6. Fluid mechanics:
 fluid statics; fluid dynamics

 (internal flows, external flows)

 (internal flows, external flows)}

Ron Zevenhoven
Åbo Akademi University
Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi

University

6.I Fluid statics

Fluid statics, static pressure//

- In engineering applications, a fluid (sv: fluid) is a liquid or a gas
- The behaviour of stationary fluids is described by fluid statics
- A liquid in a container forms a layer with a distinct surface, and exerts forces on the walls supporting it, while a gas will fill the whole container.
- Two types of forces act on a fluid volume element:
surface (pressure) forces and body (gravitational) forces: see Figure \rightarrow
- Pressure (a scalar!) is defined as surface force / area, for example $\mathrm{P}_{\mathrm{b}}=\mathrm{F}_{\mathrm{b}} /(\mathrm{d} \cdot \mathrm{w})=\mathrm{p} @ \mathrm{z}=\mathrm{z}_{\mathrm{l}}$

Fluid volume $h \cdot d \cdot w$ with density ρ and mass $m=h \cdot d \cdot w \cdot \rho$

Picture: KJ05

Fluid statics, static pressure $/ 2$

- For the horizontal forces $F_{n}+F_{s}=0$ or - $P_{y} \cdot h \cdot w+p_{y} \cdot h \cdot w=0 \rightarrow P_{y}=0$
- Similarly $F_{w}+F_{e}=0$ gives $p_{x}=0$,
- There are three vertical forces: $-F_{t} \cdot h \cdot d-m \cdot g+F_{b} \cdot h \cdot d=0$ (gravity g)
- The pressure difference between $z=z_{1}$ and $z=z_{1}+h$ follows from $-F_{t}-\rho \cdot h \cdot d \cdot w \cdot g=-F_{b}$, with $-F_{b} /(d \cdot w)=-p_{z} @ z=z_{l}$; and $F_{t} /(d \cdot w)=-p_{z} @ z=z_{1}+h ;$ gives $p_{z}\left(z_{1}\right)=p_{z}\left(z_{1}+h\right)+\rho \cdot h \cdot g$

Fluid volume $h \cdot d \cdot w$ with density ρ and mass $m=h \cdot d \cdot w \cdot \rho$

Picture: KJ05

U-tube manometer

- The U-tube manometer is based on the relation between depth and pressure in static fluids, with one end open to the atmosphere at $\mathrm{P}_{\text {atm }}$
- For the Figure, with gravity g and densities ρ_{g} and ρ_{I} for gas and liquid:
$P_{C}=\rho_{g} \cdot h_{1} \cdot g+P_{B}$ $P_{D}=\rho_{1} \cdot h_{2} \cdot g+P_{C}=\rho_{1} \cdot h_{2} \cdot g+\rho_{g} \cdot h_{1} \cdot g+P_{B}$ and also, from the other side
$P_{D}=\rho_{I} \cdot\left(h_{3}+h_{2}\right) \cdot g+P_{F}=\rho_{I} \cdot\left(h_{3}+h_{2}\right) \cdot g+P_{a t m}$ which gives, with $P_{B}=P_{A}$
$\rho_{l} \cdot h_{2} \cdot g+\rho_{g} \cdot h_{1} \cdot g+P_{A}=\rho_{l} \cdot\left(h_{3}+h_{2}\right) \cdot g+P_{a t m}$
$P_{A}-P_{\text {atm }}=\rho_{l} \cdot h_{3} \cdot g-\rho_{g} \cdot h_{1} \cdot g$ and noting that $\rho_{\mid}>\rho_{g}: \mathbf{P}_{\mathbf{A}}-\mathbf{P a t m}=\rho_{\mathrm{l}} \cdot \mathbf{h}_{\mathbf{3}} \cdot \mathbf{g}$

Note that the U-tube manometer measures pressure differences

Barometer

- A device for measuring atmospheric pressure (which cannot be done using an U-tube manometer) is referred to as barometer
- A closed tube filled with mercury (Hg) is quickly put upside-down in an open container filled with Hg
- Gravity causes the Hg level in the tube to fall, but no air can enter the tube. The small gas volume trapped is Hg vapour at equilibrium with liquid Hg .
- For the tube $P_{\text {vapor, }, \mathrm{Hg}}+\rho_{\mathrm{Hg}} \cdot \mathrm{h}_{\mathrm{Hg}}{ }^{\prime} \mathrm{g}=\mathrm{P}_{\text {atm }}$
- At $20^{\circ} \mathrm{C}, \mathrm{P}_{\text {vapor }, \mathrm{Hg}}=0.158 \mathrm{~Pa}$ « $\mathrm{Patm}_{\text {atm }}$, thus

the density of liquid Hg is $13546.2 \mathrm{~kg} / \mathrm{m}^{3}$ at $20^{\circ} \mathrm{C}$
after Torricelli:
1 torr $=1 \mathrm{~mm} \mathrm{Hg}$ pressure
$1 \mathrm{~atm}=760$ torr at $0^{\circ} \mathrm{C}$

Example: a manometer

- Two piston-cylinder assemblies are connected by a tube filled with mercury (Hg) at $20^{\circ} \mathrm{C}$ (density $13546 \mathrm{~kg} / \mathrm{m}^{3}$)
- The diameter of each piston is 0.08 m , the mass of each piston is 0.40 kg .
 Mass $\mathrm{m}_{1}=5.00 \mathrm{~kg}$
- Use the data to calculate mass m_{2}.

Buoyancy /

- Buoyancy (sv: flytkraft, fi: nostovoima) or buoyant force acts on all objects immersed or submerged (sv: sänkad) in a fluid
- It is an overall upwards force as the result of the fact that pressure p in a static fluid increases with depth

Buoyancy 12

- For an immersed object, horizontal forces cancel each other, and the two vertical forces are gravity and buoyancy.
- The forces on the surface of the object are the same as when that surface would be filled with the fluid
- Thus, the buoyant force on a mass with volume V is equal (but opposite in
 sign) to the weight of the fluid in the volume V, and acts on the same centre of gravity (CG):

$$
F_{B}=-m_{\text {fluid }} \cdot g=-\rho_{\text {fluid }} \cdot V \cdot g
$$

Buoyancy /3

- For any object the buoyancy force it experiences may be less than, equal to or larger than its weight
- If $\mathrm{F}_{\mathrm{B}}>$ weight, the object will rise / float

If $\mathrm{F}_{\mathrm{B}}<$ weight, the object will sink If $F_{B}=$ weight, the will float in suspension

- For example, for the two fluids geometry \rightarrow

$$
F_{B}=\left(\rho_{1} \cdot V_{1}+\rho_{2} \cdot V_{2}\right) \cdot g
$$

in equilibrium with $\mathrm{F}_{\text {gravity }}=\mathrm{m}_{0} \cdot \mathrm{~g}=\rho_{0} \cdot V_{\text {tot }} \cdot \mathrm{g}$ for object mass $\mathrm{m}_{0}(\mathrm{~kg})$.
$\rightarrow \rho_{0} \cdot \mathbf{V}_{\text {tot }}=\rho_{1} \cdot \mathbf{V}_{1}+\rho_{2} \cdot \mathbf{V}_{2}$ and $\mathbf{V}_{\text {tot }}=\mathbf{V}_{1}+\mathbf{V}_{2}$

- For example, for cases with water + air \rightarrow

Water $F_{B}=\left(\rho_{a} \cdot V_{a}+\rho_{w} \cdot V_{w}\right) \cdot g \approx \rho_{w} \cdot V_{w} \cdot g \quad\left(\rho_{a} \gg \rho_{w}\right)$ $\rightarrow \rho_{0} \cdot V_{\text {tot }}=\rho_{w} \cdot V_{w}, \quad$ or : $\rho_{0} / \rho_{w}=V_{w} / V_{\text {tot }}$

Example: buoyancy

- The tip of a certain iceberg (which is the volume of the iceberg above the water surface) is $\mathrm{V}_{\text {tip }}=79 \mathrm{~m}^{3}$, in seawater of with density $\rho_{\text {sea }}=1027$ $\mathrm{kg} / \mathrm{m}^{3}$. Calculate the submerged (i.e. under water) volume of the iceberg. For ice the density is $\rho_{\text {ice }}=920 \mathrm{~kg} / \mathrm{m}^{3}$.

Surface tension

- A liquid at a material interface, usually liquid-gas, exerts a force $F_{\text {int }}$ per unit length L along the surface.

