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6.  Photoelasticity

Photoelasticity is a nondestructive, whole-field,
graphic stress-analysis technique based on an opto-
mechanical property called birefringence, possessed
by many transparent polymers.

Combined with other optical elements and
illuminated with an ordinary light source, a loaded
photoelastic specimen (or photoelastic coating
applied to an ordinary specimen) exhibits fringe
patterns that are related to the difference between
the principal stresses in a plane normal to the light-
propagation direction.

The method is used primarily for analyzing two-
dimensional plane problems, which is the emphasis
in these notes.  A method called stress freezing
allows the method to be extended to three-
dimensional problems.  Photoelastic coatings are
used to analyze surface stresses in bodies of
complex geometry.

Advantages and disadvantages

Advantages.—Photoelasticity, as used for two-
dimensional plane problems,

• provides reliable full-field values of the
difference between the principal normal
stresses in the plane of the model

• provides uniquely the value of the non-
vanishing principal normal stress along the
perimeter(s) of the model, where stresses are
generally the largest

• furnishes full-field values of the principal-
stress directions (sometimes called stress
trajectories)

• is adaptable to both static and dynamic
investigations

• requires only a modest investment in
equipment and materials for ordinary work

• is fairly simple to use

Disadvantages.—On the other hand, photo-
elasticity
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• requires that a model of the actual part be
made (unless photoelastic coatings are used)

• requires rather tedious calculations in order
to separate the values of principal stresses at
a general interior point

• can require expensive equipment for precise
analysis of large components

• is very tedious and time-consuming for
three-dimensional work

Procedure

The procedure for preparing two-dimensional
models from pre-machined templates will be
described.  Alternatively, specimens may be
machined “from scratch,” in which case a computer-
controlled milling machine is recommended.

1. Selecting the material.  Many polymers exhibit
sufficient birefringence to be used as photo-
elastic specimen material.  However, such
common polymers as polymethylmethacrylate
(PMMA) and polycarbonate may be either too
brittle or too intolerant of localized straining.
Homalite®-100 has long been a popular general-
purpose material,1 available in various thick-
nesses in large sheets of optical quality.
PSM-1® is a more recently introduced material2

that has excellent qualities, both for machining
and for fringe sensitivity.  Another good
material is epoxy, which may be cast between
plates of glass, but this procedure is seldom
followed for two-dimensional work.

2. Making a template.  If more than 2 or 3 pieces
of the same shape are to be made, it is advisable
to machine a template out of metal first.  This
template may then be used to fabricate multiple
photoelastic specimens having the same shape
as that of the template.  The template should be
undercut by about 0.050 in. through about half
the template thickness from one side to avoid
contact with the router bit (explained below).

3. Machining the specimen.  If the specimen is
machined “from scratch,” care must be taken to

                                                
1Manufactured by Homalite Corporation, Wilmington, Del.
2Marketed by Measurements Group, Raleigh, N.C.
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take very light cuts with a sharp milling cutter in
order to avoid heating the specimen unduly
along its finished edges.  A coolant, such as
ethyl alcohol, kerosene, or water, should be used
to minimize heating.

If a template is used, then a bandsaw with a
sharp, narrow bandsaw blade is used to rough
out the shape of the specimen.  A generous
allowance of about 1/8 in. should be marked on
the specimen all around the template edge, since
the blade will heat the material and nick the
edge.  Then a router with a high-speed carbide
router bit, preferably with fine multiple flutes,
should be used to fabricate the edge of the
model (Fig. 1).  A succession of two centering
pins—the first having a diameter larger than that
of the router bit (as shown in the figure), and the
second one the same size—should be used so
that excess material can first be removed
quickly, and then in a very controlled manner,
leaving the specimen with the same dimensions
as those of the template.

High-speed
carbide bit

Table

Guide pin

Locknut

Specimen

Double-stick
tape

Template

Fig. 1.  Use of a template, router, and guide pin
to rout the edge of a specimen.

The piece should always be forced into the
cutting edge of the bit, that is, from front to back
if the piece is on the right side of the bit (as in
the figure).  The final router passes should be
smooth and very light so as to avoid heating of
the specimen edges.

4. Drilling the specimen.  If the specimen has
holes, such as those used for load-application
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points using pins, then these holes should be
drilled carefully with a sharp bit with plenty of
coolant, such as ethyl alcohol, kerosene, or
water; otherwise unwanted fringes will develop
around the edge of the hole.  As illustrated in
Fig. 2, the specimen should be backed with a
sacrificial piece of similar material in order to
avoid chipping on the back side of the specimen
as the drill breaks through.

High-speed
drill bit

Table

Sacrificial
back piece Specimen

Double-stick tape

Template

Fig. 2.  Drilling a hole in the specimen.

A series of 2 or 3 passes of the drill bit through
the specimen, with coolant added each time, will
minimize heat-induced fringes.

5. Viewing the loaded specimen.  After the
specimen is removed from the template and
cleaned, it is ready for loading.  A polariscope
(to be described later) is needed for viewing the
fringes induced by the stresses.  The elements of
the polariscope must be arranged so as to allow
light to propagate normal to the plane of the
specimen.  If a loading frame is needed to place
a load on the specimen, then this frame must be
placed between the first element(s) and the last
element(s) of the polariscope. Monochromatic
light should be used for the sharpest fringes;
however, the light source does not need to be
coherent, and the light may or may not be
collimated as it passes through the specimen.

6. Recording the fringe patterns.  An ordinary
still camera or a videocamera may used to
record the fringe patterns.

7. Calibrating the material.   The sensitivity of a
photoelastic material is characterized by its
fringe constant fσ , which relates the value N
associated with a given fringe to the thickness h
of the specimen in the light-propagation
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direction and the difference between the
principal stresses σ σ1 2−  in the plane normal to
the light-propagation direction:

σ σ σ
1 2− =

Nf

h
.

By means of an experiment using a model of
simple geometry subjected to known loading,
the value of fσ  is determined.  The disk in
diametral compression is a common calibration
specimen.

8. Interpreting the fringe patterns.  Two types of
pattern can be obtained: isochromatics and
isoclinics.  These patterns are related to the
principal-stress differences and to the principal-
stress directions, respectively.  Details are given
later in the notes below.

Wave theory of light

The theory of photoelasticity is based on the
wave nature of light.  Light is regarded as a
sinusoidal electromagnetic wave having transverse
amplitude a and longitudinal wavelength λ, propa-
gating in the z direction with velocity v (Fig. 3).

a
v

z

λ

Fig. 3.  Light wave.

A wave propagating in the +z direction may be
represented in trigonometric notation as

a a z vtcos cos ( ) ,Φ = −F
H

I
K

2π
λ

where the quantity Φ = −2π
λ

( )z vt  is called the

phase of the wave. Terms related to the wave-
length and speed are the ordinary frequency f (in
Hz), the angular frequency ω (in rad/s), and the
wave number k, as follows:

k
v

f
v= = =2

2
π

λ
ω π

λ λ
, , . (1)
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Thus the phase has the alternative representations

Φ = − = − = −2
2

π
λ

ω π( ) .z vt kz t kz ft

The speed of light v in a vacuum is approxi-
mately 299.79 Mm/s, independent of its wavelength
or amplitude.  From the last of the expressions in
Eqns. (1), it will be seen that the frequency of a
given light wave must depend on its wavelength:

              
Color

Speed, v
(Mm/s)

Wavelength,
λ (nm)

Frequency,
f (THz)

Deep violet 299.79 400 750

Green 299.79 550 550

Deep red 299.79 700 430

Notice that the visible spectrum covers a nearly
2-to-1 ratio of wavelengths, the blue–violet wave-
lengths being much shorter than the orange–red
ones.

An equivalent way to express the trigonometric
form of a wave is in complex notation as

Re Re Re .
( )

( )ae ae aei
i z vt

i kz tΦn s o t=
R
S|
T|

U
V|
W|

=
− −

2π
λ ω

Since the complex notation is much easier to
manipulate when phases and amplitudes undergo
changes, we shall use it in these notes.  The operator
Re{ } will be omitted for convenience, with the
understanding that, if at any time a quantity is to be
evaluated explicitly, the real part of the expression
will be taken.  A typical expression for a light wave
will therefore be simply

A ae ae aei
i z vt

i kz t= = =
− −Φ

2π
λ ω( )

( ) . (2)

Refraction

When light passes through any medium, its
velocity decreases to a value

v
v

n1
1

= , (3)

where n1 denotes the index of refraction of the
medium (Fig. 4).  However, the frequency f of the
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wave is unaffected. Therefore the wavelength λ1
must also decrease proportionally:

λ λ
1

1

1 1
= = =v

f

v

n f n
.

v vv1

n1n n

z

λ λ1

Air AirMedium

Fig. 4.  Refraction.

Note that the time t1 required for light to
propagate through a thickness h of medium 1 having
index of refraction n1 is

t
h

v
n

h

v1
1

1= = .

v vv1

n1n n

z

v vv2

n2n n

z

δh

Fig. 5.  Double refraction.

If similar light waves pass through the same
thickness h of two media having indices of
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refraction n1 and n2 (Fig. 5), and if n n2 1>  (as
illustrated in the figure), then the difference in
transit times t t2 1−  will be

t t
h

v

h

v

h

v
n n2 1

2 1
2 1− = − = −( ) .

Therefore, the phase difference δ between the two
waves after they emerge from the media will be

δ = − = −v t t h n n( ) ( ) .2 1 2 1 (3)

We will need this relation later when we consider
birefringence of materials.

Polarization

A given light wave has an amplitude vector that
is always perpendicular to its propagation direction.
However, for ordinary light, the orientation of the
amplitude vector in the plane perpendicular to the
propagation direction is totally random.

Plane-polarized light

If the amplitude vectors of all light rays
emanating from a source are restricted to a single
plane, as in Fig. 6, the light is said to be plane
polarized.

a

v

z

λ

Plane of
polarization

z

Fig. 6.  Plane-polarized light.

