

6. Fluid mechanics: fluid statics; fluid dynamics (internal flows, external flows)

Ron Zevenhoven Åbo Akademi University Thermal and Flow Engineering / Värme- och strömningsteknik tel. 3223 ; ron.zevenhoven@abo.fi

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

1/96

6.1 Fluid statics

NY AN

- In engineering applications, a **fluid** (sv: fluid) is a liquid or a gas
- The behaviour of stationary fluids is described by fluid statics
- A liquid in a container forms a layer with a distinct surface, and exerts forces on the walls supporting it, while a gas will fill the whole container.
- Two types of forces act on a fluid volume element:

surface (pressure) forces and body (gravitational) forces: see Figure \rightarrow

 Pressure (a scalar!) is defined as surface force / area, for example
 p_b = F_b / (d·w) = p @ z = z₁

Fluid volume h·d·w with density ρ and mass m = h·d·w·ρ

Picture: KJ05

3/96

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

- The **U-tube manometer** is based on the relation between depth and pressure in static fluids, with one end open to the atmosphere at p_{atm}
- For the Figure, with gravity g and densities ρ_{g} and ρ_{l} for gas and liquid:

 $p_{\rm C} = \rho_{\rm g} \cdot h_{\rm I} \cdot g + p_{\rm B}$ $p_D = \rho_1 \cdot h_2 \cdot g + p_C = \rho_1 \cdot h_2 \cdot g + \rho_g \cdot h_1 \cdot g + p_B$ and also, from the other side $p_{D} = \rho_{1} \cdot (h_{3} + h_{2}) \cdot g + p_{F} = \rho_{1} \cdot (h_{3} + h_{2}) \cdot g + p_{atm}$

which gives, with $p_{B} = p_{A}$ $\rho_{l} \cdot h_{2} \cdot g + \rho_{g} \cdot h_{1} \cdot g + p_{A} = \rho_{l} \cdot (h_{3} + h_{2}) \cdot g + p_{atm}$ P

$$p_{A} - p_{atm} = \rho_{I} \cdot h_{3} \cdot g - \rho_{g} \cdot h_{I} \cdot g$$

and noting that $\rho_{I} \gg \rho_{g} : \mathbf{p}_{A} - \mathbf{p}_{atm} = \rho_{I} \cdot h_{3} \cdot g$

Gas at h Manometer liquid

> Note that the U-tube manometer measures pressure differences

> > Picture: KJ05

Barometer

- A device for measuring atmospheric pressure (which cannot be done using an U-tube manometer) is referred to as barometer
- A closed tube filled with mercury (Hg) is quickly put upside-down in an open container filled with Hg
- Gravity causes the Hg level in the tube to fall, but no air can enter the tube. The small gas volume trapped is Hg vapour at equilibrium with liquid Hg.
- For the tube $p_{vapor,Hg} + \rho_{Hg} \cdot h_{Hg} \cdot g = p_{atm}$
- At 20°C, $p_{vapor,Hg} = 0.158 Pa \ll p_{atm}$, thus $p_{atm} \approx \rho_{Hg} \cdot h_{Hg} \cdot g$

the density of liquid Hg is 13546.2 kg/m3 at 20°C

after Torricelli: 1 torr = 1 mm Hg pressure 1 atm = 760 torr at 0°C

Picture: KJ05

Example: a manometer

- Two piston-cylinder assemblies are connected by a tube filled with mercury (Hg) at 20°C (density 13546 kg/m³)
- The diameter of each piston is 0.08 m, the mass of each piston is 0.40 kg. Mass m₁ = 5.00 kg
- Use the data to <u>calculate</u> mass m₂.

Picture: KJ05

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Åbo Akademi

Buoyancy //

- Buoyancy (sv: flytkraft, fi: nostovoima) or buoyant force acts on all objects immersed or submerged (sv: sänkad) in a fluid
- It is an overall upwards force as the result of the fact that pressure p in a static fluid increases with depth

surface

Picture: http://www.math.nyu.edu/~crorres/Archimedes/Crown/Vitruvius.html Picture: http://www.physics.lsa.umich.edu/demolab/graphics/2b40_u2.jpg

- For an immersed object, horizontal forces cancel each other, and the two vertical forces are gravity and buoyancy.
- The forces on the surface of the object are the same as when that surface would be filled with the fluid
- Thus, the buoyant force on a mass with volume V is equal (but opposite in sign) to the weight of the fluid in the volume V, and acts on the same centre of gravity (CG):

$$\mathsf{F}_{\mathsf{B}} = \text{-} \mathsf{m}_{\mathsf{fluid}} \cdot \mathsf{g} = \text{-} \rho_{\mathsf{fluid}} \cdot \mathsf{V} \cdot \mathsf{g}$$

Buoyancy /3

- For any object the buoyancy force it experiences may be less than, equal to or larger than its weight
- If F_B > weight, the object will rise / float
 If F_B < weight, the object will sink
 If F_B = weight, the will float in suspension
- For example, for the two fluids geometry \rightarrow $F_B = (\rho_1 \cdot V_1 + \rho_2 \cdot V_2) \cdot g$ in equilibrium with $F_{abc} = m \cdot g = 0 \cdot V_{abc} \cdot g$

in equilibrium with $F_{gravity} = m_0 \cdot g = \rho_0 \cdot V_{tot} \cdot g$ for object mass m_0 (kg).

 $\rightarrow \rho_0 \cdot V_{tot} = \rho_1 \cdot V_1 + \rho_2 \cdot V_2 \text{ and } V_{tot} = V_1 + V_2$

• <u>For example</u>, for cases with water + air \rightarrow $F_B = (\rho_a \cdot V_a + \rho_w \cdot V_w) \cdot g \approx \rho_w \cdot V_w \cdot g \quad (\rho_a >> \rho_w)$ $\rightarrow \rho_0 \cdot V_{tot} = \rho_w \cdot V_w, \text{ or } : \rho_0 / \rho_w = V_w / V_{tot}$

Pictures: KJ05

The tip of a certain iceberg (which is the volume of the iceberg above the water surface) is V_{tip} = 79 m³, in seawater of with density ρ_{sea} = 1027 kg/m³. <u>Calculate</u> the submerged (*i.e.* under water) volume of the iceberg. For ice the density is ρ_{ice} = 920 kg/m³.