- It is the result of molecular attraction at a liquid surface being different from that "in" the liquid \rightarrow the surface acts like a stretched membrane
- Surface tension (σ or γ, unit:

N / m) quantifies this force:

$$
\mathrm{F}_{\mathrm{int}}=\gamma \cdot \mathrm{L}
$$

- Result phenomena:
- Contact angle
- Capillary action (rise or drop)
- Bubbles, droplets

For ambient water-air: $\gamma=0.073 \mathrm{~N} / \mathrm{m}$

6.2 Fluid dynamics: viscosity, laminar, turbulent flow, boundary layer

Internal friction in fluid flow /।

- Fluids will (try to) resist a change in shape, as will occur in fluid flow situations where different fluid elements have different velocities
- Note the definition of a fluid: a fluid is a substance that deforms continuously under the application of a shear stress (sv: skjuvspänning)
- Consider fluid flow between plates:
- The no-slip condition says that at the wall the velocity of the fluid is the same as the wall velocity ${ }^{*}$), for a fixed wall $\mathrm{v}_{\text {fluid }}=0$ at the wall
- Between the plates a velocity profile exists: it can be decribed as $v_{x}=v_{x}(y)$
- Shear stresses, $\mathrm{T}_{\text {fluid }}$, arise due to velocity differences between different fluid elements

*) this applies always except for very low pressure gases, for example in the upper atmosphere

Internal friction in fluid flow $/ 2$

- For a fluid between plates with width $W(m)$, distance $d(m)$ the shear force $\underline{F}=\left(F_{x}, F_{y}, F_{z}\right)=$ $\left(F_{x}, 0,0\right)$ (unit: N) to pull the fluid at velocity $\underline{v}=\left(v_{x}, v_{y}, v_{z}\right)=\left(v_{x}, 0,0\right)$ gives a shear stress T_{yx} (unit: N / m^{2}) in the fluid at $y=d$ that is equal to:

$v_{x}=0 @ y=0$

$$
\frac{F_{x, \text { fluid } \rightarrow \text { wall }}}{\text { surface }}=\frac{-F_{x, \text { wall } \rightarrow \text { fluid }}}{W \cdot L}=\left.T_{y x}\right|_{y=d}=-\eta \frac{d v_{x}}{d y} \approx-\eta \frac{\Delta v_{x}}{\Delta y}
$$

with $T_{y x}$ as stress in direction " x " in a plane for constant " y "

- This defines the dynamic viscosity η (unit: Pa.s $=k g \cdot m^{-1} . s^{-1}$)

Internal friction in fluid flow $/ 3$

- The linear relation between T_{yx} and $d v_{x} / d y$ is referred to as Newton's Law which holds for so-called Newtonian fluids
- For non-Newtonian fluids, other relations between shear force and velocity gradient hold, for example Bingham fluids (toothpaste, clay) or pseudo-plastic (Ostwald) fluids (blood, yoghurt). For those, viscosity is a function of the velocity gradient: $T_{y x}=\eta\left(d v_{x} / d y\right) \cdot d v_{x} / d y$

Picture: BMH99

- Note: The flow of a fluid between plates, or in a tube or on a surface doesn't necessarily require moving walls:
usually the driving force is gravity, or a static pressure difference

Viscosity

- Viscosity (sv: viskositet) is a measure of a fluid's resistance to flow; it describes the internal friction of a moving fluid.
- More specifically, it defines the rate of momentum transfer in a fluid as a result of a velocity gradient.
- Dynamic viscosity η (unit: Pa.s) is related to a kinematic viscosity, v (unit: $\mathrm{m}^{2} / \mathrm{s}$) via fluid density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ as: $v=\eta / \rho$

Internal friction in fluid flow $/ 5$

- Concentration, c, temperature, T, and energy, E, are scalars, and their gradient is a vector such as $\mathrm{dT} / \mathrm{dx}$ or $\nabla \mathrm{T}=(\partial \mathrm{T} / \partial \mathrm{x}, \partial \mathrm{T} / \partial \mathrm{y}, \partial \mathrm{T} / \partial \mathrm{z})$, etc.
- Velocity is a vector \underline{v}, for example $\underline{v}=\left(v_{x}, v_{y}, v_{z}\right)$ and it's gradient is a (second order) tensor with elements such as $d v_{x} / d y$ (gradient of v_{x} in y-direction)

$$
\nabla \underline{v}=\left(\begin{array}{lll}
\frac{\partial v_{x}}{\partial x} & \frac{\partial v_{y}}{\partial x} & \frac{\partial v_{z}}{\partial x} \\
\frac{\partial v_{x}}{\partial y} & \frac{\partial v_{y}}{\partial y} & \frac{\partial v_{z}}{\partial y} \\
\frac{\partial v_{x}}{\partial z} & \frac{\partial v_{y}}{\partial z} & \frac{\partial v_{z}}{\partial z}
\end{array}\right)
$$

note:
$\nabla \cdot \underline{v}=\left(\frac{\partial v_{\mathrm{x}}}{\partial \mathrm{x}}+\frac{\partial \mathrm{v}_{\mathrm{y}}}{\partial \mathrm{y}}+\frac{\partial \mathrm{v}_{\mathrm{z}}}{\partial \mathrm{z}}\right)$
Gradients of a scalar property give a vector (or $1^{\text {st }}$ order tensor); gradients of a vector property give a $2^{\text {nd }}$ order tensor, etc.

Internal friction in fluid flow $/ 6$

- $\nabla \underline{\mathrm{v}}$ results in 3 compressive stresses (sv: tryckspänningar) $\tau_{x x}$, $\tau_{y y}$ and $\tau_{z z}$ and 6 shear stresses (sv: skjuvspänningar) $\tau_{x y}, \tau_{x z}, \tau_{y z}$, $\tau_{z x}, \tau_{y x}$ and $\tau_{z y}:$ $\tau_{y x}=-\eta \frac{d v_{x}}{d y}=-v \frac{d \rho v_{x}}{d y} ; \quad \tau_{y z}=-v \frac{d v_{z}}{d y}=-v \frac{d \rho v_{z}}{d y} ;$ etc.

Viscous work

Vector/tensor calculations like this are beyond this course

- The shear stresses can be expressed as tensor T , resulting in a viscous shear force on a certain area A that is equal to $\underline{E}_{\text {visc }}=\underline{\underline{T}} \cdot \underline{A}$, with $\underline{A}=A \underline{n}$ with normal vector \underline{n}
- If the velocity \underline{v} at surface \underline{A} the rate of viscous work done by the fluid at surface A equals $W_{\text {visc }}=\underline{E}_{\text {visc }} \cdot \underline{v}=\underline{T} \cdot \underline{A} \cdot \underline{v}$, which for a certain volume element of control volume (inside which \underline{v} and \bar{T} can vary) with total outside surface A gives the rate of work done:

$$
\dot{\mathrm{W}}_{\text {visc }}=\int_{\mathrm{A}}(\underline{\underline{T}} \cdot \underline{\mathrm{v}}) \cdot \mathrm{d} \underline{A}
$$

The friction work is dissipated as HEAT

- Note: at the wall $\underline{v}=0$ so no work is done; also at points where velocity and shear are perpendicular $\underset{\underline{T}}{\underline{v}}=0$ and no work is done.

Example: shear stress concentric cylinders /I

- Oil with viscosity $\eta=0.05 \mathrm{~Pa} \cdot \mathrm{~s}$ fills a 0.4 mm gap between two cylinders of which the inner one rotates whilst the outer one is fixed.
- The diameter of the inner cylinder is 8 cm , the length is 20 cm .

- Question: How much power is required to rotate the inner cylinder at 300 rpm ?

Picture: KJ05
Question ÖS96-4.1

Example: shear stress concentric cylinders /2

*) The space between the two cylinders is very small and may be treated as a flat plate

Laminar \leftrightarrow turbulent fluid flow

Osborne Reynolds's dye-streak experiment (1883) for measuring laminar \rightarrow turbulent flow transition

Pictures: T06

- For circular tube flow, the laminar \rightarrow turbulent flow transition occurs at Reynolds number Re 2100-2300, with the dimensionless number defined as

$$
\operatorname{Re}=\rho\langle v\rangle \cdot d / \eta
$$

for $\rho=$ fluid's density $\left(\mathrm{kg} / \mathrm{m}^{3}\right),<v>=$ fluid's average velocity $(\mathrm{m} / \mathrm{s})$, $\mathrm{d}=$ tube diameter (m) and $\eta=$ fluid's dynamic viscosity ($\mathrm{Pa} \cdot \mathrm{s}$)

Example: a liquid film on a vertical wall /l

- A stationary laminar flow of water (at $1200 \mathrm{~kg} / \mathrm{h}$) runs down a vertical surface (with width $\mathrm{W}=\mathrm{I} \mathrm{m}$).
Give
- the expression for the shear stress distribution,
- the expression for the velocity profile, and
- the expression for volumetric flow rate V ($\mathrm{m}^{3} / \mathrm{s}$) and calculate
- film thickness d
- velocity $\left\langle v_{y}\right\rangle$ averaged over the film thickness
- maximum velocity $\mathrm{v}_{\mathrm{y} \text { max }}$

Data: dynamic viscosity for water $\eta=10^{-3} \mathrm{~Pa} . \mathrm{s}$ density for water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ gravity $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Example: a liquid film on a vertical wall /2

Answer: For this steady-state process:

- The vertical force balance for a volume element with length dy as shown gives $F_{\text {gravity }}=F_{\text {shear }}$

$$
\rho \cdot(d-x) \cdot W \cdot d y \cdot g+\tau_{x y} \cdot W \cdot d y=0 \Rightarrow \rho \cdot(d-x) \cdot g+\tau_{x y}=0
$$

with $\tau_{x y}=-\eta \frac{d v_{y}}{d x}=-\rho \cdot(d-x) \cdot g \Rightarrow \frac{d v_{y}}{d x}=\frac{\rho \cdot(d-x) g}{\eta}$, integrating

$$
v_{y}(x)=\int_{0}^{x} \frac{d v_{y}}{d x} d x=\int_{0}^{x} \frac{\rho \cdot(d-x) g}{\eta} d x=\frac{\rho \cdot g}{\eta} \cdot\left(x d-1 / 2 x^{2}\right)
$$

with $v_{y}=v_{y, \text { max }} @ x=d: v_{y, \text { max }}=1 / 2 \rho g d^{2} / \eta$
For the average velocity $\langle v>$ with $V \dot{=}\langle v>\cdot d \cdot W$:

$$
\begin{aligned}
& \left\langle v_{y}\right\rangle=\frac{1}{d} \int_{0}^{d} v_{y}(x) \cdot d x=\frac{1}{d} \int_{0}^{d} \frac{\rho g}{\eta} \cdot\left(x d-1 / 2 x^{2}\right) \cdot d x=\frac{\rho g d^{2}}{3 \eta} \\
& \text { and }\left\langle v_{y}\right\rangle=\frac{\dot{V}}{W \cdot d} \text { gives } d=\sqrt[3]{\frac{3 n \dot{V}}{\rho g}}
\end{aligned}
$$

The data gives: $\mathrm{d}=0.47 \mathrm{~mm},\left\langle\mathrm{v}_{\mathrm{y}}\right\rangle=0.71 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{\mathrm{y}, \text { max }}=1.07 \mathrm{~m} / \mathrm{s}$

Boundary layers

- At the interface of a surface* and a flowing medium, a thin ($\sim 0.01-\mathrm{I} \mathrm{mm}$) layer of fluid is created in which the velocity increases from $v=0$ at the interface to the free-flow velocity $\mathrm{v}=\mathrm{v}_{\infty}$ (or $0.99 \cdot \mathrm{v}_{\infty}$)
- In this boundary layer ($s v$: gränsskikt) all the thermal and/or viscous effects of the surface are concentrated
- The boundary layer can develop from laminar to turbulent flow

[^0]

Growth of the velocity boundary layer on a flat surface.

Pictures: KJ05

6.3 Fluid dynamics: internal flows / tube flow

Internal flows; velocity profiles

- Fluid flow in a tube or other confinement (sv: inspärning) will show:
- zero velocity (the no-slip condition) at the walls; and
- maximum velocity furthest from the walls (i.e. at a tube flow centre line or at a free surface)
- The velocity profile is the result of viscous friction, and for turbulent flow, "eddy" currents (\rightarrow so-called "eddy viscosity": $\eta=\eta_{\text {viscous }}+\eta_{\text {eddy }}$)
- In many applications a plug flow idealisation may be used described by an average velocity <v>

Plug flow idealisation

Velocity profile due to viscous friction

Laminar flow between two plates /I

- For a steady-state fluid flow between two stagnant parallel plates, the forces on a volume element between point "I" and " 2 " and between $y=$ centre line and $y=y$ are (for plate width W) :

Picture: BMH99
@"1" pressure force $=\mathrm{p}_{1} \cdot \mathrm{y} \cdot \mathrm{W}$;
@ "2" pressure force $=-\mathrm{p}_{2} \cdot \mathrm{y} \cdot \mathrm{W}$ shear force on volume element $=-\mathrm{T}_{\mathrm{yx}} \cdot \mathrm{L} \cdot \mathrm{W}$
The force balance gives $p_{1} \cdot y-p_{2} \cdot y-T_{y x} \cdot L=0 \Rightarrow T_{y x}=\frac{p_{1}-p_{2}}{L} \cdot y$ With $\mathrm{T}_{\mathrm{yx}}=-\eta \cdot \frac{d v_{x}}{d y} \Rightarrow \frac{d v_{x}}{d y}=-\frac{p_{1}-p_{2}}{\eta \cdot L} \cdot y$ with $v_{x}=0 @ y= \pm 1 / 2 d$ $T_{y x}$ acts on fluid $y>y$, so $-T_{y x}$ acts on fluid $y<y$ which is the fluid element

Laminar flow between two plates $/ 2$

Calculation of the velocity profile and maximum velocity :
Integration: $\mathrm{v}_{\mathrm{x}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{2 \cdot \eta \cdot \mathrm{~L}}\left(\frac{\mathrm{~d}^{2}}{4}-\mathrm{y}^{2}\right)$ and $\mathrm{v}_{\mathrm{x}, \max }=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{8 \cdot \eta \cdot \mathrm{~L}} \mathrm{~d}^{2} @ y=0$
Calculation of the flow rate $\dot{V}\left(m^{3} / \mathrm{s}\right)$:
$\dot{V}=W \cdot \int_{-1 / 2 d}^{1 / d} v_{x} d y=W \cdot \frac{p_{1}-p_{2}}{12 \cdot \eta \cdot L} d^{3}=W \cdot d \cdot\left\langle v_{x}\right\rangle, \Rightarrow\left\langle v_{x}\right\rangle=\frac{2}{3} v_{x, \max }$

Shear force profile

Stationary laminar tube flow

@"1" pressure force $=p_{1} \cdot \pi \cdot \mathrm{r}^{2}$;
@ " 2 " pressure force $=-p_{2} \cdot \pi \cdot r^{2}$
shear force on volume element $=-\tau_{r x} \cdot\left(x_{2}-x_{1}\right) \cdot 2 \pi \cdot r$

Force balance: $p_{1} \cdot \pi \cdot r^{2}-p_{2} \cdot \pi \cdot r^{2}-\tau_{r x} \cdot\left(x_{2}-x_{1}\right) \cdot 2 \pi \cdot r=0$

$$
\Rightarrow \tau_{\mathrm{rx}}=\frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{2 \cdot\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)} \cdot \mathrm{r}=1 / 2 \mathrm{r} \cdot\left(\frac{-\mathrm{dp}}{\mathrm{dx}}\right)
$$

With $\tau_{\mathrm{rx}}=-\eta \cdot \frac{\mathrm{d} \mathrm{v}_{\mathrm{x}}}{\mathrm{dr}} \Rightarrow \frac{\mathrm{d} \mathrm{v}_{\mathrm{x}}}{\mathrm{dr}}=\frac{-1 / 2 \mathrm{r}}{\eta} \cdot\left(\frac{-\mathrm{dp}}{\mathrm{dx}}\right)$ with $v_{x}=0 @ r=R$
Velocity profile and maximum velocity :
Integration : $\mathrm{v}_{\mathrm{x}}(\mathrm{r})=\frac{1}{4 \cdot \eta} \cdot\left(-\frac{\mathrm{dp}}{\mathrm{dx}}\right) \cdot\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$ and $\mathrm{v}_{x, \max }=\frac{1}{4 \cdot \eta} \cdot\left(-\frac{\mathrm{dp}}{\mathrm{dx}}\right) \cdot \mathrm{R}^{2} @ r=0$
Calculation of the flow rate $\dot{V}\left(\mathrm{~m}^{3} / \mathrm{s}\right)$:

$$
\begin{aligned}
& \dot{V}=\int_{0}^{R} 2 \pi r \cdot v_{x} d r=\frac{\pi R^{4}}{8 \cdot \eta} \cdot\left(-\frac{d p}{d x}\right)= \\
= & \pi R^{2} \cdot<v_{x}>, \Rightarrow<v_{x}>=1 / 2 v_{x, \max }
\end{aligned}
$$

Pictures: BMH99

Tube flow velocity profiles

- Laminar and turbulent tube flows show different velocity profiles
Laminar:
$v_{x}(r)=\left(1-r^{2} / R^{2}\right) \cdot v_{\text {max }}$ cross-sectional average velocity $\langle\mathrm{v}\rangle=1 / 2 \cdot \mathrm{v}_{\text {max }}$
Turbulent:
$v_{x}(r) \approx(1-r / R)^{1 / 7} \cdot v_{\text {max }}$ cross-sectional average
 velocity $\langle v\rangle=0.875 \cdot v_{\text {max }}$
- The cross-sectional average velocity <v> is used in dimensional analysis or the resulting dimensionless groups (Re, and others)

$$
\langle v\rangle=\frac{\int_{0}^{R} v_{x}(r) \cdot 2 \cdot \pi \cdot r \cdot d r}{\pi R^{2}}=\frac{\dot{V}\left(m^{3} / s\right)}{\pi R^{2}\left(m^{2}\right)}
$$

Tube flow entrance region

- Flow entering a tube requires a certain distance to produce a "developed flow" with a constant boundary layer: the entrance region
- For the entrance region in laminar tube flow, the Graetz number quantifies for the boundary layer build-up (see also section 5.2 - Convective heat transfer)

Picture: KJ05

- The entrance length $L_{\text {ent }}$ for a hydrodynamically developed tube flow (tube diameter D) is
$L_{\text {ent }} \approx 0.065 \cdot \operatorname{Re} \cdot D$
for laminar flow $R e<2100$
$L_{\text {ent }} \approx 4.4 \cdot \operatorname{Re}^{1 / 6} \cdot \mathrm{D}$
for turbulent flow $\operatorname{Re}>4000$