An observer viewing the light wave head-on
would see the wave with its amplitude vector
restricted to a single plane, which is called the plane
of polarization.  This plane is not necessarily
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vertical, as shown in the figure, but vertical polari-
zation is quite common.  Polaroid® sunglasses, for
example, employ vertically polarizing media in both
lenses to block the horizontally polarized light that
is reflected from such horizontal surfaces as
highways and lakes.

Addition of two plane-polarized waves in phase

If two waves are propagating in the same
direction, vector algebra may be applied to the wave
amplitudes to determine the resultant wave
amplitude.  Consider first the addition of two plane-
polarized waves that are in phase, but that have
different planes of polarization (Fig. 7).

Plane of
polarizationz

z

Resultant

λ

Fig. 7.  Addition of two plane-polarized light waves
that are in phase.

The vector addition of these two waves pro-
duces a new plane-polarized wave having the same
frequency, wavelength, and phase as the component
waves.  Note that the two planes of polarization
need not be orthogonal in order for this result to
hold.

Elliptically polarized light

A more interesting case arises when two plane-
polarized waves of arbitrary amplitude and different
phase are combined (Fig. 8).
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z
Ellipse

λ

δ

Fig. 8.  Elliptically polarized light.

In the figure, the horizontally polarized wave is
ahead of the vertically polarized wave by a distance
δ, if we regard the positive senses for the horizon-
tally and vertically polarized waves as being to the
right and upward, respectively.  At the instant
shown, at the leading edge of the wave, the
horizontal component is negative and the vertical
component vanishes; therefore the resultant is in the
negative horizontal direction.  A tiny instant later,
the horizontal component becomes slightly more
negative and the vertical component rapidly
becomes negative; therefore the resultant is in the
fourth quadrant as viewed backwards along the +z
axis.  With increasing time, an elliptical path is
traced by the amplitude vector of the resultant wave,
as shown.

Thus the result of adding two plane-polarized
waves that are neither in phase nor in the same
plane is a special kind of rotating wave, called an
elliptically polarized wave, having the same
frequency as the component waves, but which is not
restricted to a single plane.

Circularly polarized light

A very important special case of elliptically
polarized light is circularly polarized light, which
can be (and usually is) created by combining
orthogonal plane-polarized waves of equal ampli-
tude that are out of phase by exactly one-quarter of a
wavelength, i.e. δ λ= / 4 .  See Fig. 9.
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z

Circle

λ

δ =
λ 4

ω

Fig. 9.  Circularly polarized light.

For this special combination of plane waves, the
resultant wave is a rotating wave having constant
amplitude and constant angular frequency ω.

Optical elements

The method of photoelasticity requires the use
of two types of optical element—the polarizer and
the wave plate.

Polarizer

A polarizer (Fig. 10) is an element that converts
randomly polarized light into plane-polarized light.
It was the introduction of large polarizing sheets by
Polaroid Corporation in 1934 that led to the rapid
advance of photoelasticity as a stress-analysis tool.
Prior to that, small naturally occurring crystals were
used for this purpose.

z

P

Incoming light

Transmitted
light

Passed

Rejected

Polarizer

Direction of
polarization

Fig. 10.  Polarizer.
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In the figure, a single light wave with arbitrarily
oriented wave amplitude approaches the polarizer
from the left.  As this wave encounters the polarizer,
it is resolved into two vector components—one
parallel to the polarizing direction of the polarizer,
and one perpendicular to it.  The parallel component
is passed, but the perpendicular one is rejected.
Light emanating from the polarizer is therefore
plane-polarized in the direction of polarization of
the polarizer.

Viewed in ordinary (unpolarized) light, a polar-
izer always looks dark because half the light striking
it is rejected.

Wave plate

A wave plate (Fig. 11) resolves incident light
into two components, but instead of rejecting one of
these components, it retards it relative to the other
component.

Fast
Slow

z

α

δ

s
f

Wave
plate

Incoming light

Transmitted light

Fig. 11.  Wave plate.

In the figure, the “fast” axis of the wave plate
makes an angle α with respect to an arbitrarily
chosen reference direction.  The component f of the
incident light with amplitude vector in this orien-
tation is retarded somewhat as it passes through the
wave plate.  However, the orthogonal component s
is retarded even more, resulting in a phase lag δ
between this “slow” component and the “fast” one.
The term double refraction is often used to describe
this behavior.

Wave plates may be either permanent or
temporary.  A permanent wave plate has a fixed
fast-axis orientation α and a fixed relative retarda-
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tion δ.  Such wave plates have their use in photo-
elasticity, as will be seen subsequently.  A tempo-
rary wave plate has the ability to produce double
refraction in response to mechanical stimulus.
Photoelastic specimens are temporary wave plates.

Quarter-wave plate

A quarter-wave plate (Fig. 12) is a permanent
wave plate that induces a phase shift δ equal to
λ / 4, where λ is the wavelength of the light being
used.  The quarter-wave plate is an essential
element in a circular polariscope (discussed later).

P

Fast

Slow

Quarter-wave
plate

Incoming light

Transmitted light

z

fs

α = π
4

δ = λ
4

Fig. 12.  Quarter-wave plate.

In Fig. 12, the incident light is assumed to have
its amplitude vector in a vertical plane, and the fast
axis of the quarter-wave plate has been oriented at
45º with respect to the horizontal axis.  These
special conditions have no bearing on the definition
of a quarter-wave plate, but are often employed with
a quarter-wave plate to produce circularly polarized
light (Fig. 9)—observe that the orthogonal f and s
components emanating under these special con-
ditions have equal amplitude and are separated by
exactly one-quarter wavelength.

The phase shift δ induced by any permanent
wave plate is usually independent of the wave-
length λ.  Therefore, if a wave plate has been
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designed to be a quarter-wave plate for green light
(say λ = 550 nm), it will induce a relative phase
shift δ equal to (550 nm)/4 or 138 nm.  This same
wave plate, if used for red light (say λ = 650 nm),
will still induce an absolute phase shift of 138 nm,
which is now only 138/650, or about 0.212, of the
wavelength λ of red light.  Quarter-wave plates are
therefore said to be imperfect, not because of any
manufacturing defect, but because the retardation
expressed as a fraction of the wavelength is
wavelength dependent.

Birefringence

Photoelastic materials are birefringent, that is,
they act as temporary wave plates, refracting light
differently for different light-amplitude orientations,
depending upon the state of stress in the material.

In the unloaded state, the material exhibits an
index of refraction n0 that is independent of
orientation.  Therefore, light of all orientations
propagating along all axes through the material
propagate with the same speed, namely v n/ 0.

In the loaded state, however, the orientation of a
given light amplitude vector with respect to the
principal stress axes, and the magnitudes of the
principal stresses, determine the index of refraction
for that light wave.

Birefringent
material

σ1σ2

α

Fast

Slow

xz

y

Fig. 13.  Principal-stress element.
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Effectively, a birefringent material acts as a
temporary wave plate (Fig. 13).  The index of
refraction n1 for light having its amplitude vector in
the direction of the maximum principal normal
stress σ1 is given by

n n c c1 0 1 1 2 2 3− = + +σ σ σ( ) , (4a)

where c1 and c2 are called the stress-optic coeffi-
cients, and, if birefringence is to occur, c c1 2≠ .

In a similar way, the index of refraction n2 for
light having its amplitude vector in the direction of
the minimum principal normal stress σ2 is given by

n n c c2 0 1 2 2 3 1− = + +σ σ σ( ) , (4b)

and for light having its amplitude vector in the out-
of-plane direction,

n n c c3 0 1 3 2 1 2− = + +σ σ σ( ) . (4c)

Equations (4) are called Maxwell’s equations.

Here, the light waves of interest are those propa-
gating in the z direction, or σ3 direction.  These
waves necessarily have their amplitude vectors in
the xy plane, and we will therefore be interested
mainly in Eqns. (4a) and (4b).  It is always possible
to resolve a given light amplitude vector into
components aligned with the σ1 and σ2 axes.  Let
us suppose that light waves with amplitude vector in
the σ2 direction propagate more slowly through the
material than those with amplitude vector in the σ1
direction.  Then n n2 1> .  Now consider the emerg-
ing phase difference δ between orthogonal compo-
nents M1 and M2 of a light wave that entered the
material from the back in phase and that were
aligned in the principal stress directions (Fig. 14).
From Eqns. (4a,b),

n n c c

c
2 1 2 1 1 2

1 2

− = − −
= −

( )( )

( ) ,

σ σ
σ σ

(5)

where c is called the relative stress-optic coefficient,
which is a material property.  It is important to see
in Eqn. (5) that the refraction-index difference
n n2 1−  is independent of σ3.  The results to follow
therefore hold for arbitrary value of σ3; it is not
necessary to assume that the material is in a state of
plane stress.
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Bire
frin

gent

materia
l

σ1

σ2
α

Fast

Slow x

y

z

δ

Μ1Μ2

h

Light
direction

Fig. 14.  Birefringent effect.

From Eqn. (5), and from Eqn. (3) derived ear-
lier, we see that the phase difference δ between M1
and M2 is given by

δ
σ σ

= −
= −

h n n

hc

( )

( ) ,
2 1

1 2
(6)

where h is the thickness of the material in the light-
propagation direction (Fig. 14).  This equation is of
fundamental importance in the theory of photo-
elasticity.  It is often written in terms of the number
N of complete cycles of relative retardation, or,
equivalently, in terms of the angular phase differ-
ence ∆, as follows:

N
hc

h
f

= = = − = −∆
2

1 2 1 2

π
δ
λ

σ σ
λ

σ σ

σ

( )
, (7)

where fσ  is called the fringe “constant” of the
material.  The relative stress-optic coefficient c is
found to be rather insensitive to the wavelength of
the light.  Therefore, the fringe “constant”

f
cσ
λ= (8)

is anything but constant if light composed of many
colors is used.