Source: KJ05

picture: http://www.sgisland.org/pages/zone/download.htm

Surface tension

- A liquid at a material interface, usually liquid-gas, exerts a force
 F_{int} per unit length L along the surface.
- It is the result of molecular attraction at a liquid surface being different from that "in" the liquid → the surface acts like a stretched membrane
- Surface tension (σ or γ, unit: N/m) quantifies this force:

$\mathbf{F}_{\text{int}} = \gamma \cdot \mathbf{L}$

- Result phenomena:
 - Contact angle
 - Capillary action (rise or drop)
 - Bubbles, droplets

6.2 Fluid dynamics:viscosity, laminar, turbulent flow,boundary layer

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

13/96

Internal friction in fluid flow

- Fluids will (try to) resist a change in shape, as will occur in fluid flow situations where different fluid elements have different velocities
- Note the definition of a fluid: a fluid is a substance that deforms continuously under the application of a shear stress (sv: skjuvspänning)
- Consider fluid flow between plates:
 - The no-slip condition says that <u>at</u> the wall the velocity of the fluid is the same as the wall velocity *), for a fixed wall v_{fluid} = 0 at the wall
 - Between the plates a **velocity profile** exists: it can be decribed as $v_x = v_x(y)$
 - Shear stresses, T_{fluid}, arise due to velocity differences between different fluid elements

*) this applies always <u>except</u> for very low pressure gases, <u>for example</u> in the upper atmosphere

Internal friction in fluid flow /2

Internal friction in fluid flow /3

- The linear relation between T_{yx} and dv_x/dy is referred to as Newton's Law which holds for so-called Newtonian fluids
- For **non-Newtonian fluids**, other relations between shear force and velocity gradient hold, for example Bingham fluids (toothpaste, clay) or pseudo-plastic (Ostwald) fluids (blood, yoghurt). For those, *viscosity is a function of the velocity gradient*: $T_{yx} = \eta(dv_x/dy) \cdot dv_x/dy$

Note: The flow of a fluid between plates, or in a tube or on a surface doesn't necessarily require moving walls: usually the driving

force is gravity, or a static pressure difference

- Viscosity (sv: viskositet) is a measure of a fluid's resistance to flow; it describes the internal friction of a moving fluid.
- More specifically, it defines the rate of momentum transfer in a fluid as a result of a velocity gradient.
- Dynamic viscosity η (unit: Pa.s) is related to a kinematic viscosity, ν (unit: m²/s) via fluid density ρ (kg/m³)

as: $v = \eta/\rho$

Picture T06

Internal friction in fluid flow 15

- Concentration, c, temperature, T, and energy, E, are scalars, and their gradient is a vector such as dT/dx or ∇T = (∂T/ ∂x, ∂T/ ∂y, ∂T/ ∂z), etc.
- Velocity is a vector \underline{v} , for example $\underline{v} = (v_x, v_y, v_z)$ and it's gradient is a (second order) **tensor** with elements such as dv_x/dy (gradient of v_x in y-direction)

$$\nabla \underline{\mathbf{v}} = \begin{pmatrix} \frac{\partial \mathbf{v}_{x}}{\partial x} & \frac{\partial \mathbf{v}_{y}}{\partial x} & \frac{\partial \mathbf{v}_{z}}{\partial x} \\ \frac{\partial \mathbf{v}_{x}}{\partial y} & \frac{\partial \mathbf{v}_{y}}{\partial y} & \frac{\partial \mathbf{v}_{z}}{\partial y} \\ \frac{\partial \mathbf{v}_{x}}{\partial z} & \frac{\partial \mathbf{v}_{y}}{\partial z} & \frac{\partial \mathbf{v}_{z}}{\partial z} \end{pmatrix}$$

note:

4.0

1.0

 1×10^{-1}

 1×10

1 × 10

× 10-4

4 Helium

86

-20

Dynamic viscosity. N · s/m2

Glycerin

SAE 10W of

Carbon dioxide

40

60

Temperature, °C

SAE 30W oil

Kerosine

Octane

Air

Heptane

SAE 10W-30 oil

Castor oil

Mercury

Water

Hydrogen

100

Picture: KJ05

120

Carbon tetrachloride

Methane

80

$$\nabla \underline{\mathbf{v}} = \left(\frac{\partial \mathbf{v}_{x}}{\partial x} + \frac{\partial \mathbf{v}_{y}}{\partial y} + \frac{\partial \mathbf{v}_{z}}{\partial z}\right)$$

Gradients of a scalar property give a vector (or 1st order tensor); gradients of a vector property give a 2nd order tensor, etc.

Abo Akademi University Internal friction in fluid flow /6

• $\nabla \underline{v}$ results in 3 compressive stresses (sv: tryckspänningar) τ_{xx} , τ_{yy} and τ_{zz} and 6 shear stresses (sv: skjuvspänningar) τ_{xy} , τ_{xz} , τ_{yz} , τ_{zx} , τ_{yx} and τ_{zy} :

Viscous work

- The shear stresses can be expressed as tensor <u>T</u>, resulting in a viscous shear force on a certain area A that is equal to <u>E_{visc} = <u>T</u>·A, with <u>A</u> = A<u>n</u> with normal vector <u>n</u></u>
- If the velocity \underline{v} at surface \underline{A} the rate of **viscous work** done by the fluid at surface A equals $W_{visc} = \underline{F}_{visc} \cdot \underline{v} = \underline{\underline{I}} \cdot \underline{A} \cdot \underline{v}$, which for a certain volume element of control volume (inside which \underline{v} and $\underline{\underline{I}}$ can vary) with total outside surface A gives the rate of work done: $\dot{W}_{visc} = \int_{A} (\underline{\underline{I}} \cdot \underline{v}) \cdot d\underline{A}$

Vector/tensor calculations like this are beyond this course

Picture T06

The friction work is dissipated as HEAT

• <u>Note</u>: at the wall $\underline{v} = 0$ so no work is done; also at points where velocity and shear are perpendicular $\underline{T} \cdot \underline{v} = 0$ and no work is done.

- Oil with viscosity η = 0.05 Pa·s fills a 0.4 mm gap between two cylinders of which the inner one rotates whilst the outer one is fixed.
- The diameter of the inner cylinder is 8 cm, the length is 20 cm.
- Question: How much power is required to rotate the inner cylinder at 300 rpm?

Picture: KJ05 Question ÖS96-4.1

Example: shear stress concentric cylinders /2

*) The space between the two cylinders is very small and may be treated as a flat plate

> Picture: KJ05 Question ÖS96-4.1

Laminar \leftrightarrow turbulent fluid flow

Osborne Reynolds's dye-streak experiment (1883) for measuring laminar \rightarrow turbulent flow transition

• For circular tube flow, the laminar \rightarrow turbulent flow transition occurs at **Reynolds number Re** 2100 - 2300, with the **dimensionless number** defined as **Re** = $\rho < v > \cdot d/\eta$

for ρ = fluid's density (kg/m³), <v> = fluid's **average** velocity (m/s), d = tube diameter (m) and η = fluid's dynamic viscosity (Pa ·s)

Example: a liquid film on a vertical wall /I

 A stationary laminar flow of water (at 1200 kg/h) runs down a vertical surface (with width W = 1 m).

