = iωµ0 ~H

k

ωµ0
k̂ × ~E = ~H

√
ǫ0
µ0

k̂ × ~E = ~H . (6.103)

Similarly,

−

√
µ0
ǫ0
k̂ × ~H = ~E . (6.104)

The electric and magnetic fields of a plane electromagnetic wave are perpendicular to

each other and to the direction of travel k̂. Their ratio

|~E|

| ~H|
=

√
µ0
ǫ0

≈ 377 Ω (6.105)

has the units of resistance and defines the impedance of free space. It will return in

Chapter 8 in the effective impedance of antennas.

Since it’s reasonable to assume that a wave travels in a medium, the recognition of

the wave solution to Maxwell’s equations led to a search for the “ether” that supports

the wave. The failure of the Michelson–Morely experiment in 1887 to detect the mo-

tion of the Earth through the ether helped plant the seeds for the discovery of quantum

mechanics, and special relativity. The resolution of the paradox is that electromagnetic

waves are carried by photons, which are particles that travel in free space but which also

act like waves. One way to understand electromagnetic propagation is to remember that

information cannot travel faster than the speed of light. If a charge is moved instanta-

neously, there is a “kink” in its electric field that travels out at the speed of light: that is

an electromagnetic wave packet. Moving the charge periodically creates a wave.
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6.4.2 Electromagnetic Energy

If electromagnetic waves can propagate, and if an electromagnetic field can accelerate a

charge that is initially at rest, then it must be possible to store and transmit energy in the

fields. In this section we will calculate that energy.

A charge in an electric field feels a force ~F = q ~E. If the charge moves a distance d~x,
work dW = q ~E · d~x is done against this force. If the charge is moving at a velocity ~v
then the rate at which work is being done, or power is being consumed, isW = q ~E ·~v. If
there is a continuous current density ~J , the total rate of work is this quantity integrated
over space

W =

∫

V

~E · ~J dV . (6.106)

There is no work done by a magnetic field alone on a charge, because the magnetic force

is perpendicular to the velocity:

~F · ~v = (q~v × ~B) · ~v = 0 . (6.107)

Since

∇× ~H = ~J +
∂ ~D

∂t
⇒ ~J = ∇× ~H −

∂ ~D

∂t
, (6.108)

equation (6.106) can be rewritten as

W =

∫

V

[

~E · (∇× ~H)− ~E ·
∂ ~D

∂t

]

dV . (6.109)

This in turn can be rewritten by using the vector identity

∇ · (~E × ~H) = ~H · (∇× ~E)− ~E · (∇× ~H) (6.110)

as

W =

∫

V

[

~H · (∇× ~E)−∇ · (~E × ~H)− ~E ·
∂ ~D

∂t

]

dV . (6.111)

Plugging in ∇× ~E = −∂ ~B/∂t,

W = −

∫

V

[

∇ · (~E × ~H) + ~E ·
∂ ~D

∂t
+ ~H ·

∂ ~B

∂t

]

dV . (6.112)

Since ~D = ǫ ~E,

∂

∂t
(~E · ~D) =

∂ ~E

∂t
· ~D + ~E ·

∂ ~D

∂t
(6.113)

= 2 ~E ·
∂ ~D

∂t

and similarly

∂

∂t
( ~B · ~H) = 2 ~H ·

∂ ~B

∂t
. (6.114)
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Therefore, if we define

U =
1

2
(~E · ~D + ~B · ~H)

(
J

m3

)

(6.115)

then equation (6.112) becomes

W = −

∫

V

[

∇ · (~E × ~H) +
∂U

∂t

]

dV (6.116)

with

∂U

∂t
= ~E ·

∂ ~D

∂t
+ ~H ·

∂ ~B

∂t
. (6.117)

Further defining

~P = ~E × ~H

(
J

m2 · s

)

, (6.118)

the first term can be turned into a surface integral:

W = −

∫

S

~P · d ~A −

∫

V

∂U

∂t
dV . (6.119)

This has a very natural interpretation. The first term represents an energy flux transported

across the boundary of the integration volume by the field, and the second term represents

the change in the energy stored in the volume by the field. ~P is called thePoynting vector,
and U is the energy density. Note that the Poynting vector ~P has nothing to do with the
polarization vector ~P , they just use the same symbol by convention. Integrating P over

an area gives the energy being carried by an electromagnetic wave; integrating U over a

volume gives the energy stored in a static field.