In summary, a birefringent material does two
things:
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• It resolves the incoming light into 2 com-
ponents—one parallel to σ1 and the other
parallel to σ2, and

• It retards one of the components, M2, with
respect to the other, M1, by an amount δ that
is proportional to the principal stress differ-
ence σ σ1 2− .

Polariscopes

A polariscope is an optical setup that allows the
birefringence in specimens to be analyzed.  It
consists of a light source, a polarizer, an optional
quarter-wave plate, a specimen, another optional
quarter-wave plate, and a second polarizer called the
analyzer.  Two types of polariscope are commonly
employed—the plane polariscope and the circular
polariscope.

The plane polariscope

The plane polariscope (Fig. 15) consists of a
light source, a polarizer, the specimen, and an
analyzer that is always crossed with respect to the
polarizer.

Polarizer

Light

source

Observer
Analyzer

Model

Fig. 15.  The plane polariscope.

The direction of polarization of the polarizer is
assumed to be vertical in the figure.  We shall see
later that it may be useful to rotate the polarizer and
analyzer together in order to determine principal-
stress directions, but in the derivation of the
polariscope equations, there is no loss of generality
by assuming that the light leaving the polarizer
(Fig. 16) is vertically polarized.
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P

Fig. 16.  Light leaving polarizer.

Let P designate the light leaving the polarizer.
The orientation of P is vertical; its amplitude is a,
and its phase Φ is that of a traveling wave, namely,

Φ = − = −2π
λ

ω( ) .z ct kz t

Therefore, its complex representation is

P aei= Φ . (9)

Now consider the light leaving the specimen
(Fig. 17).

P

M1

M2

α

Fig. 17.  Light leaving model (plane polariscope).

This light has been resolved into a fast com-
ponent M1 having amplitude

M P1 = sinα (10a)

and a retarded component M2 having amplitude
Pcosα .  However, this retarded component is not
in phase with the fast component; it lags the fast
component by an angular phase shift

∆ = =kδ π δ
λ

2 .

Therefore its correct complex representation is

M Pei
2 = ∆ cos .α (10b)

The correct sign of the angular phase shift can be
checked by examining two waves propagating in the
+z direction (Fig. 18).  The blue wave is lagging the
red wave by the amount δ as both waves propagate
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to the right.  If, at time t = 0, the red wave has the
representation cos[ ]kz , then the blue wave has the
representation cos[ ( )]k z+ δ .

δ a cos[kz−ωt]a cos[k(z+δ)−ωt]

z

Re

Im

kδ

Increasing t

Fig. 18.  Phase shift at time t = 0.

The Argand diagram in the figure illustrates
perhaps more clearly the relations between z, δ, and
time t.  With increasing time, the vectors repre-
senting the amplitude and phase of the slow and fast
waves rotate clockwise.  The projections of the
amplitudes on the real axis give the actual ampli-
tudes at any instant t and position z.  The red wave
is clearly ahead of the blue wave if the retardation
∆ = kδ  is taken in the positive sense as indicated.

Finally, we consider the light leaving the
analyzer (Fig. 19).  In a plane polariscope, the ana-
lyzer is always crossed with respect to the polarizer.
Since the polarizer was assumed to be vertically
oriented, the analyzer is horizontally oriented.

M1

M2

α

A

Fig. 19.  Light leaving analyzer (plane polariscope).
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The analyzer rejects all vertically polarized
components of light and passes the horizontally
polarized components, so that

A M M

P Pe

P e

i

i

= −

= −

= −

1 2

1

cos sin

( sin )cos ( cos )sin

sin cos .

α α

α α α α

α α

∆

∆d i
We note that

sin cos sinα α α= 1
2 2

and that

1

2
2

2 2 2

2

− = −

= −FH
I
K

−e e e e

e i

i i i i

i

∆ ∆ ∆ ∆

∆ ∆

/ / /

/ sin .

d i

Therefore, by making use of the original repre-
sentation of P, Eqn. (9), the expression for A
simplifies to

A ie ae

ae

i i

i

= −

= − + +

∆ Φ

∆ Φ

∆

∆

/

( / / )

sin sin

sin sin .

2

2 2

2
2

2
2

α

απ

In this expression, as in many like it to follow, it is
important to realize that a factor like ei( / / )− + +π 2 2∆ Φ

has a magnitude equal to unity.  Therefore, the mag-
nitude of A is simply

| | sin sin .A a= 2
2

α ∆

The intensity of light I leaving the analyzer is given
by the square of the light amplitude.  Thus, for the
plane polariscope, the intensity of the light seen by
the observer is

I A a= =| | sin sin .2 2 2 22
2

α ∆
(11)

Isoclinics and isochromatics

The human eye is very sensitive to minima in
light intensity.  From Eqn. (11), it is seen that either
one of two conditions will prevent light that passes
through a given point in the specimen from reaching
the observer, when a plane polariscope is used.

The first condition is that



Phillips TAM 326—Photoelasticity 6–21

sin ,

, , , , .

2 2 0

2
0 1 2

α

α π
=

= = ± ±

i.e.

m m L
(12)

Since α is the angle that the maximum principal
normal stress makes with the polarizing direction of
the analyzer, this result indicates that all regions of
the specimen where the principal-stress directions
are aligned with those of the polarizer and analyzer
will be dark.  The locus of such points is called an
isoclinic because the orientation, or inclination, of
the maximum principal normal stress direction is
the same for all points on this locus.  By rotating
both the analyzer and polarizer together (so that
they stay mutually crossed), isoclinics of various
principal-stress orientations can be mapped through-
out the plane.  Several examples are given in the
text (Dally and Riley 1991).

The second condition is that

sin ,

, , , , .

2

2
0

2
0 1 2

∆

∆

=

= = =

i.e.

N n n
π

L

(13)

The locus of points for which this condition is met
is called an isochromatic, because (except for n = 0)
it is both stress and wavelength dependent.  Recall
from Eqn. (7) that

N
hc

h
f

= = = − = −∆
2

1 2 1 2

π
δ
λ

σ σ
λ

σ σ

σ

( )
.

Therefore, points along an isochromatic in a plane
polariscope satisfy the condition

σ σ λ σ
1 2− = = =N

ch

Nf

h
N n, . (14)

The number n is called the order of the iso-
chromatic.  If monochromatic light is used, then the
value of λ is unique, and very crisp isochromatics of
very high order can often be photographed.  (Exam-
ples will be given later.)  However, if white light is
used, then (except for n = 0), the locus of points for
which the intensity vanishes is a function of wave-
length.  For example, the locus of points for which
red light is extinguished is generally not a locus for
which green or blue light is extinguished, and
therefore some combination of blue and green will
be transmitted wherever red is not.  The result is a
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very colorful pattern, to be demonstrated by
numerous examples in class using a fluorescent
light source.3

The circular polariscope—dark field

The circular polariscope (Fig. 20) consists of a
light source, a polarizer, a quarter-wave plate
oriented at 45º with respect to the polarizer, the
specimen, a second quarter-wave plate, and an
analyzer.

Polarizer

Light

source

Observer
Analyzer

Model
λ/4 plate

λ/4 plate

F

S s

f

Fig. 20.  Circular polariscope (dark field).

The two quarter-wave plates are generally
crossed (as shown in the figure) to minimize error
due to imperfect quarter-wave plates.  The analyzer
is either crossed with respect to the polarizer (as
shown in the figure), or parallel to the polarizer.

Again, the direction of polarization of the
polarizer is assumed to be vertical (Fig. 16), and we
take as a representation of the polarized light
leaving the polarizer the expression (Eqn. (9))

P aei= Φ .

This light enters the first quarter-wave plate and
leaves with the two components

                                                
3However, this interference of colors results in a “washing out”
of the higher-order isochromatics and is particularly trouble-
some if a panchromatic black-and-white film is used to record
the isochromatic patterns.  A way to minimize the loss of data
due to washing out is to photograph the isochromatic patterns
with color film and to scan the color negative digitally,
separating out the red, green, and blue components.  The com-
ponent with the sharpest fringes can then be used for analysis.
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as illustrated in Fig. 21.  Comparison of this figure
with Fig. 9 shows that this arrangement produces
circularly polarized light that is rotating counter-
clockwise.

P

π
4

FS

Fig. 21.  Light leaving first quarter-wave plate
(circular polariscope).

Light components leaving the specimen are

shown in Fig. 22.  The angle φ π α= −
4

 that F

makes with M1 is introduced for convenience.

π
4

FS

M1

M2

φ

α

Fig. 22.  Light leaving model (circular polariscope).

Taking into account the relative retardation ∆
that the specimen introduces with respect to the
principal stress planes, we have
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Now consider the light leaving the second
quarter-wave plate (Fig. 23).  As mentioned earlier,
the second quarter-wave plate is usually crossed
with respect the first quarter-wave plate.  Therefore,
it has the effect of “derotating” the light that was
“rotated” by the first quarter-wave plate.

π
4

s
f

M1

M2

φ

α

Fig. 23.  Light leaving the second quarter-wave plate
(circular polariscope).

Components s and f have the expressions

s M M e

P
e ie i

f M M

P
e ie

P
e i e i

i

i i

i i

i i

= +

= +

= − +

= − +

= +

−

−

−

( cos sin )

(cos sin ) ,

sin cos

( sin cos )

( sin cos ) .

/
1 2

2

1 2

2

2

2

φ φ

φ φ

φ φ

φ φ

φ φ

π

φ

φ

φ

∆

∆

∆

(17)

Finally, if the analyzer is crossed with respect to
the polarizer, as shown in Fig. 24, then its output A
is given by the expression
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Fig. 24.  Light leaving analyzer (circular polariscope).
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Since P aei= Φ as before, the magnitude of A is just

| | sin ,A a= ∆
2

and the intensity I of the light leaving the analyzer is

I A a= =| | sin .2 2 2

2
∆

(18)

This result is similar to that for the plane polari-
scope, with the notable absence of the factor
sin2 2α .  Therefore, a circular polariscope produces
isochromatics but not isoclinics.  The lack of
isoclinics is often desirable, since the dark isoclinics
in a plane polariscope often obscure large areas of
the model.  For this reason, most of the photoelastic
patterns published in the literature are obtained with
a circular polariscope.