<u>Give</u>

- the expression for the shear stress distribution,
- the expression for the velocity profile, and
- the expression for volumetric flow rate V (m^3/s) and calculate
- film thickness d
- velocity $\langle v_y \rangle$ averaged over the film thickness
- maximum velocity v_{y,max}
- Data: dynamic viscosity for water $\eta = 10^{-3}$ Pa.s density for water $\rho = 1000$ kg/m³ gravity g = 9.8 m/s²

Source: SSJ84

Example: a liquid film on a vertical wall /2

<u>Answer:</u> For this steady-state process:

• The vertical force balance for a volume element with length dy as shown gives $F_{gravity} = F_{shear}$ $\rho \cdot (d-x) \cdot W \cdot dy \cdot g + \tau_{xy} \cdot W \cdot dy = 0 \Rightarrow \rho \cdot (d-x) \cdot g + \tau_{xy} = 0$ with $\tau_{xy} = -\eta \frac{dv_y}{dx} = -\rho \cdot (d-x) \cdot g \Rightarrow \frac{dv_y}{dx} = \frac{\rho \cdot (d-x)g}{\eta}$, integrating: $v_y(x) = \int_0^x \frac{dv_y}{dx} dx = \int_0^x \frac{\rho \cdot (d-x)g}{\eta} dx = \frac{\rho \cdot g}{\eta} \cdot (xd - \frac{1}{2}x^2)$ with $v_y = v_{y,max}$ @ x = d: $v_{y,max} = \frac{1}{2}\rho g d^2/\eta$ For the average velocity $\langle v \rangle$ with $V = \langle v \rangle \cdot d$ ·W: $\langle v_y \rangle = \frac{1}{d} \int_0^d v_y(x) \cdot dx = \frac{1}{d} \int_0^d \frac{\rho g}{\eta} \cdot (xd - \frac{1}{2}x^2) \cdot dx = \frac{\rho g d^2}{3\eta}$ and $\langle v_y \rangle = \frac{\dot{V}}{W \cdot d}$ gives $d = \sqrt[3]{\frac{3\eta \dot{V}}{\rho g}}$ The data gives: d = 0.47 mm, $\langle v_y \rangle = 0.71$ m/s; $v_{y,max} = 1.07$ m/s

Boundary layers

- At the interface of a surface* and a flowing medium, a <u>thin</u> (~ 0.01 - 1 mm) layer of fluid is created in which the velocity increases from v = 0 at the interface to the free-flow velocity v = v_∞ (or 0.99·v_∞)
- In this boundary layer (sv: gränsskikt) all the thermal and/or viscous effects of the surface are concentrated
- The boundary layer can develop from laminar to turbulent flow
- * This can be a solid surface or another flowing medium

Growth of the velocity boundary layer on a flat surface.

Pictures: KJ05

6.3 Fluid dynamics: internal flows / tube flow

Internal flows; velocity profiles

27/96

Plug flow idealisation

Velocity profile due to turbulent "eddies"

Laminar flow between two plates /1

 For a steady-state fluid flow between two stagnant parallel plates, the forces <u>on</u> a volume element between point "I" and "2" and between y = centre line and y = y are (for plate width W) :

Picture: BMH99

@ "1" pressure force = $p_1 \cdot y \cdot W$; @ "2" pressure force = $-p_2 \cdot y \cdot W$ shear force on volume element = $-\tau_{yx} \cdot L \cdot W$

The force balance gives $p_1 \cdot y - p_2 \cdot y - \tau_{yx} \cdot L = 0 \Longrightarrow \tau_{yx} = \frac{p_1 - p_2}{L} \cdot y$

With $\tau_{yx} = -\eta \cdot \frac{dv_x}{dy} \Rightarrow \frac{dv_x}{dy} = -\frac{p_1 - p_2}{\eta \cdot L} \cdot y$ with $v_x = 0 @ y = \pm \frac{1}{2}d$

 τ_{yx} acts on fluid y > y, so $-\tau_{yx}$ acts on fluid y < y which is the fluid element

Laminar flow between two plates /2

Stationary laminar tube flow

Tube flow velocity profiles

Picture: BMH99

32/96

- Flow entering a tube requires a certain distance to produce a "developed flow" with a constant boundary layer: the entrance region
- For the entrance region in **laminar tube flow**, the **Graetz number** quantifies for the boundary layer build-up (see also section 5.2 Convective heat transfer)

6.4 Fluid dynamics: pressure drop & energy dissipation in tube systems

Tube systems //

In a tube system, pressure drop losses resulting from fluid internal friction and wall friction in straight and curved tube sections, valves, inlet/outlet sections, diameter changes etc. etc. must be compensated for by adding mechanical energy via pumps,

compressors, turbines, ventilators (sv: pumpar, kompressorer, turbiner, fläktar) etc.

 <u>Additional effects that</u> <u>must be compensated</u> for are kinetic energy (if flow velocities change) and potential energy (for non-horizontal tube sections)

Tube systems /2

For a flow tube system from point "I" at height z₁, average velocity <v>1, pressure p₁, volume flow V₁, to point "2" at height z₂, velocity <v>2, pressure p₂, volume flow V₂, pumping power (sv: pumpeffekt)
 P_{pump} compensates for flow friction losses P_{losses}:

General energy balance with heat input \dot{Q} , work input \dot{W} , potential and kinetic energy and "flow work": $\dot{m}_1 \cdot (u_1 + gz_1 + \frac{1}{2} \langle v \rangle_1^2) + p_1 \dot{V}_1 + \dot{Q} + \dot{W} = \dot{m}_2 \cdot (u_2 + gz_2 + \frac{1}{2} \langle v \rangle_2^2) + p_2 \dot{V}_2$ For isothermal flows, no heat effect ($\dot{Q} = 0$), no work ($\dot{W} = 0$): $\dot{m}_1 \cdot (gz_1 + \frac{1}{2} \langle v \rangle_1^2) + p_1 \dot{V}_1 = \dot{m}_2 \cdot (gz_2 + \frac{1}{2} \langle v \rangle_2^2) + p_2 \dot{V}_2$ With work input to compensate for flow friction losses P_{losses} for example $\dot{W} = P_{pump} = P_{losses}$ (= - \dot{Q} , but assuming $\dot{Q} \approx 0$): $\dot{m}_1 \cdot (gz_1 + \frac{1}{2} \langle v \rangle_1^2) + p_1 \dot{V}_1 + P_{pump} = \dot{m}_2 \cdot (gz_2 + \frac{1}{2} \langle v \rangle_2^2) + p_2 \dot{V}_2 + P_{losses}$ Picture: http://www.pharmaceutical-technology.com/contractors/water_treatment/fischer/fischer2.htm