6.4 Fluid dynamics: pressure drop \& energy dissipation in tube systems

Tube systems //

- In a tube system, pressure drop losses resulting from fluid internal friction and wall friction in straight and curved tube sections, valves, inlet/outlet sections, diameter changes etc. etc. must be compensated for by adding mechanical energy via pumps, compressors, turbines, ventilators (sv: pumpar, kompressorer, turbiner, fläktar) etc.
- Additional effects that must be compensated for are kinetic energy (if flow velocities change) and potential energy (for non-horizontal tube sections)

Tube systems /2

- For a flow tube system from point " \mid " at height z_{1}, average velocity $\langle v\rangle_{1}$, pressure p_{1}, volume flow \dot{V}_{1}, to point " 2 " at height z_{2}, velocity $\langle v\rangle_{2}$, pressure P_{2}, volume flow \dot{V}_{2}, pumping power (sv: pumpeffekt) $P_{\text {pump }}$ compensates for flow friction losses $P_{\text {losses }}$:

General energy balance with heat input \dot{Q},

work input \dot{W}, potential and kinetic energy and "flow work" :
$\dot{\mathrm{m}}_{1} \cdot\left(\mathrm{u}_{1}+\mathrm{gz} \mathrm{z}_{1}+1 / 2(\mathrm{v}\rangle_{1}^{2}\right)+\mathrm{p}_{1} \dot{\mathrm{~V}}_{1}+\dot{\mathrm{Q}}+\dot{\mathrm{W}}=\dot{\mathrm{m}}_{2} \cdot\left(\mathrm{u}_{2}+\mathrm{gz} z_{2}+1 / 2(\mathrm{v}\rangle_{2}^{2}\right)+\mathrm{p}_{2} \dot{\mathrm{~V}}_{2}$
For isothermal flows, no heat effect $(\dot{Q}=0)$, no work $(\dot{W}=0)$:
$\dot{\mathrm{m}}_{1} \cdot\left(\mathrm{~g} \mathrm{z}_{1}+1 / 2\langle\mathrm{v}\rangle_{1}^{2}\right)+\mathrm{p}_{1} \dot{\mathrm{~V}}_{1}=\dot{\mathrm{m}}_{2} \cdot\left(\mathrm{gz} \mathrm{z}_{2}+1 / 2\langle\mathrm{v}\rangle_{2}^{2}\right)+\mathrm{p}_{2} \dot{\mathrm{~V}}_{2}$
With work input to compensate for flow friction losses $P_{\text {losses }}$
for example $\dot{W}=P_{\text {pump }}=P_{\text {losses }}(=-Q$, but assuming $Q \approx 0)$:
$\dot{\mathrm{m}}_{1} \cdot\left(\mathrm{gz} \mathrm{z}_{1}+1 / 2\langle\mathrm{v}\rangle_{1}^{2}\right)+\mathrm{p}_{1} \dot{\mathrm{~V}}_{1}+\mathrm{P}_{\text {pump }}=\dot{\mathrm{m}}_{2} \cdot\left(\mathrm{gz} \mathrm{z}_{2}+1 / 2(\mathrm{v}\rangle_{2}^{2}\right)+\mathrm{p}_{2} \dot{\mathrm{~V}}_{2}+\mathrm{P}_{\text {losses }}$

Tube systems /3

- Flow through pipes and conduits (sv: rör, ledning, kanal) with height \mathbf{z}_{1}, velocity v_{l}, pressure P_{1}, volume flow $\mathrm{V}_{1} \rightarrow$ height z_{2}, velocity V_{2}, pressure P_{2}, volume flow V_{2}

$$
\dot{m}_{1} \cdot\left(u_{1}+g z_{1}+1 / 2\langle v\rangle_{1}^{2}\right)+p_{1} \dot{V}_{1}+P_{\text {pump }}=\dot{m}_{2} \cdot\left(u_{2}+g z_{2}+1 / 2\langle v\rangle_{2}^{2}\right)+p_{2} \dot{V}_{2}+P_{\text {losses }}
$$

Special case 1: for an isothermal inviscid fluid (negligible viscosity), $\rightarrow P_{\text {pump }}=P_{\text {losses }} \approx 0$; this gives Bernouilli's equation:

$$
\dot{m}_{1} \cdot\left(g z_{1}+1 / 2(v)_{1}^{2}\right)+p_{1} \dot{v}_{1}=\dot{m}_{2} \cdot\left(g z_{2}+1 / 2(v)_{2}^{2}\right)+p_{2} \dot{v}_{2}
$$ University

Tube systems $/ 4$

- Flow through pipes and conduits (sv: rör, ledning, kanal) with height \mathbf{z}_{1}, velocity v_{1}, pressure P_{1}, volume flow $\mathrm{V}_{1} \rightarrow$ height z_{2}, velocity V_{2}, pressure P_{2}, volume flow V_{2}
 $\dot{m}_{1} \cdot\left(u_{1}+g z_{1}+1 / 2\langle v\rangle_{1}^{2}\right)+p_{1} \dot{V}_{1}+P_{\text {pump }}=\dot{m}_{2} \cdot\left(u_{2}+g z_{2}+1 / 2\langle v\rangle_{2}^{2}\right)+p_{2} \dot{V}_{2}+P_{\text {losses }}$

Special case 2 : correcting for velocity profiles in stream cross - section :

$$
\dot{m}_{1} \cdot\left(g z_{1}+1 / 2 \xi_{1}\langle v\rangle_{1}^{2}\right)+p_{1} \dot{V}_{1}+P_{\text {pump }}=\dot{m}_{2} \cdot\left(g z_{2}+1 / 2 \xi_{2}\langle v\rangle_{2}^{2}\right)+p_{2} \dot{V}_{2}+P_{\text {losses }}
$$ with kinetic energy correction factor ξ, for stream cross - sectional area A :

$$
\xi=\frac{\dot{E}_{\text {kinetic }}}{1 / 2 \cdot \dot{m} \cdot\langle v\rangle^{2}}=\frac{\int_{A}^{1 / 2 \cdot \dot{m} \cdot v^{2} d A}}{1 / 2 \cdot \rho \cdot A \cdot\langle v\rangle^{3}}=\frac{1 / 2 \cdot \rho \int_{A} v^{3} d A}{1 / 2 \cdot \rho \cdot A \cdot\langle v\rangle^{3}}=\frac{\frac{1}{A} \int_{A} v^{3} d A}{\langle v\rangle^{3}}
$$

$$
\xi \approx 2 \text { for laminar flows, and } \xi \approx 1.05-1.10 \text { for turbulent flows }
$$

Example: friction losses (ös96-4.6)

- I liter/s ethanol (density $\rho=791 \mathrm{~kg} / \mathrm{m}^{3}$) is pumped through a tube (diameter $\mathrm{d}=25$ mm) with a downwards slope. Pressure is measured at 2 points 100 m apart, as shown. Calculate the friction losses per meter tube, $\mathrm{P}_{\text {losses }} / \mathrm{I}(\mathrm{W} / \mathrm{m})$

Picture: ÖS96

Tube systems /5

- For a tubing network (sv: rörsystem), a design calculation can involve
- Calculation of power losses, primarily pressure drop losses that must be compensated for with pumps etc. in a given process tubing situation
- Calculation of flow velocities or volume streams that will result when applying a certain pumping power to a certain tube system flow situation
- Calculation of tube diameters, lengths and tubing lay-out for a certain process situation, often based on given pumps or pressure drop data etc.

Sometimes iterative calculations are needed: $P_{\text {pump }} \rightarrow p_{2}$ and $v_{2} ;$ adjust $p_{2} \rightarrow$ new value for $P_{\text {pump }}$ etc.

Pressure drop /I

- The pressure drop in a tube flow system can be predicted if the shear force at the wall $\tau_{\mathbf{w}}$ is known
- For example for laminar tube flow (tube diameter $d=2 R$, flow direction "x"), $(-d p / d x)=-2 \cdot \tau_{\mathrm{w}} / R$ where $\tau_{\mathrm{w}}=\tau_{\text {fluid } \rightarrow \text { wall }}$ can be related to $\mathrm{dv}_{\mathrm{x}} / \mathrm{dr}$, but for turbulent flow such information is not available
- Force analysis shows 3 forces acting on a flow volume element: surface forces (pressure and surface shear), and body force (gravity). These can change the kinetic energy $E_{k}=1 / 2 \mathrm{mv}^{2}$ and potential energy $E_{p}=$ mgz . For a horizontal tube the body forces cannot change, but surface forces will change the kinetic energy.