An examination of Eqn. (18) shows that, when
there is no model, or when the model is unstressed,
i.e. ∆ = 0 everywhere, the entire field is dark.  The
circular polariscope configuration just studied is
therefore called the dark field configuration.  The
isochromatic pattern is analyzed in exactly the same
manner as that for the plane polariscope, i.e.

σ σ λ σ
1 2− = = =N

ch

Nf

h
N n, . (19)
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The circular polariscope—light field

An important simple variation on the arrange-
ment of elements in a circular polariscope is one in
which the quarter-wave plates remain crossed and
the analyzer is aligned parallel to the polarizer
(Fig. 25).

Polarizer

Light

source

Observer
Analyzer

Model
λ/4 plate

λ/4 plate

F

S s

f

Fig. 25.  Circular polariscope (light field).

In this case, the output A of the analyzer
becomes

A s f= +1

2
( ) ,

where s and f are the slow and fast components
leaving the second quarter-wave plate (Eqns. (17)).
One can show that the intensity of light leaving the
analyzer is now given by

I A a= =| | cos .2 2 2

2

∆
(20)

Therefore, in the absence of a model, or for a model
that is unloaded, the intensity is at its maximum.
This configuration is called the light field configura-
tion.  In many cases the light-field arrangement is
preferred over the dark-field one because the
boundary of the model is seen more clearly.  The
only difference in isochromatic interpretation is that

the intensity now vanishes wherever cos2
2

0
∆ = , i.e.

N n n= = + =∆
2

0 1 21
2π

, , , , .L (21)
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The dark isochromatics in a light-field circular
polariscope therefore correspond to the orders 1

2 ,

11
2 , 2 1

2 , etc., instead of integer values, i.e.

σ σ λ σ
1 2

1
2− = = = +N

ch

Nf

h
N n, . (22)

The light isochromatics in a light-field circular
polariscope correspond to the integer values of N.
Since fσ  is wavelength dependent, the only iso-
chromatic that is unaffected by the color content of
the light source is the zero order one, which is light.

Calibration

The value of the fringe constant fσ  can be deter-
mined experimentally by inducing a known stress
difference σ σ1 2−  in a model that is made of the
same material as the specimen of interest, by
observing the corresponding value of N, and by
solving Eqn. (7) for fσ :

f h
Nσ

σ σ= −1 2 . (23)

Observe that strongly birefringent materials will
have low values offσ , since the stresses required to
produce a given value of N will be small.

A common calibration specimen is the circular
disk of diameter D and thickness h loaded in
diametral compression (Fig. 26).

P

D

x

y

σ1

σ2

Fig. 26.  Disk in compression.
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The horizontal and vertical normal stresses
along the x axis are principal stresses because the
shear stress τxy vanishes due to symmetry about the

x axis.  Also, σx  is positive, while σy is negative.

We therefore take σ σ1 = x and σ σ2 = y so as to

render σ σ1 2 0− ≥ .  From theory of elasticity, the
solutions for the normal stresses along the
horizontal diameter are (after Dally and Riley 1991)
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(24)

where ζ = =x R x D/ /2 .  These stresses are plotted
in Fig. 27.
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Fig. 27.  Stress distribution along horizontal diameter.

Along the horizontal diameter, the maximum
difference σ σ1 2−  occurs at the center, that is, at
ζ = 0.  At this point,

σ σ
π1 2
8− = P

hD
. (25)

Combining this result with the basic photoelastic
relation (Eqn. (7)) gives

Nf

h

P

hD
σ σ σ

π
= − =1 2

8
,

or

f
D

P

Nσ π
= 8

. (26)
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Notice that the specimen thickness h does not
appear in this equation.  The reason is that the
relative retardation is proportional to h, but for a
given force P, the stresses are inversely proportional
to h.  The net effect is a result for fσ  that is
independent of h.  A photograph of a light-field
isochromatic pattern for a diametrally loaded disk
made of PSM-1® is shown in Fig. 28.

Fig. 28.  Light-field isochromatics in a
diametrally loaded circular disk.

For this specimen, the diameter D was
63.50 mm (2.500 in.), and the load was 1.33 kN
(298 lb).  The value of N at the center of the disk, as
seen in Fig. 28, is approximately 7.0.  Therefore the
fringe constant for this material is approximately

f
D

P

Nσ π π
= = = ⋅8 8

2 500

298

7 0
43

( . ) .
.

psi in.

fringe

A more accurate way of  determining fσ  using this
specimen is to record several readings of increasing
load P as the fringe value N at the center takes on
integer or half-integer values.  The saddle shape of
the central fringe allows rather precise determina-
tion of N for this purpose.  Then P is plotted as a
function of N, and the best straight-line fit of the
data is used to determine the ratio P N/  to be used
in Eqn. (26).

The disk in diametral compression is a favorite
specimen for calibration because it is simple to
fabricate (at least with a template); it is easy to load;
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it is not likely to fracture; it produces a fringe
pattern that, in the region of interest, is insensitive
to edge imperfections; and it is simple to analyze.  It
also tests the limit of fringe density that can be
recorded photographically, by producing very large
fringe orders in the vicinity of the contact regions.

The image in Fig. 28 was obtained with a
mercury-vapor light source, which is rich in green
light, but which also contains other colors as well.
A Tiffen #58 Green filter was placed on the 35 mm
camera to reduce the transmission of the other
colors.  Kodak Gold ASA 200 color film was used
to record the image at f/8 with an exposure of 0.7 s.
This arrangement results in distinct fringes up to
about N = 15, which is adequate for most work in
photoelasticity.

A somewhat enhanced image is shown in
Fig. 29.  This image was produced from the same
negative as that used to produce Fig. 28.  However,
only the green component of the red-green-blue
(RGB) digital scan was retained, and this compo-
nent was then enhanced by increasing the contrast.

Fig. 29.  Enhanced image using only the green component
of the light used in Fig. 28.

Fringe orders up to about N = 20 can be
discerned in this figure.  The low-order values of N
are marked along the horizontal diameter.  Note that
the center of the specimen is the location of a true
saddle point in the function σ σ1 2− : to the left and
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right of this point, the function decreases, and above
and below this point, the function increases.  Such
saddle points are common in photoelastic patterns,
as will be seen in other examples to be given below.

The stress distribution in a disk in diametral
compression is unique in that the fringe number N is
equal to zero everywhere along the unloaded
boundary.

Examples

Several photoelastic patterns will be presented
for common structural shapes.  These include the
uniform beam in 4-point bending, as well as beams
having cutouts; a compact-tension specimen; and a
straight–curved “U” specimen.

A light-field circular polariscope with the
recording and processing methods described in
connection with Fig. 29 will be used.

Beam in bending

Consider first a uniform rectangular beam sub-
jected to 4-point bending (Fig. 30).4  Let x and y
denote positions along the horizontal and vertical
axes having their origin at the center of the
specimen.

Fig. 30.  Beam in 4-point bending.

Within the central portion of the beam, the
bending moment is constant and, according to
elementary beam theory, the axial stress σx  is given
by −My I/ , varying from −Mc I/  at the top surface
to Mc I/  at the bottom surface.  Also within this
region, the transverse shear V vanishes, and there-
fore τxy = 0 in this region.  In addition, σy = 0.

                                                
4Specimen material, PSM-1.  Load, 150 lb.  Beam length, 5 in.
Beam height, 1.000 in.  Beam thickness, 0.213 in.  Distance
between lower supports, 4.00 in.  Distance between upper
supports, 2.00 in.
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Since τxy = 0, the normal stresses σx  and σy are

principal stresses.  It follows that

σ σ σ σ1 2 0− = − = − − =x y
My

I

M

I
y| | ,

with the understanding that M is positive.

We have to be careful about the signs of the
principal stresses because we want σ σ1 2 0− ≥ .
With this convention, the fringe number N will
always be positive or zero.  If one argues that
negative values of N should be allowed (whether or
not σ σ1 2 0− ≥ ), one runs into inconsistencies.
Consider, for example, the centrally located fringes
in Fig. 30.  There is a zero-order (light) fringe at the
very center, along the neutral axis of bending.  It is
surrounded by a continuous dark fringe of order
N = 1

2 .  If we assigned a value of N equal to − 1
2  on

the top portion (where the axial stress is negative),
and a value equal to + 1

2  on the bottom portion

(where the axial stress is positive), we would not be
able to reconcile the value of N at the ends of the
loop.  It cannot vary along the loop because by
definition the isochromatic is a locus of constant N.

Let us calculate the stress at the top and bottom
of the beam.  We know that fσ  is about 43 psi·in./
fringe for this material, and by counting fringes in
Fig. 30, we determine that N = 9 at both the top and
bottom of the beam.  To calculate σ σ1 2− , we also
need to know the thickness h.  For the specimen in
Fig. 30, h = 5.41 mm (0.213 in.).  Therefore, at the
extreme fibers,

σ σ σ σ
x

Nf

h
= − = = =1 2

9 43

0 213
18

( )

( . )
. .ksi

At the top, σx  is negative, so it is equal to –1.8 ksi
there; whereas, at the bottom, σx  is positive, so it is
equal to +1.8 ksi.  This simple example serves to
illustrate the point that photoelastic analysis
requires some knowledge about the stress state in
order to interpret the fringes correctly.

We can check these results.  For the given beam,
M Pa= 1

2 , I hH= 1
12

3, c H= 1
2 , and therefore
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The predicted stresses are slightly higher than those
observed, suggesting perhaps that friction at the
supports may be reducing the effective value of M.

Beam with a keyhole notch

The stress distribution is altered drastically if a
fillet, crack, or notch is machined into the specimen.
The stress-concentration effect of a “keyhole” notch
is shown in Fig. 31.5

Fig. 31.  Beam with keyhole notch.