Flow through pipes and conduits (sv: rör, ledning, kanal) with height z_1 , velocity v_1 , pressure p₁, volume flow $V_1 \rightarrow \text{height } z_2$, velocity v_2 , pressure p_2 , volume flow V_2

$$\dot{m}_{1} \cdot (u_{1} + gz_{1} + \frac{1}{2} \langle v \rangle_{1}^{2}) + p_{1} \dot{V}_{1} + P_{pump} = \dot{m}_{2} \cdot (u_{2} + gz_{2} + \frac{1}{2} \langle v \rangle_{2}^{2}) + p_{2} \dot{V}_{2} + P_{losses}$$

Special case 1: for an isothermal inviscid fluid (negligible viscosity), $\rightarrow P_{pump} = P_{losses} \approx 0$; this gives Bernouilli's equation:

$$\dot{m}_1 \cdot (gz_1 + \frac{1}{2} \langle v \rangle_1^2) + p_1 \dot{V}_1 = \dot{m}_2 \cdot (gz_2 + \frac{1}{2} \langle v \rangle_2^2) + p_2 \dot{V}_2$$

ξ

Tube systems /4

Flow through pipes and conduits (sv: rör, ledning, kanal) with height z_1 , velocity v_1 , pressure p₁, volume flow $V_1 \rightarrow \text{height } z_2$, velocity v_2 , pressure p_2 , volume flow V_2

$$\dot{m}_{1} \cdot (u_{1} + gz_{1} + \frac{1}{2} \langle v \rangle_{1}^{2}) + p_{1} \dot{V}_{1} + P_{pump} = \dot{m}_{2} \cdot (u_{2} + gz_{2} + \frac{1}{2} \langle v \rangle_{2}^{2}) + p_{2} \dot{V}_{2} + P_{losses}$$

Special case 2 : correcting for velocity profiles in stream cross - section : $\dot{m}_1 \cdot (gz_1 + \frac{1}{2}\xi_1 \langle v \rangle_1^2) + p_1 \dot{V}_1 + P_{pump} = \dot{m}_2 \cdot (gz_2 + \frac{1}{2}\xi_2 \langle v \rangle_2^2) + p_2 \dot{V}_2 + P_{losses}$ with kinetic energy correction factor ξ , for stream cross – sectional area A :

> See also CEWR10 p. 222

$$\xi \approx 2$$
 for laminar flows, and $\xi \approx 1.05 - 1.10$ for turbulent flows

 $\xi = \frac{\dot{E}_{kinetic}}{\frac{1}{2} \cdot \dot{m} \cdot \langle v \rangle^2} = \frac{\int_{A}^{1/2} \cdot \dot{m} \cdot v^2 dA}{\frac{1}{2} \cdot \rho \cdot A \cdot \langle v \rangle^3} = \frac{\frac{1}{2} \cdot \rho \int_{A}^{1/2} v^3 dA}{\frac{1}{2} \cdot \rho \cdot A \cdot \langle v \rangle^3} = \frac{\frac{1}{A} \int_{A}^{1/2} v^3 dA}{\langle v \rangle^3}$

Example: friction losses (ÖS96-4.6)

 I liter/s ethanol (density ρ = 791 kg/m³) is pumped through a tube (diameter d = 25 mm) with a downwards slope. Pressure is measured at 2 points 100 m apart, as shown. <u>Calculate</u> the friction losses per meter tube, P_{losses} /I (W/m)

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

39/96

Tube systems /5

- For a tubing network (sv: rörsystem), a design calculation can involve
 - Calculation of power losses, primarily pressure drop losses that must be compensated for with pumps etc. in a given process tubing situation
 - Calculation of flow velocities or volume streams that will result when applying a certain pumping power to a certain tube system flow situation
 - Calculation of tube diameters, lengths and tubing lay-out for a certain process situation, often based on given pumps or pressure drop data etc.

Picture http://www.pipecuff.com/

Sometimes iterative calculations are needed: $P_{pump} \rightarrow p_2$ and v_2 ; \rightarrow adjust $p_2 \rightarrow$ new value for P_{pump} etc.

(see also ÖS96 p. 41)

Pressure drop //

- The pressure drop in a tube flow system can be predicted if the shear force at the wall τ_w is known
- <u>For example</u> for **laminar** tube flow (tube diameter d = 2R, flow direction "x"), $(-dp/dx) = -2 \cdot \tau_w / R$ where $\tau_w = \tau_{\text{fluid} \rightarrow \text{wall}}$ can be related to dv_x/dr , but for **turbulent** flow such **information** is **not available**
- Force analysis shows 3 forces acting on a flow volume element: surface forces (pressure and surface shear), and body force (gravity). These can change the kinetic energy E_k = ½mv² and potential energy E_p = mgz. For a horizontal tube the body forces cannot change, but surface forces will change the kinetic energy.

 $\int_{X} \frac{1}{L} \int_{Z} \frac{1}{2} \int_{Z} \frac{1}{2}$

Pressure drop /2 friction factor

 The surface shear force acting on the surface of a moving fluid element can be expressed as

$$\tau_{w} = \text{friction factor } \cdot (E_{\text{kinetic}}/\text{volume}) = f \frac{1}{2}\rho < v > 2$$

= dynamic pressure or "thrust" (sv: stöt)

 For flow in a horizontal tube with radius R the force balance at the wall for length section L gives

$$p_1 \cdot A - p_2 \cdot A - \tau_w \cdot S \cdot L = 0$$
, with $\tau_w = \tau_{fluid \rightarrow wall} = -\tau_{wall \rightarrow fluid}$

$$\rightarrow (\mathbf{p}_1 - \mathbf{p}_2) = \tau_w \cdot \mathbf{L} \cdot \mathbf{S} / \mathbf{A} = \mathbf{f} \cdot \frac{1}{2} \cdot \mathbf{\rho} \cdot \frac{1}{2} \cdot \mathbf{L} \cdot \mathbf{S} / \mathbf{A} = -\Delta \mathbf{p}$$

Pressure drop /3 friction factor

- This defines the Fanning friction factor f;
 also used is Darcy or Blasius friction factor ζ = 4f
- The group ¹/₂·ρ·<v>² (unit: N/m²) follows also from dimensional analysis, reasoning that
 τ_w = τ_w(ρ, η, <v_x>, geometry), which for a tube with diameter D gives τ_w = τ_w(ρ, η, <v_x>, D).
- It is found that