Volume element with length L (m), cross-section A (m^{2}), circumference $S(m)$, density $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

Pressure drop 12 friction factor

- The surface shear force acting on the surface of a moving fluid element can be expressed as

$$
\begin{array}{r}
\tau_{\mathbf{w}}=\text { friction factor } \cdot\left(\mathbf{E}_{\text {kinetic } / \text { volume })}=\boldsymbol{f} 1 / 2 \boldsymbol{\rho}<\mathbf{v}>\mathbf{2}\right. \\
\text { Edynamic pressure or "thrust" (sv: stöt) }
\end{array}
$$

- For flow in a horizontal tube with radius R the force balance at the wall for length section L gives
$\mathrm{P}_{1} \cdot \mathrm{~A}-\mathrm{P}_{2} \cdot \mathrm{~A}-\tau_{\mathrm{w}} \cdot \mathrm{S} \cdot \mathrm{L}=0$, with $\tau_{\mathrm{w}}=\tau_{\text {fluid } \rightarrow \text { wall }}=-\tau_{\text {wall } \rightarrow \text { fluid }}$
$\rightarrow\left(\mathbf{p}_{1}-\mathbf{P}_{2}\right)=\tau_{\mathrm{w}} \cdot \mathrm{L} \cdot \mathbf{S} / \mathbf{A}=f \cdot 1 / 2 \cdot \boldsymbol{\rho} \cdot\left\langle\boldsymbol{v}>^{2} \cdot \mathrm{~L} \cdot \mathbf{S} / \mathbf{A}=-\Delta \mathbf{p}\right.$

with for a round tube cross-section $A=\pi R^{2}$, circumference $S=2 \pi R$

Pressure drop $/ 3$ friction factor

- This defines the Fanning friction factor f; also used is Darcy or Blasius friction factor $\zeta=\mathbf{4 f}$
- The group $1 / 2 \cdot \rho \cdot<v>2$ (unit: N / m^{2}) follows also from dimensional analysis, reasoning that $\tau_{\mathrm{w}}=\tau_{\mathrm{w}}\left(\rho, \eta,<v_{\mathrm{x}}>\right.$, geometry), which for a tube with diameter D gives $\tau_{w}=\tau_{w}\left(\rho, \eta,<v_{x}>, D\right)$.
- It is found that
$\tau_{w} /\left(\rho \cdot<v>^{2}\right)=f(R e)$,
which is usually written

$$
\text { as } \tau_{w}=1 / 2 \cdot f \cdot \rho \cdot<v>^{2}
$$

Hydraulic diameter

- The ratio A/S (unit: m) is a characteristic dimension of the tube, pipe, duct or channel known as hydraulic radius, while 4•A/S is known as hydraulic diameter D_{h} (see Figure below) with $\boldsymbol{A}=$ cross-sectional area (sv: tvärsnitt); $\boldsymbol{S}=$ perimeter (sv: omkrets) touched by fluid
- For example for a round tube with diameter D, completely filled with fluid: $D_{h}=D$; for a square channel with width W , fluid height H :
$D_{h}=4 \cdot A / S=$
$4 \cdot(H \cdot W) /(2 H+W)$

Flow situation		Hydraulic diameter $D_{h}=4 A / S$	A
	Circular pipe	D	$\frac{\pi}{4} D^{2}$
$h_{\delta-\infty{ }^{-} D_{1} \mid D_{2}}$	Concentric pipe or slit	$D_{2}-D_{1}=2 \delta$	$\frac{\pi}{4}\left(D_{2}^{2}-D_{1}^{2}\right)$
	Rectangular pipe	$\frac{2 W B}{W+B}$	WB
N	Open channel	$\frac{4 W H}{W+2 H}$	WH
	Open channel	$\frac{2 H}{\sqrt{2}}$	H^{2}
	Half-filled	D	$\frac{\pi}{8} D^{2}$
NIIf-	Liquid film in a tube	48	$\delta \pi D$

Pressure drop 14 laminar tube flow

- Thus for the pressure drop for flow in a tube or duct with hydraulic diameter $D_{h}=4 \cdot A / S$:
$\left(p_{1}-p_{2}\right)=-\Delta p=\tau_{w} \cdot L \cdot\left(4 / D_{h}\right)=4 f \cdot 1 / 2 \cdot \rho \cdot\left\langle v>^{2} \cdot L / D_{h}\right.$
- For a laminar flow in a round tube (Hagen - Poisseuille flow, with $D_{h}=$ diameter $D=2 R$):
$-\tau_{\mathrm{w}}=\tau_{\text {wall } \rightarrow \text { fluid }}=1 / 2 R \cdot(-\Delta \mathrm{p} / \mathrm{L})$
$\rightarrow-\tau_{w}=4 \eta<v>/ R=8 \eta<v>/ D=f \cdot 1 / 2 \cdot \rho \cdot<v>2$
$\rightarrow f=16 \eta /(\rho<v>d)=16 / \operatorname{Re} ; 4 f=\zeta=64 / \operatorname{Re}$
with $\operatorname{Re}<2100$

- For non-circular ducts another proportionality constant is needed !

Pressure drop $/ 5$ turbulent tube flow

- Pressure drop for flow in a tube or duct with hydraulic diameter $D_{h}=4 \cdot A / S:\left(p_{1}-p_{2}\right)=-\Delta p=T_{w} \cdot L\left(4 / D_{h}\right)=4 f \cdot 1 / 2 \cdot \rho \cdot<v>^{2} \cdot L / D_{h}$
- For a turbulent flow in a tube of duct it is found that $f \sim \operatorname{Re}^{-0.25 \ldots 0}$ (less direct influence of viscosity than in laminar flow) and $\Delta p \sim v^{1.75 . .2}$
- For smooth pipes

$f=0.0791 \cdot \operatorname{Re}^{-0.25} ; 4 f=\boldsymbol{\zeta}=0.316 \cdot \operatorname{Re}^{-0.25}$
(Blasius' equation) with $4000<\operatorname{Re}<10^{5}$
can be used for any cross-sectional shape using characteristic diameter $=$ hydraulic diameter D_{h}

Pressure drop 16 wall roughness

- For rough pipes, wall surface roughness (sv: väggskrovlighet) \bar{x} is important if it is of the same order as the thickness of the laminar boundary layer, δ;
- Important at great wall roughness or high Re numbers.

- Roughness data is found in tables
- Important is the relative roughness \bar{x} / D, with tube diameter D
- Not important for laminar flows
- The friction factor f or ζ can be read from a friction factor chart or Moody chart as function of Re and relative wall roughness

$$
\begin{aligned}
& \text { APPROXIMATION for MOODY CHART } \\
& 4 f=\zeta=\frac{0.25}{\left({ }^{10} \log \left(\frac{\bar{x}}{3.7 D}+\frac{5.74}{R e_{D}^{0.9}}\right)\right)^{2}} \\
& 5000 \leq R e_{D} \leq 10^{8} \quad \text { and } 10^{-6} \leq \frac{\bar{x}}{D} \leq 10^{-2}
\end{aligned}
$$

Tube flow friction factor

AN․
Ábo Akadem
University

Tube flow friction factor

flow in tubes with relative wall roughness \bar{x} / D - the transition region

Picture: CEWR10

Wall roughness data

Material	Condition	Roughness Height, $\overline{\mathbf{X}} \mathbf{m m})$	Uncertainty (\%)
Steel	Sheet metal, new	0.05	± 60
	Stainless, new	0.002	± 50
	Commercial, new	0.046	± 30
	Riveted	3.0	± 70
	Rusted	2.0	± 50
Iron	Cast, new	0.26	± 50
	Wrought, new	0.046	± 20
	Galvanized, new	0.15	± 40
	Asphalted cast	0.12	± 50
Brass	Drawn, new	0.002	± 50
Plastic	Drawn tubing	0.0015	± 60
Glass	-	$S m o o t h$	
Concrete	Smoothed	0.04	± 60
	Rough	2.0	± 50
Rubber	Smoothed	0.01	± 60
Wood	Stave	0.5	± 40

\leftarrow Relative wall roughness, small or large

Example: pipe flow friction /I

- A horizontal cast-iron pipe with diameter 4" carries 30000 (US) gal $/ \mathrm{h}$ water at $70^{\circ} \mathrm{F}$. Pipe length is 50 ft . Calculate the pressure drop. The water's density is $62.2 \mathrm{lbm} / \mathrm{ft}^{3}$; dynamic viscosity is $65.8 \cdot 10^{-5} \mathrm{lbm} /(\mathrm{ft} \cdot \mathrm{s})$

Example: pipe flow friction /2

Pressure drop 17 Fittings and valves

- Pressure drop across a tube section can be expressed as
$-\Delta p=4 f \cdot 1 / 2 \cdot \rho \cdot<v>^{2} \cdot L / D_{h}=\zeta \cdot 1 / 2 \cdot \rho \cdot<v>^{2} \cdot L / D_{h}$
- Similarly, for the sudden local pressure drop caused over a very short distance by, for example
- A change in tube diameter, or a bend or curve, or a T-junction
- A valve (sv: ventil, klaff) or other fitting (sv: rörelement)
- An inlet or outlet (sharp or smooth)

For these, pressure drop can be expressed as

$$
\begin{aligned}
& -\Delta p=K_{w} \cdot 1 / 2 \cdot \rho \cdot<v>2 \\
& -\Delta p=\zeta^{\prime} \cdot 1 / 2 \cdot \rho \cdot<v>2
\end{aligned} \text { or }
$$

with coefficients K_{w} or ζ^{\prime} independent of flow Reynolds number for $\operatorname{Re}>10^{5}$