The resolution of this image does not permit an
exact determination of the stress-intensity factor for
the notch, but it is clear that the stress at the root of
the notch is much larger in tension than the
compressive stress at the top of the beam, where the
fringe number N happens to have the value 9 as it
did in the previous uniform beam at a higher load.
A reduced load and/or an improved imaging method
would be needed to resolve the fringes at the root of
the notch.

This specimen provides a good lesson in fringe
counting.  At all exterior corners, including the
upper and lower corners on each side of the notch,
N = 0.  Also, N = 0 in the tiny triangular “island”
just above the notch, and N = 0 in the “eyes”
between the notch and each upper support.
Remnants of the uniform bending field are seen
between the upper supports.

There are 4 saddle points to the left of the
centerline, and a matching set of 4 to the right.  On
the left, starting from the left, they have the approxi-
mate values N = 3 1

2 , 3, 4 1
2 , and 2.

                                                
5Load, 100 lb.  Other parameters are the same as for the
uniform beam.
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Beam with a sharp notch

An even sharper discontinuity is illustrated in
Fig. 32.6  Here, the notch was produced with a
milling cutter having a 45º tip.  The tip has a small
radius; if the tip had been absolutely sharp, the
specimen would probably have broken before this
picture could have been taken.

Fig. 32.  Beam with sharp notch.

The stress field away from the sharp notch
resembles very closely the stress field for the
keyhole notch.  The 4 saddle points seen earlier are
evident in this photograph as well.  Details of the
stress field around the notch would require a smaller
load on the beam and an improved method of
recording the fringe patterns.

Compact-tension specimen

Fatigue
precrack

Thickness
=

Notch for
COD gage

d

h

a

P

P

B

w

Fig. 33.  Compact-tension specimen.

                                                
6Load, 100 lb.  Other parameters are the same as for the
uniform beam.
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Perhaps the most common specimen used to
determine experimentally the fracture toughness
K CI  of materials is the compact-tension specimen
(Fig. 33).

In the region of the crack tip, the stress field is
dominated by the KI  singularity (Fig. 34).

Crack

x

y

σy

σx

τxy

r
θ
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σ

Fig. 34.  Stress element near the crack tip
in mode I loading.

Under plane strain or plane stress conditions, if
the stresses remain elastic, the stress distribution
can be shown to be

σ
σ
τ

π
θ

θ θ

θ θ

θ θ

x

y

xy

K

r

R
S|

T|

U
V|

W|
=

−

+

R

S
|
||

T
|
||

U

V
|
||

W
|
||

I

2 2

1
2

3

2

1
2

3

2

2

3

2

cos

sin sin

sin sin

sin cos

, (27)

where KI  is the stress-intensity factor, which is a
function of the specimen geometry and the remotely
applied load.  For this distribution, the in-plane
principal-stress difference σ σ1 2−  can be calcu-
lated; the result is

σ σ
σ σ

τ

π
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1 2

2
22

2

2

− =
−F
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I
KJ +

=

x y
xy

K

r
I sin .

(28)
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Combining this theoretical formula with the basic
equation of photoelasticity gives

Nf

h

K

r
σ σ σ

π
θ= − =1 2 2

I sin

or

N r
h

f

K

r
( , ) sin .θ

π
θ

σ
= I

2
(29)

Alternatively, this equation may be solved para-
metrically for r in terms of θ :

r
hK

Nf
=

F
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I
KJ

1

2

2
2

π
θ

σ

I sin .

This solution allows us to construct the theoretical
photoelastic fringes, as shown in Fig. 35.  These
fringes look like nested ellipses, but the shapes are
not really ellipses—they become almost pointed at
the crack tip.

Crack

P

P

x

y

N = 1

N = 2

N = 3

(etc.)

N = 0

N = 1

Fig. 35.  Theoretical fringes for a KI -dominant field.

We can now compare the theoretical fringe
pattern with an actual fringe pattern from a photo-
elastic model (Fig. 36).7  The features of the
singular field are shown near the crack tip for values
of N greater than about 4.  Outside this region,
however, the stress distribution is dominated by the

                                                
7Material, PSM-1.  Load, 60 lb.  Overall specimen size,
2.50 in. square, 0.213 in. thick; crack length a, 0.875 in., width
w (Fig. 35), 2.00 in.
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bending field and is also affected by the free
boundaries of the specimen.

Fig. 36.  Photoelastic model of a compact-tension specimen.

To compute the value of KI  for the specimen in
Fig. 36, we first scale the photograph and determine
that for the matching fringe loops of order N = 5, for
example, the radius r at θ = ± °90  is about 0.23 in.
Therefore, from Eqn. (29),

K
r f N

hI

ksi in

= =

=

2 2 0 23 43 5

0 213

1 2

π πσ ( . )( )( )

.

. .

Meanwhile, according to Tada, Paris, and
Irwin’s Stress Analysis of Cracks Handbook (1973),
the stress-intensity factor for this geometry and
loading is given by

K
P

h w
f

a

wI = =( ) , ,λ λ

where in this case (again from the photograph) a =
0.86 in. and w = 2.00 in., so that λ = 0.43.  For this
λ, f ( )λ  is about 7.8.  Therefore, KI  should have the
value

KI ksi in= =60

0 213 2 00
7 8 155

. .
( . ) . .

The photoelastic analysis is seen to underpredict
the value of KI  by about 25%, probably because the
crack tip has a finite wedge angle and is rather
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blunt.  Dally and Riley (1991: Chapter 14) discuss
various ways to improve KI  calculations from
photoelastic data.  One method, attributed to
Schroedl, Smith, and others, results in a differenc-
ing equation (Eqn. (14.14) of Dally and Riley’s text)
that provides an improved estimate of about
1.4 ksi in  if (in addition to the N = 5 data previ-
ously used) the radius r for the N = 7 fringe is taken
to be about 0.13 in.  The apparent underprediction is
therefore reduced to about 8%, which would be
marginally acceptable for most fracture-mechanics
work.

Simulated photoelastic fringes

Considerable insight into the analysis of photo-
elastic fringes can be gained by constructing simu-
lated fringes for known stress distributions.

Analytical

These constructions can be in the form of lines
of constant N determined analytically, as in Fig. 35,
where the solution r( )θ  to Eqn. (29) is found
explicitly, with N as a parameter.

Numerical—bitmap

Alternatively, a bitmap image can be con-
structed by calculating the intensity I numerically at
each point in a large array of regularly spaced
points, and by observing the resulting pattern.  An
example is shown in Fig. 37 for the dark-field iso-
chromatics in a KI  stress field, based on Eqn. (29).

Fig. 37.  Simulated KI  field (green light).
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An advantage of this method is that it can be
used even if the theoretical stress field is so com-
plicated that it is impossible to determine the locus
of constant N analytically.

The program used to generate the image in
Fig. 37 is given below.  The program was developed
for arbitrary intensity and wavelength values of the
colors red, blue, and green.  A succession of
separate bitmap files are created for steadily increas-
ing load.  The file format is BMP, which is the
simplest of the standard image file types.

#include <windows.h>
#include <stdio.h>
#include <math.h>

// Windows-based C program for creating a color  BMP file
// of the photoelastic isochromatics for a KI field

// Matthew J Phillips and James W Phillips
// December 1997

// Pixel order is RGB for Mac, BGR for PC
typedef struct {
// unsigned char red, green, blue;

unsigned char blue, green, red;
} pixel;

// These image_* functions maintain the pixels for us:
typedef struct {

int width,
height,
rowbytes;

char *imageptr;
} image;

image *image_new(int width, int height)

{
image *pimNew;
int rowbytes;

rowbytes = sizeof(pixel)*width;
// Make rowbytes a multiple of 4
rowbytes = (rowbytes+3)&~3;

pimNew = (image*)malloc(sizeof(image));
pimNew->width = width;
pimNew->height = height;
pimNew->rowbytes = rowbytes;
pimNew->imageptr = malloc(rowbytes*height);

// Technically this isn't needed because we're going to
// fill in the whole bitmap eventually, but just to be
// nice ...

memset(pimNew->imageptr,0xFF,rowbytes*height);

return (pimNew);
}

void image_setpixel(image *pim, int x, int y, pixel *color)

{
pixel *pixptr;

pixptr = (pixel*)
(pim->imageptr+pim->rowbytes*y+sizeof(pixel)*x);

*pixptr = *color;
}

void image_writetofile(image *pim, FILE *fp)

{
int y;

for(y = 0; y < pim->height; y++) {
fwrite(pim->imageptr+pim->rowbytes*y,

1,pim->rowbytes,fp);
}

}

void image_dispose(image *pim)

{
free(pim->imageptr);
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free(pim);
}

// This function writes a Windows BMP file using the
// specified image as its source.

void write_BMP_file(image *pim, char *filename)

{
BITMAPINFOHEADER bmi;
BITMAPFILEHEADER fh;
FILE *fp;

fp = fopen(filename,"wb");

fh.bfType = 'MB';
fh.bfSize = sizeof(BITMAPFILEHEADER)

+sizeof(BITMAPINFOHEADER)
+pim->rowbytes*pim->height;

fh.bfReserved1 = 0;
fh.bfReserved2 = 0;
fh.bfOffBits = sizeof(BITMAPFILEHEADER)

+sizeof(BITMAPINFOHEADER);

fwrite(&fh,1,sizeof(fh),fp);

   bmi.biSize = sizeof(BITMAPINFOHEADER);
   bmi.biWidth = pim->width;
   bmi.biHeight = pim->height;
   bmi.biPlanes = 1;
   bmi.biBitCount = 24;
   bmi.biCompression = BI_RGB;
   bmi.biSizeImage = 0;
   bmi.biXPelsPerMeter = 2835;
   bmi.biYPelsPerMeter = 2835;
   bmi.biClrUsed = 0;
   bmi.biClrImportant = 0;

fwrite(&bmi,1,sizeof(bmi),fp);

image_writetofile(pim,fp);

fclose(fp);
}

typedef struct {
double red, green, blue;