Hydraulic diameter

The ratio A/S (unit: m) is a characteristic dimension of the tube, pipe, duct or channel known as hydraulic radius, while 4·A/S is known as hydraulic diameter D_h (see Figure below) with A = cross-sectional area (sv: tvärsnitt); S = perimeter (sv: omkrets) touched by fluid

Flow situation

For example for a round tube with diameter D, completely filled with fluid: D_h = D; for a square channel with width W, fluid height H: D_h = 4·A/S =

4·(H·W)/(2H+W

u		$D_h = 4A/S$			
	D	Circular pipe	D	$\frac{\pi}{4} D^2$	
with	$\delta \rightarrow \boxed{D_1 D_2}$	Concentric pipe or slit	$D_2 - D_1 = 2\delta$	$\frac{\pi}{4}(D_2^2 - D_1^2)$	
annel	W B	Rectangular pipe	$\frac{2WB}{W+B}$	WB	
luid	→W→ ↓ H	Open channel	$\frac{4WH}{W+2H}$	WH	
	90° H	Open channel	$\frac{2H}{\sqrt{2}}$	H ²	
v)	- Ko	Half-filled	D	$\frac{\pi}{8} D^2$	
o	STILL-8	Liquid film in a tube	4δ	δπD	

Hydraulic diameter

D = 44/S

Picture: BMH99

A

Thus for the pressure drop for flow in a tube or duct with hydraulic diameter $D_h = 4 \cdot A/S$:

$$(p_1 - p_2) = -\Delta p = \tau_w \cdot L \cdot (4 / D_h) = 4f \cdot \frac{1}{2} \cdot \rho \cdot \frac{1}{2} \cdot L / D_h$$

- Picture: http://www.mbamanufacturing.com/Publication/LamTurbFlow.htm For a laminar flow in a round tube (Hagen - Poisseuille flow, with D_h = diameter D = 2R): - $\tau_{w} = \tau_{wall \rightarrow fluid} = \frac{1}{2} \mathbf{R} \cdot (-\Delta \mathbf{p}/\mathbf{L})$ $\rightarrow -\tau_{w} = 4\eta < v > /R = 8\eta < v > /D = f \cdot \frac{1}{2} \cdot \rho \cdot < v > 2$ \rightarrow **f** = 16\eta/(p<v>d) = 16 / Re ; 4f = ζ = 64 / Re with Re < 2100
 - For non-circular ducts another proportionality constant is needed !

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Pressure drop /5 turbulent tube flow

- Pressure drop for flow in a tube or duct with hydraulic diameter $D_{h} = 4 A/S : (p_{1} - p_{2}) = -\Delta p = T_{w} L (4/D_{h}) = 4f \cdot \frac{1}{2} \cdot \rho \cdot \frac{1}{2} \cdot L/D_{h}$
- For a **turbulent flow in a tube of duct** it is found that $f \sim \text{Re}^{-0.25 \dots 0}$ (less direct influence of viscosity than in laminar flow) and $\Delta p \sim v^{1.75..2}$

For smooth pipes

(Blasius' equation) with $4000 < \text{Re} < 10^5$

can be used for any cross-sectional shape using characteristic diameter = hydraulic diameter D_{h}

cture: http://www.mbamanufacturing.com/Publication/LamTurbFlow.htm

45/96

Pressure drop /6 wall roughness

- For rough pipes, wall surface roughness (sv: väggskrovlighet) x̄ is important if it is of the same order as the thickness of the laminar boundary layer, δ;
- Important at great wall roughness or high Re numbers.
- <u>Roughness data is found in tables</u>
- Important is the **relative roughness** \overline{x}/D , with tube diameter D
- Not important for laminar flows
- The friction factor f or ζ can be read from a friction factor chart or Moody chart as function of Re and relative wall roughness

Abo Akademi University Wall roughness data

x

Material	Condition	Roug <u>hn</u> ess Height, X (mm)	Uncertainty (%)
Steel	Sheet metal, new	0.05	±60
	Stainless, new	0.002	±50
	Commercial, new	0.046	±30
	Riveted	3.0	±70
	Rusted	2.0	±50
Iron	Cast, new	0.26	±50
	Wrought, new	0.046	±20
	Galvanized, new	0.15	±40
	Asphalted cast	0.12	±50
Brass	Drawn, new	0.002	±50
Plastic	Drawn tubing	0.0015	±60
Glass	_	Smooth	
Concrete	Smoothed	0.04	±60
	Rough	2.0	±50
Rubber	Smoothed	0.01	±60
Wood	Stave	0.5	±40

← Relative wall roughness, small or large diameter tubes

Table: T06 Pictures: MSH93

Example: pipe flow friction /I

A horizontal cast-iron pipe with diameter 4" carries 30000 (US) gal/h water at 70°F. Pipe length is 50 ft. <u>Calculate</u> the pressure drop. The water's density is 62.2 lbm/ft³; dynamic viscosity is 65.8 · 10⁻⁵ lbm/(ft · s)

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

51/96

Pressure drop /7 Fittings and valves

- Pressure drop across a tube section can be expressed as $-\Delta p = 4f \cdot \frac{1}{2} \cdot \rho \cdot \frac{1}{2} \cdot \frac$
- Similarly, for the sudden local pressure drop caused over a very short distance by, <u>for example</u>
 - A change in tube diameter, or a bend or curve, or a T-junction
 - A valve (sv: ventil, klaff) or other fitting (sv: rörelement)
 - An inlet or outlet (sharp or smooth)

For these, pressure drop can be expressed as

$$-\Delta p = K_{w} \cdot \frac{1}{2} \cdot \rho \cdot \langle v \rangle^{2}$$

$$-\Delta p = \zeta' \cdot \frac{1}{2} \cdot \rho \cdot \langle v \rangle^{2}$$

with coefficients K_w or ζ' independent of flow Reynolds number for Re > 10⁵

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Picture: http://www.chicagobrassworks.com/gs.htm

53/96

Friction loss factors K_w (or ζ) for flow tube elements / 3 of 4

Friction loss factors K_w (or ζ) for flow tube elements / 4 of 4

Tube elements: example

- Friction coefficients K_w or ζ' for several tube sections and fitting elements:
- a) Bend 90°, R/d =1 ζ' = 0.5
- b) Sharp bend 90° ζ' = 0.98 or elbow ζ' = 1.2
- c) Tube inlet, sharp $\zeta' = 0.5$ or smooth $\zeta' = 0.20$
- d) Diameter increase, sharp ζ' = $(1-d^2/D^2)^2$
- e) Diameter decrease, sharp $\zeta' = 0.45 \cdot (1-d^2/D^2)$
- f) Diameter increase, diffusor with $\theta/2 < 10^{\circ} \zeta' \approx 0$
- g) Tube outlet, turbulent $\zeta' = 1$ or laminar $\zeta' = 2$

For this set-up <u>if for example</u> D = 80mm, d = 50 mm, for turbulent flow: $\Sigma \zeta' = 0.50 + 0.50 + 0.98 + 0.37 + 0.27 + 0 + 1.1 = 3.72$ for the fittings, bends and diameter changes only.