Friction loss factors K_{w} (or ζ^{\prime}) for flow tube elements / I of 4

Downstream velocity, $\operatorname{Re}>10^{5}$
$A_{1} \longrightarrow A_{2} \quad K_{W}=0.45\left(1-\frac{A_{2}}{A_{1}}\right)$ \(A_{1} \longrightarrow A_{0} A_{2} \begin{aligned} \& A_{0}

\& A_{1}\end{aligned}=|\)| 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $K_{w}=$ | 226 | 47.8 | 17.5 | 7.8 | 3.75 | 1.80 | 0.80 | 0.30 |
| | 0.06 | | | | | | | |

Friction loss factors K_{w} (or ζ^{\prime}) for flow tube elements / 2 of 4

$\Theta=20^{\circ}$	40°	60°	80°	90°	100°	120°	140
$K_{w}=0.05$	0.14	0.36	0.74	0.98	1.26	1.86	2.43

Downstream velocity, $R e>10^{5}$

$$
K_{W}=\left(0.131+0.163\left(\frac{D}{R}\right)^{3.5}\right) \frac{\Theta}{90^{\circ}}
$$

K_{w} (referring to downstream velocity for $\mathrm{Re}>10^{5}$)

$\Theta=15^{\circ}$	30°	45°	60°	90°
$K_{w}=0.02$	0.11	0.26	0.50	1.20

Picture: BMH99

Friction loss factors K_{w} (or ζ^{\prime}) for flow tube elements $/ 3$ of 4

Gate valve \quad Fraction closed	0	$1 / 8$	$2 / 8$	$3 / 8$	$4 / 8$	$5 / 8$	$6 / 8$	$7 / 8$
K_{w}	$=0.05$	0.07	0.26	0.81	2.1	5.5	17	98

Friction loss factors K_{w} (or ζ^{\prime}) for

 flow tube elements / 4 of 4
(a) entrance

(c)

(b)

(d)

Downstream
velocity, $\operatorname{Re}>10^{5}$

(c)

(b) exit

(d)

Entrance / exit flow conditions \& loss coefficient:
(a) reentrant,
entrance $K_{w}=0.8$,
exit $K_{w}=1.0$
(b) sharp-edged,
(c) slightly rounded,
(d) well-rounded,
entrance $K_{w}=0.5$,
entrance $K_{w}=0.2$,
entrance $K_{w}=0.04$,
exit $K_{w}=1.0$
exit $K_{w}=1.0$
exit $K_{w}=1.0$

Tube elements: example

- Friction coefficients K_{w} or ζ^{\prime} for several tube sections and fitting elements:
a) Bend $90^{\circ}, R / d=1 \zeta^{\prime}=0.5$
b) Sharp bend $90^{\circ} \zeta^{\prime}=0.98$ or elbow $\zeta^{\prime}=1.2$
c) Tube inlet, sharp $\zeta^{\prime}=0.5$ or smooth $\zeta^{\prime}=0.20$
d) Diameter increase, sharp ζ^{\prime} $=\left(1-d^{2} / D^{2}\right)^{2}$
e) Diameter decrease, sharp $\zeta^{\prime}=0.45 \cdot\left(1-d^{2} / D^{2}\right)$
f) Diameter increase, diffusor with $\theta / 2<10^{\circ} \zeta^{\prime} \approx 0$
g) Tube outlet, turbulent $\zeta^{\prime}=1$ or laminar $\zeta^{\prime}=2$

For this set-up if for example $D=80$ $\mathrm{mm}, d=50 \mathrm{~mm}$, for turbulent flow: $\Sigma \zeta^{\prime}=0.50+0.50+0.98+0.37+$ $0.27+0+1.1=3.72$ for the fittings, bends and diameter changes only.

Picture: ÖS96

Pressure drop, pressure loss, power loss, energy dissipation /I

- For fluid flow with viscous friction through a channel the power loss (energy dissipation) $\mathrm{P}_{\text {loss }}$ (sv: effekförlust) can be related to pressure loss $-\Delta P_{\text {loss }}$ for a given volume stream V :

$$
-\Delta \mathrm{p}_{\text {loss }}=\frac{P_{\text {losses }}}{\dot{\mathrm{V}}}
$$

(unit: Pa) which is equal to Pout) only for a horizontal without diameter changes.

Picture: MSH93

- For the energy equation for a tube system (with $\dot{Q}=0$), dividing by \dot{V} (noting that $\dot{\mathrm{m}}=\rho \cdot \dot{V}$ requires $\rho=$ constant) this gives

$$
\rho g\left(z_{1}-z_{2}\right)+1 / 2\left(\xi_{1} \rho\langle v\rangle_{1}^{2}-\xi_{2} \rho\langle v\rangle_{2}^{2}\right)+\left(p_{1}-p_{2}\right)+(-\Delta p)_{\text {pump }}=(-\Delta p)_{\text {losses }}
$$

Pressure drop, pressure loss, power

 loss, energy dissipation 12- If density changes are significant (typical for gases) then $\dot{V}_{1} \neq \dot{V}_{2}$ and that must be accounted for:

$$
g\left(z_{1}-z_{2}\right)+1 / 2\left(\xi_{1}\langle v\rangle_{1}^{2}-\xi_{2}\langle v\rangle_{2}^{2}\right)+\int_{1}^{2} \frac{-d p}{\rho}+(-\Delta p)_{\text {pump }}=(-\Delta p)_{\text {losses }}
$$

- With pressure drop $\Delta p \sim$ shear force it follows that $\Delta p \sim$ velocity for laminar flow, and $\Delta p \sim$ velocity ${ }^{1.75} \ldots . .2$ for turbulent flow. Note: for laminar: $\Delta p \sim v$ with $4 f \sim 1 / R e \sim 1 / v$
- With viscous work \sim shear force \times velocity, $P_{\text {loss }} \sim \Delta p \cdot \dot{V} \sim$ velocity $\cdot \Delta p$ this gives $P_{\text {loss }} \sim$ velocity ${ }^{2}$ for laminar flow, and $\mathbf{P}_{\text {loss }} \sim$ velocity ${ }^{2.753}$ for turbulent flow. University

Pressure drop, pressure loss, power loss, energy dissipation $/ 3$

- For the power loss (energy dissipation) for a flow channel with total pressure losses $\Delta_{\text {loss }, ~ c o m p o s e d ~ o f ~}^{\text {a }}$
$-\Delta \mathrm{P}_{\text {loss }}(\zeta, \mathrm{L}, \mathrm{D})$ for the straigth sections and
$-\Delta P_{\text {loss }}\left(\zeta^{\prime}\right)$ for the fittings, valves, diameter changes, in-/outlet, ... :
$4 f=\zeta=\frac{-\Delta p_{\text {losses }}}{1 / 2 \rho\langle v\rangle^{2}} \cdot \frac{D_{h}}{L}=\frac{P_{\text {losses }}}{1 / 2 \rho\langle v\rangle^{2} \cdot \dot{V}} \cdot \frac{D_{h}}{L}=\frac{P_{\text {losses }}}{1 / 2 \dot{m}\langle v\rangle^{2}} \cdot \frac{D_{h}}{L}$ for tube sections
$\mathrm{K}_{\mathrm{w}}=\zeta^{\prime}=\frac{-\Delta p_{\text {losses }}}{1 / 2 \rho\langle v\rangle^{2}}=\frac{\mathrm{P}_{\text {losses }}}{1 / 2 \rho\langle v\rangle^{2} \cdot \dot{V}}$ for valves, fittings, diameter changes,
which gives for the total tubing system including fittings etc:
$-\Delta \mathrm{p}_{\text {loss }}=1 / 2 \rho\langle\mathrm{v}\rangle^{2} \cdot\left(\zeta \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}+\sum \zeta^{\prime}\right) \quad$ and $\quad \mathrm{P}_{\text {losses }}=1 / 2 \rho \dot{\mathrm{~V}}\langle\mathrm{v}\rangle^{2} \cdot\left(\zeta \cdot \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}}+\sum \zeta^{\prime}\right)$
Note: kinetic energy correction factor ξ is now included in 弓 or $4 f$!!!!

Calculation of volume flow or tube diameter

- Calculation of pressure drop $-\Delta p$ or power loss $P_{\text {loss }}$ from flow channel diameters and friction factors is relatively straight-forward; more complicated, however, is to determine volume stream \dot{V} or channel diameter D_{h} based on $-\Delta p$ or $P_{\text {loss }}$
- An iterative procedure can be used, using $\dot{V}=A \cdot\langle v\rangle$ for flow cross-section A and the expressions given above; for tube system based on a round tube with $A=1 / 4 \pi D^{2}$ this gives

$$
\dot{V}=\sqrt{\frac{\pi^{2}(-\Delta p)_{\text {loss }} D^{4}}{8 \rho\left(\zeta \frac{L}{D}+\sum \zeta^{\prime}\right)}} \quad \text { and } \quad D=\sqrt[4]{\frac{8 \rho \dot{V}^{2}\left(\zeta \frac{L}{D}+\sum \zeta^{\prime}\right)}{\pi^{2}(-\Delta p)_{\text {loss }}}}
$$

where ζ (or $4 f$) and $\zeta^{\prime}\left(\right.$ or $\left.K_{w}\right)$ are functions of $\langle v\rangle$, D and/or Re!