} dblpixel;

int main()

{
image *pim;
int px,py,n_pic;
pixel c;
double x,y,k,base_n;
dblpixel intensity, wavelength, strength;
char filenamebuf[32];

float red, green, blue;

#define n_pics 10
#define k_max 1000.0
#define PI 3.14159265359
#define IMGWIDTH 256
#define IMGHEIGHT256

printf("\r\nWavelengths (red, green, blue) (nm):  ");
scanf ("%f %f %f", &red, &green, &blue);
wavelength.red = red;
wavelength.green = green;
wavelength.blue = blue;
printf("%f %f %f", wavelength.red,

wavelength.green, wavelength.blue);

printf("\r\nStrengths (red, green, blue) (0-255): ");
scanf ("%f %f %f", &red, &green, &blue);
strength.red = red;
strength.green = green;
strength.blue = blue;
printf("%f %f %f", strength.red,

strength.green, strength.blue);

for(n_pic = 1; n_pic <= n_pics; n_pic++) {

pim = image_new(IMGWIDTH,IMGHEIGHT);

k = k_max*n_pic/n_pics;

printf(
"Generating image number %02d (k = %g).\r\n",
n_pic,k);

for(py = 0; py < IMGHEIGHT; py++) {
// y = ((double)py/(IMGHEIGHT-1))*2.0-1.0;

y = ((double)py/IMGHEIGHT)*2.0-1.0;
for(px = 0; px < IMGWIDTH; px++) {

x = ((double)px/(IMGWIDTH-1))*2.0-1.0;
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// base_n is N(lambda) without
// the 1/lambda factor
if (x == 0.0 && y == 0.0) base_n = 0.0;
else

base_n = k*fabs(y)/pow(x*x+y*y,3./4.);

intensity.red = strength.red*
pow(sin(PI*base_n/wavelength.red),2);

intensity.green = strength.green*
pow(sin(PI*base_n/wavelength.green),2;

intensity.blue = strength.blue*
pow(sin(PI*base_n/wavelength.blue),2);

c.red = (unsigned char)intensity.red;
c.green = (unsigned char)intensity.green;
c.blue = (unsigned char)intensity.blue;

image_setpixel(pim,px,py,&c);
}

}

// Overprint white crack

c.red = 255;
c.green = 255;
c.blue = 255;

y = 0.0;
py = (int)(IMGHEIGHT/2*(y+1.0));
for(px = 0; px < IMGWIDTH/2; px++) {

image_setpixel(pim,px,py,&c);
}

sprintf(filenamebuf,"image_%02d.bmp",n_pic);
write_BMP_file(pim, filenamebuf);
image_dispose(pim);

}
return (0);

}

Note how the quantity |sin |/θ r  is calculated in
the code:

|sin | | | | | | |
./ /

θ
r

y

r r

y

r

y

x y
= = =

+
3 2 2 2 3 4d i

This method is used to avoid trigonometric function
calls and the problem of determining the correct
inverse tangent of the angle θ corresponding to a
given point ( , )x y .

Once the BMP files are created, they may be
edited by a graphics program, such as Adobe
Illustrator®, and saved in an alternative compressed
format, such as Graphics Interchange Format (GIF).
The fringe numbers that appear in Fig. 37 were
added in this manner.  An animated GIF can then be
constructed using a program such as Microsoft GIF
Animator®.

Numerical—Finite-element method

Finite-element codes, such as ABAQUS, have
contour-plotting capabilities that allow various
types of contours to be constructed so as to visualize
the output.

If an option is available to plot the in-plane
principal-stress difference, or, equivalently, twice
the in-plane maximum shear stress, then this option
can be used to generate simulated isochromatics.

http://www.tam.uiuc.edu/Courses/TAM326/1998.1/Lectures/animated_KI_green.gif
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A variable that is sometimes plotted to simulate
photoelastic fringe patterns is the Tresca “equivalent
stress” σTresca given by

σ τ

σ σ σ σ σ σ
Tresca =

= − − −

2

1 2 2 3 3 1

max

max | |, | |, | | .b g
In regions where the out-of-plane normal stress is an
intermediate principal stress, the in-plane principal
stress difference will in fact determine the value of
σTresca, and therefore a contour of constant σTresca

corresponds to an isochromatic of some order N.
However, in regions where the out-of-plane normal
stress is not intermediate, that is, it is either the
minimum or maximum principal stress, the σTresca

contour will not coincide with an isochromatic.

As an example, consider the stresses in a curved
beam due to pure bending (Fig. 38).8  Only the
curves for R h/ = 1 are shown, but the observations
we are about to make are independent of the value
of R h/ .
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Fig. 38.  Comparison of Tresca equivalent stress with
in-plane principal-stress difference in a curved beam.

The hoop stress σθ varies from a positive value
at the inside radius to a negative value at the outside
radius.  The radial stress σr  vanishes at these
extremes and reaches a maximum positive value
near the center.  If we let σ1 and σ2 denote the in-
plane principal stresses, then

σ σ σ σθ1 2− = −| | ,r

                                                
8For a more complete discussion of the stresses in a curved
beam, refer to the Appendix.



Phillips TAM 326—Photoelasticity 6–43

as shown with the dashed curve.  It is this difference
that would give rise to an isochromatic pattern.
Note that the zero-order fringe is shifted consid-
erably towards the center of curvature from the
neutral axis, that is, from the point where the hoop
stress σθ vanishes.

Meanwhile, the third principal stress σ3, which
is equal to the out-of-plane normal stress σz, has
the value zero if we assume a state of plane stress.
Wherever σ3 is intermediate between σ1 and σ2,
the Tresca equivalent stress and the difference
σ σ1 2−  are the same thing—this is the situation for
all of the section where σθ is compressive.  How-
ever, near the center of the section, σθ becomes the
intermediate principal stress and the Tresca equiva-
lent stress is numerically equal to the radial stress
σr  since σz vanishes.  Finally, near the inside
radius, the radial stress σr  becomes the interme-
diate principal stress, the hoop stress σθ dominates,
and the Tresca equivalent stress becomes numeri-
cally equal to the hoop stress because, again, σz
vanishes.

In this simple example, it is seen that the Tresca
equivalent stress and the in-plane principal stress
difference can be, but are often not, the same thing.
One can expect that in more complicated shapes
analyzed by the finite-element method, the matching
of these two quantities would need to be checked
carefully.

Photoelastic photography

Next we consider some practical aspects of
observing and recording photoelastic fringe
patterns.

Collimated vs. diffuse light

One choice to be made is whether the light that
traverses the specimen is collimated.  In the tradi-
tional optical arrangement (Fig. 39), the light source
produces diverging light from a tiny aperture, and a
large field lens placed at is focal length from this
source produces collimated light that is passed
through all the polariscope elements and is collected
by a second large field lens.
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Lens P Q Q A Lens
M

Pinhole Pinhole

Source Camera

Collimated light

Fig. 39.  Collimated light source.

A pinhole placed at the focal point of the second
field lens eliminates stray light and allows a real
image of the specimen to form on a piece of paper
or photographic film.  Smaller pinholes produce
sharper images of reduced intensity.

The light source can be a specially designed
mercury-vapor or incandescent lamp in a housing
having various-sized pinhole openings, or it can be
a laser beam passed through an expanding lens.

This arrangement has the advantage that the
edges of the specimen are in sharp focus, since the
collimated light propagates parallel to these edges.
Also, no focusing is required.  Disadvantages
include the cost of the large field lenses, and the fact
that all the optical elements in the region of
collimated light are in focus; therefore all imperfec-
tions (such as scratches and dust) appear in sharp
focus in the recorded image.  Also, rather large film
sizes (such as 5x7-in.) are required for good image
reproduction.

An alternative arrangement that allows the use
of an ordinary 35 mm film camera or a CCD video
camera employs a diffuse light source (Fig. 40).  A
ground glass or other translucent material is placed
between the light source (which need not be a
pinhole type) and the other optical elements.  Every
point on this diffusing surface produces light that
propagates in all directions.

Ground glass

P Q Q A
M

Source Camera

Diffused light

Fig. 40.  Diffuse light source.
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One of the advantages of this method is that an
ordinary camera can be used—and with 1-hour
photo finishing being commonplace today, this fact
alone makes the arrangement attractive.  (Alterna-
tively, a video camera can be used to record the
image “live” or allow a frame-grabber to acquire a
sequence of fringe patterns.)  Another advantage is
that this arrangement is generally more compact
than the collimated one.

The principal disadvantage is that the light is no
longer passing parallel to the specimen edges and
therefore the edges do not appear sharp.  This
parallax problem can be reduced by moving the
camera farther away from the specimen, but then the
image size is reduced.  A long focal-length lens will
help, but then focusing becomes critical.

White vs. monochromatic light

A quite separate issue is whether the light used
is white (that is, rich in many colors) or is mono-
cromatic.  There are advantages and disadvantages
to either type.

Fig. 41.  Approximate white-light light-field isochromatics
for a disk in diametral compression.

Consider the fringe pattern in a circular disk
loaded in diametral compression between photo-
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elastic strips of the same material, and photo-
graphed using white light (Fig. 41).9

The image is striking but is difficult to analyze
because the colors interfere.  Now compare this
figure with that in Fig. 42, which is for the same
specimen at the same load with the same light
source, but with a Tiffen® #58 dark green filter
placed over the camera lens.

Fig. 42.  Filtered green-light light-field isochromatics
for a disk in diametral compression.

Observe that a light fringe of order N = 7 is at
the center of the disk when approximately mono-
chromatic green light is used.  Now refer back to
Fig. 41 and observe that the center of the disk has a
green fringe.  Apparently at this point, the red and
blue components have low intensity, allowing green
to dominate.