Picture: ÖS96

Pressure drop, pressure loss, power loss, energy dissipation /1

 For fluid flow with viscous friction through a channel the <u>power loss</u> (energy dissipation) P_{loss} (sv: effekförlust) can be related to <u>pressure loss</u>
 -Δp_{loss} for a given volume stream V:

For the energy equation for a tube system (with Q = 0), dividing by V (noting that m = ρ V requires ρ = constant) this gives

$$\rho g(z_1 - z_2) + \frac{1}{2} (\xi_1 \rho \langle v \rangle_1^2 - \xi_2 \rho \langle v \rangle_2^2) + (p_1 - p_2) + (-\Delta p)_{\text{pump}} = (-\Delta p)_{\text{losses}}$$

Pressure drop, pressure loss, power loss, energy dissipation /2

• If density changes are significant (typical for gases) then $\dot{V}_1 \neq \dot{V}_2$ and that must be accounted for:

$$-\Delta p_{\text{loss}} = \frac{P_{\text{losses}}}{\dot{V}} = \frac{P_{\text{losses}}}{\dot{m}} \int_{1}^{2} d\rho = \int_{1}^{2} - dp_{\text{loss}}$$

and

$$g(z_1 - z_2) + \frac{1}{2}(\xi_1 \langle v \rangle_1^2 - \xi_2 \langle v \rangle_2^2) + \int_1^2 \frac{-dp}{\rho} + (-\Delta p)_{\text{pump}} = (-\Delta p)_{\text{losses}}$$

- With pressure drop Δp ~ shear force it follows that
 Δp ~ velocity for laminar flow, and Δp ~ velocity^{1.75...2} for turbulent flow. Note: for laminar: Δp ~ v with 4f ~ 1/Re ~1/v
- With viscous work ~ shear force × velocity, P_{loss} ~ Δp·V ~ velocity·Δp this gives P_{loss} ~ velocity² for laminar flow, and P_{loss} ~ velocity^{2.75...3} for turbulent flow.

Pressure drop, pressure loss, power loss, energy dissipation /3

- For the power loss (energy dissipation) for a flow channel with total pressure losses Δp_{loss}, composed of
 - Δp_{loss} (ζ , L, D) for the straigth sections and
 - Δp_{loss} (ζ ') for the fittings, valves, diameter changes, in-/outlet, ... :

$$4f = \zeta = \frac{-\Delta p_{\text{losses}}}{\frac{1}{2}\rho \langle v \rangle^{2}} \cdot \frac{D_{\text{h}}}{L} = \frac{P_{\text{losses}}}{\frac{1}{2}\rho \langle v \rangle^{2}} \cdot \frac{v}{v} \cdot \frac{D_{\text{h}}}{L} = \frac{P_{\text{losses}}}{\frac{1}{2}\rho \langle v \rangle^{2}} \cdot \frac{D_{\text{h}}}{L} \text{ for tube sections}$$
$$K_{\text{w}} = \zeta' = \frac{-\Delta p_{\text{losses}}}{\frac{1}{2}\rho \langle v \rangle^{2}} = \frac{P_{\text{losses}}}{\frac{1}{2}\rho \langle v \rangle^{2}} \cdot \frac{v}{v} \text{ for valves, fittings, diameter changes,}$$

which gives for the total tubing system including fittings etc:

$$-\Delta p_{\text{loss}} = \frac{1}{2}\rho \langle v \rangle^2 \cdot \left(\zeta \cdot \frac{L}{D_h} + \sum \zeta' \right) \quad \text{and} \quad P_{\text{losses}} = \frac{1}{2}\rho \dot{V} \langle v \rangle^2 \cdot \left(\zeta \cdot \frac{L}{D_h} + \sum \zeta' \right)$$

Note: kinetic energy correction factor ξ is now included in ζ or 4f !!!!

Calculation of volume flow or tube diameter

- Calculation of pressure drop -Δp or power loss P_{loss} from flow channel diameters and friction factors is relatively straight-forward; <u>more complicated</u>, however, is to determine volume stream V or channel diameter D_h based on –Δp or P_{loss}
- An **iterative procedure** can be used, using $\dot{V} = A \cdot \langle v \rangle$ for flow cross-section A and the expressions given above; for tube system based on a round tube with $A = \frac{1}{4}\pi D^2$ this gives

$$\dot{V} = \sqrt{\frac{\pi^{2}(-\Delta p)_{loss}D^{4}}{8\rho\left(\zeta\frac{L}{D} + \sum\zeta'\right)}} \quad \text{and} \quad D = \sqrt[4]{\frac{8\rho\dot{V}^{2}\left(\zeta\frac{L}{D} + \sum\zeta'\right)}{\pi^{2}(-\Delta p)_{loss}}}$$

where ζ (or 4*f*) and ζ' (or K_w) are functions of <v>, D and/or Re !

(see also ÖS96 p. 48)

Example: old exam question /question

- Calculate what the inner diameter d (in m) of a well heat-insulated steel tube should be for transporting m = 3,2 kg/s steam with temperature 180°C and pressure 300 kPa (density ρ = 1,464 kg/m³, dynamic viscosity η = 15,1×10⁻⁶ Pa · s), if the pressure drop in straight tube sections may not be more than 250 Pa per meter. Wall roughness is k = x = 0,4 mm.
- Note that for round tubes: $\operatorname{Re} = \frac{4 \cdot \dot{m}}{\pi \cdot \eta \cdot d}$
- Advice: develop an expression d = f(<v>, ζ, ...) and iterate a few times to find a result for d (m).

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

63/96

Example: old exam question /answer

Calculation of volume flow or tube diameter

Two expressions for this are given in CEWR10, p. 332

$$\dot{V} = -2.22 \cdot D^{5/2} \cdot \frac{(-\Delta p)_{loss}}{\rho \cdot L} \cdot ^{10} \log \left(\frac{\bar{x}}{3.7 \cdot D} + \frac{1.78 \cdot \eta}{D^{3/2} \cdot \rho \cdot \sqrt{\frac{(-\Delta p)_{loss}}{\rho \cdot L}}} \right)$$
$$D = 0.66 \cdot \left(\left(\bar{x} \right)^{1.25} \cdot \left(\frac{L \cdot \dot{V}^2 \cdot \rho}{(-\Delta p)_{loss}} \right)^{4.75} + \frac{\eta}{\rho} \cdot \dot{V}^{9.4} \cdot \left(\frac{L \cdot \rho}{(-\Delta p)_{loss}} \right)^{5.2} \right)^{0.04}$$
$$for \operatorname{Re} > 3000, \quad \frac{\bar{x}}{D} < 0.02$$

which should be used with caution.