Since the energy stored in an electric or magnetic field is equal to the volume integral

of the square of the field strength, field lines behave like “furry rubber bands” in finding

the lowest-energy configuration. They want to be as short as possible to minimize the

volume of the integral, and they want to be as far apart from each other as possible to

minimize the field density and hence the quadratic energy density.
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Electromagnetic Radiation. 3rd edn. Fort Worth: Saunders.

Less depth than Jackson, but a more accessible introduction to electrodynamics.

6.6 Problems

(6.1) Prove the BAC–CAB rule

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (6.120)
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by writing it out in the summations convention, and use it to show that

∇× (∇× ~E) = ∇(∇ · ~E)−∇2 ~E . (6.121)

(6.2) (a) Use Gauss’ Law to find the capacitance between two parallel plates of area A
at a potential difference V and with a spacing d. Neglect the fringing fields by
assuming that this is a section of an infinite capacitor.

(b) Show that when a current flows through the capacitor, the integral over the

internal displacement current is equal to the external electrical current.

(c) Integrate the energy density to find the stored energy at a fixed potential. The

answer should be expressed in terms of the capacitance.

(d) Batteries are rated by amp-hours, the current they can supply at the design

voltage for an hour. Consider a 10 V laptop battery that provides 10 A · h.
Assuming a plate spacing of 10−6 m ≡ 1 µm and a vacuum dielectric, what area
would a capacitor need to be able to store this amount of energy? If such plates

were 10 cm on a side and stacked vertically, how tall would the stack have to

be to provide this total area?

(6.3) (a) Use Stokes’ Law to find the magnetic field of an infinite solenoid carrying a

current I with n turns/meter.

(b) Integrate the energy density to find the energy stored in a solenoid of radius r
and length l, once again neglecting fringing fields.

(c) Consider a 10 T MRI magnet (Section 10.4) with a bore diameter of 1 m and

a length of 2 m. What is the outward force on the magnet? Remember – force

is the gradient of potential for a conservative force.

(6.4) The ampere was formerly defined [BIPM, 2014] as “The ampere is that constant

current which, if maintained in two straight parallel conductors of infinite length,

of negligible circular cross-section, and placed 1 metre apart in vacuum, would

produce between these conductors a force equal to 2× 10−7 newton per metre of
length.”

(a) Show that that current at that distance produces that force.

(b) What is the problem with defining the ampere this way?

(6.5) The definition of the kilogram [BIPM, 2019] based on fundamental constants [Stock

et al., 2019] is realized with a Kibble balance [Kibble, 1976]. This has a coil in a

spatially inhomogeneous magnetic field on one side of the balance, with a weighing

pan on the other side. The measurement is performed in two stages.

(a) In the static phase, a current is passed through the coil to generate a force equal

to the gravitational force on the weight. Calculate how the vertical component

of the force on the coil relates to the current through it and the vertical gradient

of the magnetic field (hint: use the definition of the force on an infinitesimal

current, Green’s theorem, and the formula for the divergence of a magnetic

field).

(b) In the dynamic phase, the coil is moved at a constant vertical velocity and the

voltage across it is measured. Calculate how the voltage depends on the velocity

and vertical gradient of the magnetic field.

(c) Combine these results to express the weight in terms of the voltage and current.
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(d) Why are the voltage and current measured separately, rather than by doing a

measurement of both at the same time?

(6.6) (a) Assume that sunlight has a power energy density of 1 kW/m2 (this is a peak

number; the typical average value in the continental USA is ∼ 200 W/m2).

Estimate the electric field strength associated with this radiation.

(b) If 1 W of power is focused in a laser beam to a square millimeter, what is the

field strength? What about if it is focused to the diffraction limit of ∼ 1 µm2?