To see why isochromatics are so colorful when
viewed in white light, consider the absolute retarda-
tion given by Eqn. (6):

δ σ σ= −hc( ) ,1 2

                                                
9Material, PSM-1.  Load, 298 lb.  Diameter, 2.489 in.  Light
source, mercury vapor.  Blue and red components artificially
enhanced to simulate a white-light source.
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where c is the relative stress-optic coefficient.  The
value of c is independent of wavelength, and there-
fore δ is a function only of the stress difference
σ σ1 2− .  However, when the retardation δ is
expressed as a fraction of the light wavelength λ, so
as to determine the number of cycles N of relative
retardation

N = δ
λ

,

the value of N is seen to vary inversely as the
wavelength.  It is the value of N, and not δ, that
determines the intensity of light at a given point in
the specimen.  For example, in a dark field (circular
polariscope), the intensity varies as

I a a N

a

= =

=

2 2 2 2

2 2

2
sin sin

sin .

∆ π

π δ
λ

If we decompose white light into the primary colors
red, green, blue (RGB) and examine the dependence
of I on δ for the representative wavelengths, say

λ
λ

λ

red

green

blue

nm ,

nm ,

nm ,

=
=

=

650
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450

then we obtain the results shown in Fig. 43.
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Fig. 43.  Dark-field intensity variations
for representative primary-color wavelengths.

With the important exception of δ = 0, we
observe that the value of δ that causes the intensity
of a given color to vanish generally does not cause
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the intensity of the other two colors to vanish, and
therefore some combination of the other two colors
will be visible.  We conclude that in a dark-field
polariscope (plane or circular), only the zero-order
isochromatic is black.  All other isochromatics have
locations that depend on the wavelength.

In a light-field polariscope (which must be
circular), the situation is similar, except now the
intensity varies as the cosine squared instead of the
sine squared:

I a a N

a

= =

=

2 2 2 2

2 2

2
cos cos

cos .

∆ π

π δ
λ

The corresponding results are shown in Fig. 44.
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Fig. 44.  Light-field intensity variations
for representative primary-color wavelengths.

In this figure we see that there really is no
location where the intensity vanishes for all colors.
Instead, for δ = 0, the intensity is a maximum for all
colors and therefore the zero-order isochromatic
appears light.  The 12 -order fringe has the narrowest

range of δ for which the intensities are minimal and
therefore is the “blackest” of the isochromatics.

Note that the order of colors in an isochromatic
pattern is well defined.  As δ increases, the relative
retardation for blue light outpaces that of green and
red because blue light has the shortest wavelength.
Therefore, regardless of the field (dark or light),
blue fringes appear ahead of green and red fringes.
Sometimes an individual primary color is seen
distinctly, but this condition requires that the other
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two components vanish, and such a condition is
rare.  As a consequence, the fringe pattern consists
of continuously varying colors, not bands of primary
colors.  Blue and green, for instance, combine to
form a blue–green called cyan, green and red
combine to form yellow, and red and blue combine
to form magenta.  All three combine to form white.
The first-order “light” fringe in a light-field pattern
(Fig. 44) is really a band of colors consisting of
black–blue–cyan–green–yellow–red–magenta, fol-
lowed by a strong blue and a strong green.  These
features can be seen in the diametrally loaded disk
(Fig. 41) near the outside edge.  Observe, for
instance, the strong yellow band, where blue is
reaching a relative retardation of 11

2  cycles and is

therefore vanishing, leaving green and red to com-
bine and form yellow.

Further insight is gained by decomposing an
unfiltered mercury-vapor light-source isochromatic
pattern into its component RGB colors (Fig. 45).
The decomposition is achieved electronically from
the scanned negative.

Fig. 45.  Central band of a disk in diametral compression
in its original form (Hg) and decomposed

into its RGB components.

At the center of the disk, the green fringe of
order 7 is seen to correspond to the red fringe of
order 6.5 and to the blue fringe of order 9.5.  Now,
if the characteristic wavelength of green light is
taken to be 550 nm, the absolute retardation δ at the
center of the disk must be

δ λ= =

=

Ngreen green nm

nm

7 0 550

3850

. ( )

.
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If red light is observed to produce a fringe order of
6.5 at the same point, then the characteristic wave-
length of this light must be

λ δ
red

red

nm

6.5
nm= = =

N

3850
590 .

Similarly, if blue light is observed to produce a
fringe order of 9.5 at the same point, then the
characteristic wavelength of this light must be

λ δ
blue

blue

nm

9.5
nm= = =

N

3850
400 .

It should be emphasized that a mercury light source
has many lines in its spectrum, and the effects
observed here are weighted averages of the
strengths of these lines, the spectral sensitivity of
the color film, and the spectral sensitivities of the
red, green, and blue sensors in the film scanner.
Nevertheless, it is remarkable that the wavelength
separation between blue and green is observed to be
much larger than that between green and red.

The beautiful rainbow colors of the white-light
isochromatics are fascinating but they complicate
the data analysis, particularly for high-order fringes,
which tend to “wash out” because the almost
random combinations of the primary colors virtually
guarantee that light of some wavelength will not be
extinguished.  This problem is particularly acute if
the recording system responds in a panchromatic
fashion (that is, to all colors of light), but records
the image in monochromatic form (as, for example,
a black-and-white CCD camera or black-and-white
film).  For the sharpest fringe recording, mono-
chromatic light is preferred.

There are advantages to the white-light source,
however.  In a plane polariscope, the isochromatics
are brightly colored while the isoclinics are black;
therefore the two patterns are easily distinguished in
the laboratory or in a color photograph, whereas
they would not be easily distinguished if mono-
chromatic light were used.

Also, in a dark-field (plane or circular) polari-
scope, only the zero-order isochromatic fringe is
black and therefore this important fringe order can
be distinguished from all the higher-order ones; the
same cannot be said if the light source is mono-
chromatic.  To see this effect, compare the white-
light simulated isochromatics for a KI  field
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(Fig. 46) with those using a monochromatic light
source (Fig. 37).

Fig. 46.  Simulated KI  field (white light).

Similarly, in a light-field (circular) polariscope,
the 12 -order isochromatic fringe is the “blackest” of

the dark fringes—observe the color intensities in
Fig. 44 for retardations in the range of 250 nm.  The
fringe pattern in Fig. 41 illustrates this point well.

Compensation

The term compensation refers to any technique
used to determine fractional fringe orders.

Interpolation and extrapolation
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Fig. 47.  Interpolation and extrapolation.

http://www.tam.uiuc.edu/Courses/TAM326/1998.1/Lectures/animated_KI_white.gif
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The simplest compensation techniques are inter-
polation and extrapolation of data based on whole-
order (and/or half-order) fringe locations (Fig. 47).

Interpolation is the more reliable of these
methods but it is necessarily restricted to interior
points in the specimen.

Extrapolation is the less reliable method but is
required if fractional values of N are to be deter-
mined along the boundary of the specimen.  This
method is less reliable than interpolation for two
reasons:

• It requires a guess of the proper analytical
approximation outside the domain in which such
an approximation can be deduced on the basis of
known points.

• It is subject to errors in fringe values near the
surface.  Such errors may be due to surface
imperfections or to residual heat- or moisture-
induced birefringence that has nothing to do
with the applied stresses.  Residual edge stresses
appear in an unloaded specimen; they cause a
characteristic sudden turning of obliquely inter-
secting isochromatics at the edge, and a local
shift of near-edge isochromatics that are parallel
to the edge.

Since the maximum stresses (which are usually the
stresses of primary interest) often occur at the
boundary, it behooves the specimen fabricator to
prepare the surface with as much care as possible,
leaving it nick-free and devoid of heat-induced
residual fringes.

Tardy compensation

A technique that takes the guesswork out of
determining fractional fringe orders is Tardy com-
pensation.  It works equally well for interior and
boundary points, although for boundary points it is
adversely affected by heat- or moisture-induced
residual stresses.  The method requires 3 steps for
every point analyzed:

1. The polarizing directions of the polarizer and
analyzer are aligned with the principal-stress
directions at the point.  This step is accom-
plished by using a plane polariscope and by
rotating the polarizer and analyzer together until
an isoclinic passes through the point, thereby
leaving
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α = 0 .

2. The polariscope is converted from plane to
circular by rotating the quarter-wave plates to
their 45º orientations with respect to the
polarizer and analyzer.  The polarizer and
analyzer are held fixed during the conversion,
leaving the polariscope in the dark-field circular
configuration, still with α = 0, but with no iso-
clinics.

3. The analyzer alone is rotated through some
angle γ, as shown in Fig. 48, until a neighboring
(dark) isochromatic of integer order n passes
through the point in question.

π
4

s
f

A

ψ
γ

Fig. 48.  Light leaving the analyzer
(Tardy compensation).

The fractional fringe order is then equal to the
ratio γ π/ , as will be shown subsequently.
Therefore the value of N at the point is

N n= ± γ
π

. (30)

The sign of the fractional correction depends on
the orientation of the quarter-wave plates.  For
CCW rotating light, the + sign applies, and for
CW rotating light, the – sign applies.

To derive Eqn. (30), we start with the expres-
sions for the slow and fast wave amplitudes s and f,
respectively, that leave the second quarter-wave
plate in a circular polariscope.  Since α = 0, the

angle φ has the special value φ π α π= − =
4 4

; there-

fore, from Eqns. (17),
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From Fig. 48, the amplitude A of light leaving the
analyzer is given by

A s f= −cos sin ,ψ ψ

where the angle ψ π γ= −
4

 is introduced for con-

venience:

A s f

P
e i e ie

P
e i e i

P
e i i e i

P
e e e

P
e e i

Pe e

i i i

i i

i i

i i i

i i

i i

= −

= − − − +

= + − +

= − − +

= −

= ⋅ − − −F
H

I
K

F
HG

I
KJ

=

−

−

−

− − +

− − + +

cos sin

cos sin

cos sin (cos sin )

(cos sin ) (cos sin )

sin

sin

/

/

/

/ ( / ) ( )

/ ( / )/

/

ψ ψ

ψ ψ

ψ ψ ψ ψ

ψ ψ ψ ψ

π ψ ψ

π

π

π

π

π π ψ ψ

π π ψ ψ

π

2
1

2

2

2

2
2

1

2 2

4

4

4

4

4 2

4 2 2

2

∆ ∆

∆

∆

∆

∆

∆

∆

d i d i

− −F
H

I
Kψ ∆

2
.