Example: water pumping system /1

A pump is used to remove water from a mine shaft – see Figure. How much pump power P_{pump} (in kW) is needed to remove water at a rate of 65.0 kg/s?
 Assume an ideal pump (efficiency 100%). Assume density ρ = 997 kg/m³, viscosity η=1.12·10⁻³ Pa·s

Example: water pumping system /2

Picture: KJ05

	Åbo Ak	ademi University Thermal ar	nd Flow Engineering 2050() Turku Finland	67/96
Åbo Akademi University	Cavitatio	n			
₽	Low flow – rate	- Cavitation	-	Vapor bubbles	
P _v	/apor pressure	>>> s	-	Vapor pocket (b)	Pictures: CEWR10
	avitation occurs i t the given tempe	-			essure

- The formation and collapse of bubbles gives shock waves, noise, and other problematic dynamic effects that can result in reduced performance, failure and damage.
- Typically occurs at high velocity locations in, for example, pumps or valves, but can damage also tube walls.

6.5 Flow systems with negligible losses, flow measurement

where

Flow systems with negligible losses //

- Often the energy dissipation $\boldsymbol{P}_{\text{loss}}$ can be neglected in comparison with the (mechanical) energy changes in a flow system.
- If the fluid density can be considered constant this gives the Bernouilli's equation, which can be written as

where the three terms
(unit: m) are referrred to as
- pressure head,
- static head and
- velocity head
$$h = 0$$

Picture: BMH99

69/96

Flow systems with negligible losses /2

- This is used when measuring fluid velocities with a so-called **Pitot tube**: in the Figure \rightarrow $P_{@b} - P_{@a} = \frac{1}{2}\rho < v > 2 = \rho gh$
- In a venturi flowmeter, the pressure difference between main flow and the throat as shown in Figure → equals

$$\begin{split} p_{@A1} - p_{@A2} &= \frac{1}{2}\rho < v > 2_{@A2} - \frac{1}{2}\rho < v > 2_{@A1} \\ \text{(which gives } p_{@1} > p_{@2} \text{ !)} \\ \text{with } < v >_1 \cdot A_1 &= < v >_2 \cdot A_2 \text{ and} \end{split}$$

 $p_{@A1} - p_{@A2} = \rho$ hg the flow \dot{V} at A_2 can be calculated for a liquid:

$$\dot{V} = A_2 \sqrt{\frac{2(p_1 - p_2)}{\rho}} / \sqrt{1 - \frac{A_2^2}{A_1^2}}$$

For a gas: (ideal, adiabatic process): use $p \cdot \rho^{-\gamma} = constant$, $\gamma = c_{p}/c_{v}$

Åbo Akademi University

Flow systems with negligible losses /3

- For flow of **liquid** from an **orifice** (*sv: mynning, öppning*) friction losses can be neglected
- At some distance from the opening, (at cross-sectional area A₁), the velocity is much smaller than the velocity <v> in the opening (area A₁'):

 $p_{0} + \frac{1}{2}\rho < v >^{2} \approx p_{1} \text{ this gives}$ $<v > \approx \sqrt{(2(p_{1}-p_{0})/\rho)}$ $V = A_{1} < v > = C_{f}A_{1}\sqrt{(2(p_{1}-p_{0})/\rho)}$ with friction factor C_{f} $C_{f} \approx 1 \text{ for a sharp edge (a),}$

 $C_f \approx 0.95-0.99$ for a rounded outlet (b). For a diffusor (c) with angle < 8°,

 $V = C_f A_0 \sqrt{(2(p_1 - p_0)/\rho)}$ with $C_f \approx I$

For a gas : (ideal, adiabatic process): $p_0 < p$ in jet $< p_1$ use $p \cdot p^{-\gamma} = constant$, $\gamma = c_p/c_v$ *Pictures: BMH99*

6.6 Pumps, compressors, fans

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

73/96

Pumps, compressors, fans //

- Creating a flow and/or increasing the pressure of a fluid, or compensating for pressure losses is accomplished with pumps (sv: pumpar) for liquids, or with compressors or fans (sv: kompressorer, fläktar) for gases
- Usually a fan creates flow with minimal pressure change; if a fan creates a higher outlet pressure then it is generally referred to as a blower (sv: bläster)

Positive-displacement pumps

Picture: T06

Pumps, compressors, fans /2

- Pumps, compressors and fans can be divided into two major categories:
 - Positive displacement devices based on "pushing" the fluid through the device (see previous slide)
 - Dynamic devices based on transfer of energy as momentum (sv: rörelsemängd) from rotary blades or vanes, or from a high-speed fluid stream (<u>for example</u>, centrifugal pumps and rotodynamic compressors and fans)

Pumps //

The general relation between pump (or compressor) power and the pressure difference Δp_{pump} (*sv: uppfordringstryck*) for a given flow **tubing system situation** follows from the mechanical energy balance ($\dot{Q} = 0$, no heat transfer or significant temperature changes), assuming also that $\Delta \dot{E}_{kinetic} = 0$:

$$-\Delta p_{pump} = (p_2 - p_1) + \rho g(z_2 - z_1) + \frac{1}{2}\rho \langle v \rangle^2 \cdot \left(\zeta \cdot \frac{L}{D_h} + \Sigma \zeta'\right) \quad \text{with} \quad \langle v \rangle^2 = \frac{\dot{V}^2}{A^2}$$
$$-\Delta p_{pump} = \frac{P_{pump}}{\dot{V}} = \frac{\dot{H}_2 - \dot{H}_1}{\dot{V}} = \rho(h_2 - h_1) = \rho g \cdot \Delta z_{pump}, \text{ with " pump head" } \Delta z_{pump}$$

 The pump head (unit: m) is the pressure rise across the pump equivalent height fluid

Picture: ÖS96

Pumps /3

- Changing the flow resistance in the tube network will give another system characteristic line
- The new working point will give another fluid flow throughput

For example, closing or opening a valve

The pump itself generates a viscous friction effect in the fluid, and as a result not all pump power P_{pump} will be available to give a pressure increase -Δp_{pump} in flow V. The pump efficiency (sv: pumpverkningsgrad) η_{pump} quantifies for this:

• For a given pump the efficiency depends on the fluid that is pumped and the volume stream \dot{V} for example $\int_{0}^{100\%} \int_{0}^{100\%} \int_{0}^{10\%} \int_{0}^{10\%}$

- Cooling water must be pumped from a reservoir up to a process through a tube system with a few bends and a valve as shown in the figure. At both liquid surfaces the pressure equals ambient atmospheric pressure. The cooling water (20°C) flow is 135 m³/h. The height difference between reservoir and process is 105 m and the total tube length is 166 m, of which 16 m is upstream ("before") of the pump.
- a) What tube diameter must be chosen so that the flow velocity does not exceed 2 m/s, and what is the Reynolds number of the flow then?