Example: old exam question /question

- Calculate what the inner diameter d (in m) of a well heat-insulated steel tube should be for transporting $\dot{\mathrm{m}}=$ $3,2 \mathrm{~kg} / \mathrm{s}$ steam with temperature $180^{\circ} \mathrm{C}$ and pressure 300 kPa (density $\rho=1,464 \mathrm{~kg} / \mathrm{m}^{3}$, dynamic viscosity $\eta=$ $\left.15,1 \times 10^{-6} \mathrm{~Pa} \cdot \mathrm{~s}\right)$, if the pressure drop in straight tube sections may not be more than 250 Pa per meter. Wall roughness is $k=\bar{x}=0,4 \mathrm{~mm}$.
- Note that for round tubes:

$$
\operatorname{Re}=\frac{4 \cdot \dot{m}}{\pi \cdot \eta \cdot d}
$$

- Advice: develop an expression $d=f(<v>, \zeta, \ldots)$ and iterate a few times to find a result for $\mathrm{d}(\mathrm{m})$.

Example: old exam question /answer

Calculation of volume flow or tube diameter

- Two expressions for this are given in CEWRIO, p. 332

$$
\begin{gathered}
\dot{V}=-2.22 \cdot D^{5 / 2} \cdot \frac{(-\Delta p)_{\text {loss }}}{\rho \cdot L} \cdot{ }^{10} \log \left(\frac{\bar{x}}{3.7 \cdot \mathrm{D}}+\frac{1.78 \cdot \eta}{D^{3 / 2} \cdot \rho \cdot \sqrt{\frac{(-\Delta p)_{\text {loss }}}{\rho \cdot L}}}\right) \\
\begin{array}{c}
D=0.66 \cdot\left((\overline{\mathrm{x}})^{1.25} \cdot\left(\frac{\mathrm{~L} \cdot \dot{\mathrm{~V}}^{2} \cdot \rho}{(-\Delta p)_{\text {loss }}}\right)^{4.75}+\frac{\eta}{\rho} \cdot \dot{V}^{9.4} \cdot\left(\frac{\mathrm{~L} \cdot \rho}{(-\Delta p)_{\text {loss }}}\right)^{5.2}\right)^{0.04} \\
\\
\quad \text { for } \operatorname{Re}>3000, \frac{\bar{x}}{\mathrm{D}}<0.02
\end{array},
\end{gathered}
$$

which should be used with caution.

Example: water pumping system //

- A pump is used to remove water from a mine shaft - see Figure. How much pump power $P_{\text {pump }}$ (in kW) is needed to remove water at a rate of $65.0 \mathrm{~kg} / \mathrm{s}$?
Assume an ideal pump (efficiency 100\%). Assume density $\rho=997 \mathrm{~kg} / \mathrm{m}^{3}$, viscosity $\eta=I .12 \cdot 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$

Picture: KJ05

Example: water pumping system /2

Picture: KJ05

Cavitation

(a)

Pictures: CEWR10
(b)

- Cavitation occurs if fluid pressure is reduced to the vapour pressure (at the given temperature) so that boiling occurs.
- The formation and collapse of bubbles gives shock waves, noise, and other problematic dynamic effects that can result in reduced performance, failure and damage.
- Typically occurs at high velocity locations in, for example, pumps or valves, but can damage also tube walls.

6.5 Flow systems with negligible losses, flow measurement

Flow systems with negligible losses //

- Often the energy dissipation $\mathrm{P}_{\text {loss }}$ can be neglected in comparison with the (mechanical) energy changes in a flow system.
- If the fluid density can be considered constant this gives the Bernouilli's equation, which can be written as

$$
\frac{p}{\rho g}+z+\frac{1 / 2 v^{2}}{g}=\text { constant }
$$

where the three terms
(unit: m) are referrred to as

- pressure head,
- static head and
- velocity head

Flow systems with negligible losses /2

- This is used when measuring fluid velocities with a so-called Pitot tube: in the Figure \rightarrow
$P_{@ b}-P_{@ a}=1 / 2 \rho<v>^{2}=\rho g h$
- In a venturi flowmeter, the pressure difference between main flow and the throat as shown in Figure \rightarrow equals
$P_{@ A 1}-P_{@ A 2}=1 / 2 \rho<v>{ }^{2} @ A 2-1 / 2 \rho<v>^{2}$ @A1 (which gives $\mathrm{P}_{@ 1}>\mathrm{P}_{@ 2}!$)
with $\langle v\rangle_{1} \cdot A_{1}=\langle v\rangle_{2} \cdot A_{2}$ and
$\mathrm{P}_{@ A 1}-\mathrm{P}_{@ \mathrm{~A} 2}=\rho$ hg the flow $\dot{\mathrm{V}}$ at A_{2} can be calculated for a liquid:

$$
\dot{V}=A_{2} \sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho}} / \sqrt{1-\frac{A_{2}^{2}}{A_{1}^{2}}}
$$

For a gas: (ideal, adiabatic process): use $p \cdot \rho^{-\gamma}=$ constant, $\gamma=c_{p} / c_{v}$

Flow systems with negligible losses $/ 3$

- For flow of liquid from an orifice
(sv: mynning, öppning) friction losses can be neglected
- At some distance from the opening, (at cross-sectional area A_{1}), the velocity is much smaller than the velocity $<v>$ in

For a gas :
(ideal, adiabatic process):
$p_{0}<p$ in jet $<p_{1}$
use $p \cdot \rho^{-\gamma}=$ constant, $\gamma=c_{p} / c_{v}$
Pictures: BMH99

6.6 Pumps, compressors, fans

 University
Pumps, compressors, fans //

- Creating a flow and/or increasing the pressure of a fluid, or compensating for pressure losses is accomplished with pumps (sv: pumpar) for liquids, or with compressors or fans (sv: kompressorer, fläktar) for gases

Positive-displacement pumps

Pumps, compressors, fans $/ 2$

- Pumps, compressors and fans can be divided into two major categories:
- Positive displacement devices based on "pushing" the fluid through the device (see previous slide)
- Dynamic devices based on transfer of energy as momentum (sv: rörelsemängd) from rotary blades or vanes, or from a high-speed fluid stream (for example, centrifugal pumps and rotodynamic compressors and fans)

Centrifugal pump

pictures: TO6

Pumps //

- The general relation between pump (or compressor) power and the pressure difference $\Delta \mathrm{p}_{\text {pump }}$ (sv: uppfordringstryck) for a given flow tubing system situation follows from the mechanical energy balance ($\dot{Q}=0$, no heat transfer or significant temperature changes), assuming also that $\Delta \dot{E}_{\text {kinetic }}=0$:
$-\Delta p_{\text {pump }}=\left(p_{2}-p_{1}\right)+\rho g\left(z_{2}-z_{1}\right)+1 / 2 \rho\langle v\rangle^{2} \cdot\left(\zeta \cdot \frac{L}{D_{h}}+\sum \zeta^{\prime}\right)$ with $\langle v\rangle^{2}=\frac{\dot{V}^{2}}{A^{2}}$
$-\Delta \mathrm{p}_{\text {pump }}=\frac{P_{\text {pump }}}{\dot{\mathrm{V}}}=\frac{\dot{\mathrm{H}}_{2}-\dot{H}_{1}}{\dot{\mathrm{~V}}}=\rho\left(\mathrm{h}_{2}-\mathrm{h}_{1}\right)=\rho \mathrm{g} \cdot \Delta \mathrm{z}_{\text {pump }}$, with " pump head" $\Delta \mathrm{z}_{\text {pump }}$
- The pump head (unit: m) is the pressure rise across the pump equivalent height fluid

Pumps /2

- The relation between
$-\Delta p_{\text {pump }}$ and \dot{V} is a characteristic for the flow tubing system
(sv: rörledningskarakteristika)

- For the pump itself, the pump characteristic

$$
p_{2}-p_{1}+\rho \mathrm{g}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)
$$

(sv: pumpkarakteristika) gives the performance
$-\Delta p_{\text {pump }}$ versus \dot{V}

- Combining the two lines in one diagram gives the working point (sv: arbetspunkt) at the point where the lines
 cross

Pictures: ÖS96

Pumps /3

- Changing the flow resistance in the tube network will give another system characteristic line
- The new working point will give another fluid flow throughput

For example, closing or opening a valve

Pumps $/ 4$

- The pump itself generates a viscous friction effect in the fluid, and as a result not all pump power $\mathrm{P}_{\text {pump }}$ will be. available to give a pressure increase $-\Delta p_{\text {pump }}$ in flow V . The pump efficiency (sv: pumpverkningsgrad) $\eta_{\text {pump }}$ quantifies for this:

$$
\eta_{\text {pump }}=\frac{P_{\text {pump }}}{\text { Power input }}=\frac{-\Delta \mathrm{p}_{\text {pump }} \cdot \dot{\mathrm{V}}}{\dot{\mathrm{~W}}_{\text {in }}}
$$

Picture: ÖS96

- For a given pump the efficiency depends on the fluid that is pumped and the volume stream \dot{V}
for example V