Since P aei= Φ and 
π ψ γ
4

− = , the magnitude of A

is simply

| | sin ,A a= −F
H

I
Kγ ∆

2

and therefore the intensity I of light leaving the
analyzer is

I A a= = −F
H

I
K| | sin .2 2 2

2
γ ∆

(31)

This light intensity vanishes wherever γ − ∆
2

 is

equal to −nπ , where n is an integer.  Solving for the
relative angular retardation ∆ and dividing it by 2π
gives
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N n= = +∆
2π

γ
π

. (32a)

The sign of the γ π/  term is correct for counter-
clockwise rotating circularly polarized light passing
through the specimen (Fig. 21).  If the slow and fast
axes of the quarter-wave plates are reversed, then
the circularly polarized light passing through the
specimen will rotate clockwise, and it can be shown
that

N n= = −∆
2π

γ
π

. (32b)

In practice, the sign of the correction is determined
by first interpolating visually to obtain an estimate
of the fractional fringe order (with the analyzer and
polarizer crossed), then by rotating the analyzer
until the closest whole-order fringe moves to the
point.

Typically, the value of γ can be resolved to
within 2º, so the fractional part γ π/  can be resolved
to within 2º/180º or about 0.01.  If the value of N is
considerably smaller than 1, the relative error in N
can be appreciable, but if N is of order 1 or more,
then the relative error in N is less than 1%, which is
quite acceptable.

Separation

The term separation refers to any technique for
determining one of the principal stresses uniquely.
It must be remembered that when we use the basic
relation

σ σ σ
1 2− =

Nf

h
,

we determine only the difference between the prin-
cipal stresses—not these stresses separately.

Boundary condition

Perhaps the most important separation method
consists of applying the boundary condition at a free
edge of the specimen (Fig. 49).  If t and n denote the
tangential and normal directions at a free boundary,
then τnt = 0 because there is no shear traction
applied at the boundary, and therefore the normal
stresses σn and σt  are principal stresses.
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t

n

σt

Free boundary

Fig. 49.  Stress state at a free boundary.

Furthermore, σn = 0 because there is no normal
traction applied to the surface, either.  The principal
stresses are now separated because one of them, σn,
is equal to zero and the other one, σt , must account
for the difference σ σ1 2− :

σ

σ σ σ σ

n

t
Nf

h

=

− = =

0

1 2

,

.
(33)

Note that the sign of the tangential normal stress is
not resolved; it may be positive, negative, or zero.

As an example of the application of this separa-
tion technique, consider the U-shaped specimen in
bending (Fig. 50).10  All of the visible boundary is a
free boundary and therefore the normal stresses may
be separated anywhere along this boundary.

Fig. 50.  Light-field isochromatics in a U-shaped specimen
subjected to an opening load.

                                                
10Material, PSM-1.  Load, approximately 3 lb.  Thickness,
0.213 in.
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In particular, at the inside curvature, the maxi-
mum tangential stress is known to be positive.
Since by extrapolation N is approximately 4.2 at this
point, we have

σ

σ σ

n

t t

=

= = =

0

4 5 43

0 213
910

,

. ( )

.
.psi

At the outside straight edge, N is approximately 3.8,
and the tangential stress is known to be negative.
Therefore,

σ

σ σ

n

t t

=

= − = =

0

3 8 43

0 213
770

,

. ( )

.
,psi

that is, σt = −770 psi .

The fact that the principal stresses are easily
separated along a free boundary led to the early use
of photoelasticity to determine stress-concentration
factors for cutouts, fillets, holes, etc., in a wide
variety of geometrical shapes subjected to different
loads.  The technique is applicable to both static and
dynamic photoelastic investigations.

Caution.  The technique applies only to a free
boundary.  It does not hold at contact points, where
the normal stress σn becomes large; and it does not
hold for interior points.  One might be tempted, for
example, to extend the principle to all points along
the plane of symmetry of the model in Fig. 50,
arguing that τxy vanishes along the plane of sym-

metry, and that σx  is equal to zero at the left- and
right-hand ends; therefore σx  must be equal to zero
everywhere along the symmetry plane.  But σx  does
not vanish along the symmetry plane if at least one
of the surfaces is curved, as can be seen by an
equilibrium argument that is used, in fact, to derive
an expression for the radial stress component in a
curved beam in bending.11

Shear-difference method

To separate the principal stresses in the interior
of a specimen, more work is required.  A method
that is particularly useful because it does not require
any additional experimental apparatus is the shear-

                                                
11See the Appendix.



Phillips TAM 326—Photoelasticity 6–58

difference method, which is based on stress
equilibrium, as will be shown subsequently.

Before we examine this method, let us first
observe what can be determined easily at any point
in the specimen using a combination of isochro-
matics and isoclinics.  The isochromatics provide
the principal-stress difference

σ σ σ
1 2− = Nf

h

and therefore the radius R of Mohr’s circle

R
Nf

h
= − =σ σ σ1 2

2 2
, (34)

as shown in Fig. 51.

σ
σ1σ2

τ

2α
R

Nfσ
h

C

τxy (σx, τxy)

Fig. 51.  Calculation of τxy from isochromatics and
isoclinics at an arbitrary point.

Meanwhile, a complete family of isoclinics will
provide values of the principal-stress orientation α
throughout the specimen.  (Examples of isoclinics
are given in Fig. 5212 for the disk in diametral
compression.)  Thus, at any point in the specimen,
the angle 2α in Mohr’s circle can be found.

Observe from Fig. 51 that the shear stress τxy

has the value

τ α ασ
xy R

Nf

h
= =sin sin2

2
2 (35)

and that sufficient information is available from the
isochromatics and isoclinics to determine this value
anywhere in the specimen.

                                                
12Material, PSM-1.  Load, 128 lb.  Diameter, approximately
2.5 in.  Light source, mercury vapor, unfiltered.
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Fig. 52(a).  The 0º/90º isoclinics for a disk
in diametral compression.

Fig. 52(b).  The 10º/100º isoclinics for a disk
in diametral compression.

We now consider how to use values of τxy along

certain lines in the specimen to separate the princi-
pal stresses.  Recall from stress equilibrium
(Fig. 53) that, in the absence of body forces,
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∆x

∆y
σx σx +        ∆x

∂σx

∂x

τyx +         ∆y
∂τyx

∂y

τyxx

y

Fig. 53.  Differential stress element.

∂σ
∂

+
∂τ
∂

=x xy

x y
0

everywhere in the body.  Along a line y = const
(Fig. 54), dy = 0, and therefore

d d d

d

d

σx
x x

xy x

xy

x
x

y
y

y
x

y

y
x

= ∂σ
∂

+ ∂σ
∂

= −
∂τ
∂

+ ∂σ
∂

⋅

= −
∂τ
∂

0

.

(36)

∆y
σx(x0)

∆x
y=y+

y=y−

x

y

x0

y = const

Fig. 54.  Integration path for the shear-difference method.

In the shear-difference method, we write the
central-difference approximation for ∂τ ∂xy y/  as

∂τ
∂

≅
−+ −

xy xy xy

y y

τ τ
∆

,
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where τxy x+ ( ) and τxy x− ( ) denote the values of shear

stress along the lines y y= +  and y y= − , respec-
tively, and then integrate Eqn. (36) from x x= 0 to
an arbitrary point x along the line y = const:

σ σ
τ τ

x x
xy xy

x

x
x x

y
x( ) ( ) .− = −

−
′

+ −

z0
0 ∆

d (37)

This is the shear-difference formula for finding the
value of σx  anywhere along the line y = const.
With σx  known at a point, all the normal stresses
can be found at that point because the center C of
Mohr’s circle is located at

C Rx= −σ αcos ,2

and with C known, the entire Mohr’s circle can be
constructed.

The initial value σx x( )0  in general must be
found by using a Mohr’s circle construction after
the principal stresses have been separated at x x= 0

using the traction-free boundary condition there.

The shear-difference formula is often written
directly in terms of isochromatic and isoclinic data.

Recalling that τ αxy R= sin 2 , where R
Nf

h
= σ

2
, we

find that

σ σ

α α

σ
x x

x

x

x x
f

h y

N N x

( ) ( )

sin sin .

= − ×

− ′+ + − −z
0 2

2 2
0

∆

d i d

(38)

To avoid error propagation, it is a good idea to plot
smoothed curves through the data for N+ +sin 2α
and N− −sin 2α , then to use a high-order integration
scheme, such as Simpson’s rule, to carry out the
integration of the difference between these terms.

Photoelastic coatings

We close the discussion of photoelasticity with
an important application that permits surface analy-
sis of actual components that have irregular
surfaces.

A photoelastic coating can be molded to the
surface contour of a complicated part and bonded to
it (Fig. 55).  Light is reflected at the coating–
component interface and therefore propagates twice
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through the coating thickness h, giving an effective
path length of 2h in the coating.

P Q

QA

Light
source

Observer

Photoelastic coating

Component

h

Fig. 55.  Photoelastic coating.

The component is now the primary load-
carrying member, not the photoelastic material.  The
in-plane coating strains are assumed to be equal to
the in-plane surface strains in the component, and
the analysis of the photoelastic patterns is based on
the principal strain difference, which is related to
the principal stress difference in the component
through the elastic constants of the component
material.  In this respect, photoelastic coatings are
regarded in much the same way as brittle coatings.

As discussed in Dally and Riley (1991), com-
promises must be made.  For example, the coating
must be thick enough to generate a reasonable
number of fringes in response to the component
strains, yet not so thick that the average strains in
the coating deviate significantly from the interface
strains and the coating begins to reinforce the
component.

For components that undergo very small strains
when loaded, very sensitive coatings must be used,
and a careful analysis of the colors of the isochro-
matics may be needed to determine fractional fringe
orders.
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