81/96

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Old exam question /q 2 of 2

- b) What pressure head should the pump be able to produce so that the flow objective is achieved?
- c) Calculate the pump power that is needed for a pump with an efficiency of 80%.
- d) Is there a risk of so-called "cavitation" somewhere in this tube system?
- Assume that the friction coefficient for the valve is $\zeta' = 2,0$, assume two 45° elbow bends ($\zeta' = 0,4$) and an 90° elbow bend ($\zeta' = 0,9$). Density water = 1000 kg/m³; dynamic viscosity water = 0,001 Pa·s. Water vapour pressure at 20 °C is 2336,8 Pa. Assume the tube wall roughness to be = 4,7·10⁻⁴ m.

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Åbo Akademi University

Old exam question /a 2 of 2

83/96

- A I hp (746 W) electrical motor drives a centrifugal pump for which the catalogue gives some tabelised data.
- <u>Calculate</u> the pumping power and efficiency for pumping water (ρ = 996 kg/m³) with this pump, and plot these as a function of the flow rate V.

Flow (m ³ /s)	Pump head (m)
3.16×10 ⁻³	4.6
1.89×10 ⁻³	22.9
0.63×10 ⁻³	30.5
0	16.5

Source: T06

1 the state of the

6.7 Fluid dynamics: external flows

Fluid flow around objects

- In the cases of
 - an object moving through a fluid
 - a fluid flow around an object

the velocity difference generates forces

- Forces acting parallel to the flow direction are drag forces; forces acting perpendicular to the flow direction are lift forces
- The flow field around an object can be divided in twc parts: the **boundary layer**^{*} where the viscous forces ar active, and the **free-strean** velocity (or the stagnant surrounding fluid)

Picture: http://www.weirdrichard.com/images/forces.jpg

89/96

Åbo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland

Flow around a flat plate / I

• For flow along a flat plate, the forces on the plate are friction forces. The **shear stress on each side of the surface** is

$$\tau_{yx}\Big|_{y=0} = \tau_{w} = \eta_{\text{fluid}} \frac{V_{r}}{\delta} = 0.664 \cdot \left(\frac{V_{r} x \rho_{\text{fluid}}}{\eta_{\text{fluid}}}\right)^{-\frac{1}{2}} \cdot \frac{1}{2} \rho_{\text{fluid}} V_{r}^{2}, \text{ for } \operatorname{Re}_{x} = \frac{V_{r} \cdot x \cdot \rho_{\text{fluid}}}{\eta_{\text{fluid}}} < 3 \times 10^{5}$$

with (laminar) boundary layer thickness δ and **relative velocity** v_r

• The **drag force** on each side of a plate with length L and width b is then given by

The pressure $\frac{1}{2}\rho v^2$ is known as THRUST (sv: stöt)

Picture: BMH99

Flow around a flat plate /2

This defines the (length-averaged) drag coefficient C_D as

$$\mathbf{F}_{\mathrm{D}} = \mathbf{C}_{\mathrm{D}} \cdot \mathbf{A} \cdot \frac{1}{2} \rho \mathbf{v}_{\mathrm{r}}^{2} \text{ with } \mathbf{C}_{\mathrm{D}} = \frac{1.33}{\sqrt{Re_{L}}} \text{ for } \mathbf{R}e_{L} < 3 \times 10^{5}$$

where A (m^2) is the area (one side) of the plate

For turbulent cases, experimental results give

$$C_D = \frac{0.074}{Re_L^{1/5}}$$
 for $10^5 < Re_L < 10^7$; $C_D = \frac{0.445}{{}^{10}log(Re_L)^{2.58}}$ for $10^7 < Re_L < 10^9$

 For a flat surface with a laminar region followed by a turbulent region, a "composite" drag composition can be calculated with

$$C_D = \frac{0.074}{Re_l^{1/5}} - \frac{1740}{Re_L}$$

 For a flate plate perpendicular to fluid the drag coefficient equals
 ~2, largely independent of Re-number

Flow around cylinders, spheres //

For a general surface area A_⊥
 (m²) perpendicular to the flow, the drag force is

$$F_{\rm D} = C_{\rm D} \cdot A_{\perp} \cdot \frac{1}{2} \rho v_r^2$$

(where $\frac{1}{2}\rho v_r^2$ is actually the pressure difference between the front and the back of the object)

 With increasing Re-numbers, boundary layer separation occurs, and

a **wake region** (sv: köl(vatten)) arises where kinetic energy is only partly converted into pressure

Abo Akademi University Flow around cylinders, spheres /2

- For spherical particles the drag
 coefficient equals
 - For flow at Re <0.1 around a sphere, the relation C_D=24/Re

Example: drag on a flat plate

- An advertising banner (1 m x 20 m) is towed behind an aeroplane at 90 km/h, in air at 32°C.
- <u>Calculate</u> the power (in kW) needed to pull the banner.

Sources #6

- <u>BMH99:</u> Beek, W.J., Muttzall, K.M.K., van Heuven, J.W. "Transport phenomena" Wiley, 2nd edition (1999)
- <u>BSL60</u>: R.B. Bird, W.E. Stewart, E.N. Lightfoot "Transport phenomena" Wiley (1960)
- <u>CEWR10:</u> C.T. Crowe, D.F. Elger, B.C. Williams, J.A. Roberson "Engineering Fluid Mechanics", 9th ed., Wiley (2010)
- <u>KJ05</u>: D. Kaminski, M. Jensen "Introduction to Thermal and Fluids Engineering", Wiley (2005)
- <u>MSH93</u>: W.L. McCabe, J.C. Smith. P. Harriott "Unit operations of chemical engineering" 5th ed. McGraw-Hill (1993)
- <u>SSJ84:</u> J.M. Smith, E. Stammers, L.P.B.M Janssen "Fysische Transportverschijnselen I" TU Delft, D.U.M. (1984) (in Dutch)
- <u>T06:</u> S.R. Turns "Thermal Fluid Sciences", Cambridge Univ. Press (2006)
- <u>ÖS96</u>: G. Öhman, H. Saxén "Värmeteknikens grunder", Åbo Akademi University (1996)

Picture: http://www.ecotrust.org/copperriver/crks_cd/content/pages/photographs/images/