Picture: CEWR10

Pump characteristics \& performance

- examples

Old exam question /q I of 2

- Cooling water must be pumped from a reservoir up to a process through a tube system with a few bends and a valve as shown in the figure. At both liquid surfaces the pressure equals ambient atmospheric pressure. The cooling water $\left(20^{\circ} \mathrm{C}\right)$ flow is $135 \mathrm{~m}^{3} / \mathrm{h}$. The height difference between reservoir and process is 105 m and the total tube length is 166 m, of which 16 m is upstream ("before") of the pump.
- a) What tube diameter must be chosen so that the flow velocity does not exceed $2 \mathrm{~m} / \mathrm{s}$, and what is the Reynolds number of the flow then?
-

..... continues

Old exam question /q 2 of 2

- b) What pressure head should the pump be able to produce so that the flow objective is achieved?
- c) Calculate the pump power that is needed for a pump with an efficiency of 80%.
- d) Is there a risk of so-called "cavitation" somewhere in this tube system?
- Assume that the friction coefficient for the valve is $\zeta^{\prime}=2,0$, assume two 45° elbow bends ($\zeta^{\prime}=0,4$) and an 90° elbow bend ($\zeta^{\prime}=0,9$). Density water $=1000 \mathrm{~kg} / \mathrm{m}^{3} ;$ dynamic viscosity water $=0,001 \mathrm{~Pa} \cdot \mathrm{~s}$. Water vapour pressure at $20^{\circ} \mathrm{C}$ is 2336,8 Pa. Assume the tube wall roughness to be $=4,7 \cdot 10^{-4} \mathrm{~m}$.

Old exam question /a 1 of 2

Old exam question /a 2 of 2

(a) Reciprocating compressor

(b) Centrifugal compressor

(c) Axial flow compressor

- A compressor increases pressure of a gas
- Most important are (a) reciprocating, (b) centrifugal and (c) axial flow types
- If $\mathrm{P}_{\text {out }} \leq I . I \times \mathrm{P}_{\text {in }}$ the calculations are similar to those for a pump, otherwise gas compressibility must be considered \rightarrow calculate as polytropic process with

$$
P_{\text {compr }}=\dot{W}_{\text {in }} \cdot \eta_{\text {compr }}=\dot{H}_{\text {out }}-\dot{H}_{\text {in }}
$$

$\dot{W}_{\text {in }}=P_{\text {compressor, theor }}=\frac{\kappa}{\kappa-1} \cdot \dot{V}_{\text {in }} \cdot p_{\text {in }} \cdot\left(\left(\frac{p_{\text {out }}}{p_{\text {in }}}\right)^{\frac{\kappa-1}{\kappa}}-1\right), \quad$ and $\kappa=\frac{\mathrm{c}_{\mathrm{p}}}{\mathrm{c}_{\mathrm{v}}}$

Pictures: JK05
A compressor
characteristic

Example: pump /ı

- A I hp (746 W) electrical motor drives a centrifugal pump for which the catalogue gives some tabelised data.
- Calculate the pumping power and efficiency for pumping water ($\rho=996 \mathrm{~kg} / \mathrm{m}^{3}$) with

Flow $\left(\mathrm{m}^{3} / \mathrm{s}\right)$	Pump head (m)
3.16×10^{-3}	4.6
1.89×10^{-3}	22.9
0.63×10^{-3}	30.5
0	16.5

Example: pump /2

Source: T06

University

6.7 Fluid dynamics: external flows

Fluid flow around objects

- In the cases of
- an object moving through a fluid
- a fluid flow around an object the velocity difference generates forces
- Forces acting parallel to the flow direction are drag forces; forces acting perpendicular to the flow direction are lift forces
- The flow field around an object can be divided in twc parts: the boundary layer where the viscous forces ar active, and the free-strean
 velocity (or the stagnant surrounding fluid)

Flow around a flat plate /I

- For flow along a flat plate, the forces on the plate are friction forces. The shear stress on each side of the surface is

$$
\left.\tau_{y x}\right|_{y=0}=\tau_{w}=\eta_{\text {fuluid }} \frac{v_{r}}{\delta}=0.664 \cdot\left(\frac{v_{r} \chi_{\text {fluid }}}{\eta_{\text {fluid }}}\right)^{-1 / 2} \cdot 1 / 2 \rho_{\text {fluid }} v_{r}^{2} \text {, for } R \mathrm{Re}_{\mathrm{x}}=\frac{v_{r} \cdot x \cdot \rho_{\text {fluid }}}{\eta_{\text {ffuid }}}<3 \times 10^{5}
$$

with (laminar) boundary layer thickness δ and relative velocity v_{r}

- The drag force on each side of a plate with length L and width b is then given by

$$
\begin{aligned}
& F_{\text {drag }}=F_{D}=b \int_{0}^{L} \tau_{w} d x= \\
& =1.33\left(\frac{v_{\mathrm{r}} L \rho_{\text {fluid }}}{\eta_{\text {fluid }}}\right)^{-1 / 2} \cdot b L \cdot 1 / 2 \rho_{\text {fluid }} v_{r}^{2} \\
& \text { for } R e_{L}=\frac{v_{r} \cdot L \cdot \rho_{\text {fluid }}}{\eta_{\text {fluid }}}<3 \times 10^{5}
\end{aligned}
$$

- The pressure $1 / 2 \mathrm{pv}^{2}$ is known as THRUST (sv: stöt)

Flow around a flat plate $/ 2$

- This defines the (length-averaged) drag coefficient C_{D} as

$$
\mathrm{F}_{\mathrm{D}}=\mathrm{C}_{\mathrm{D}} \cdot \mathrm{~A} \cdot 1 / 2 \rho \mathrm{v}_{\mathrm{r}}^{2} \text { with } C_{D}=\frac{1.33}{\sqrt{R e_{L}}} \text { for } R e_{L}<3 \times 10^{5}
$$

where $\mathrm{A}\left(\mathrm{m}^{2}\right)$ is the area (one side) of the plate

- For turbulent cases, experimental results give
$C_{D}=\frac{0.074}{R e_{L}^{1 / 5}}$ for $10^{5}<R e_{L}<10^{7} ; C_{D}=\frac{0.445}{{ }^{10} \log \left(R e_{L}\right)^{2.58}}$ for $10^{7}<R e_{L}<10^{9}$
- For a flat surface with a laminar region followed by a turbulent region, a "composite" drag composition can be calculated with

$$
C_{D}=\frac{0.074}{R R_{L}^{1 / 5}}-\frac{1740}{R e_{L}}
$$

- For a flate plate perpendicular to fluid the drag coefficient equals ~ 2, largely independent of Re-number

Picture: KJ05

Flow around cylinders, spheres /

- For a general surface area A_{\perp} $\left(\mathrm{m}^{2}\right)$ perpendicular to the flow, the drag force is

$$
F_{D}=C_{D} \cdot A_{\perp} \cdot 1 / 2 \rho v_{r}^{2}
$$

(where $1 / 2 \rho v_{r}^{2}$ is actually the pressure difference between the front and the back of the object)

- With increasing Re-numbers, boundary layer separation occurs, and
a wake region (sv: köl(vatten)) arises where kinetic energy is only partly converted into pressure

(b)

(c)

(d)

Flow around cylinders, spheres

/2- For spherical particles the drag coefficient equals
$C_{D}=\frac{24}{R e}$
for $R e \ll 1$ or <0.2
$C_{D}=\frac{24}{R e}\left(1+\frac{3}{16} R e\right)$
for $0.2<R e<2$
$C_{D}=\frac{24}{R e}\left(1+\frac{1}{6} R e^{2 / 3}\right)$
for $2<R e<800$
$C_{D}=0.44$
for $800<R e<10^{5}$

Picture: http://www.school-for-champions.com/science/friction changing fluid.htm

Example: drag on a flat plate

- An advertising banner (I m x 20 m) is towed behind an aeroplane at $90 \mathrm{~km} / \mathrm{h}$, in air at $32^{\circ} \mathrm{C}$.

- Calculate the power (in kW) needed to pull the banner.

Boundary layer separation examples

Sources \#6

- BMH99: Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. "Transport phenomena" Wiley, 2nd edition (1999)
- BSL60: R.B. Bird, W.E. Stewart, E.N. Lightfoot "Transport phenomena" Wiley (1960)
- CEWRIO: C.T. Crowe, D.F. Elger, B.C. Williams, J.A. Roberson "Engineering Fluid Mechanics", 9th ed., Wiley (2010)
- KJ05: D. Kaminski, M. Jensen "Introduction to Thermal and Fluids Engineering", Wiley (2005)
- MSH93: W.L. McCabe, J.C. Smith. P. Harriott "Unit operations of chemical engineering" 5th ed. McGraw-Hill (1993)
- SSJ84: J.M. Smith, E. Stammers, L.P.B.M Janssen "Fysische Transportverschijnselen I" TU Delft, D.U.M. (1984) (in Dutch)
- T06: S.R. Turns "Thermal - Fluid Sciences", Cambridge Univ. Press (2006)
- ÖS96: G. Öhman, H. Saxén "Värmeteknikens grunder", Åbo Akademi University (1996)

[^0]: * This can be a solid surface or another flowing medium

