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6. Vector Random Variables 

In the previous chapter we presented methods for dealing with two random variables. In this 
chapter we extend these methods to the case of n random variables in the following ways: 

• By representing n random variables as a vector, we obtain a compact notation for the 
joint pmf, cdf, and pdf as well as marginal and conditional distributions. 

• We present a general method for finding the pdf of transformations of vector random 
variables. 

• Summary information of the distribution of a vector random variable is provided by an 
expected value vector and a covariance matrix. 

• We use linear transformations and characteristic functions to find alternative 
representations of random vectors and their probabilities. 

• We develop optimum estimators for estimating the value of a random variable based on 
observations of other random variables. 

• We show how jointly Gaussian random vectors have a compact and easy-to-workwith pdf 
and characteristic function. 
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6.1 Vector Random Variables 

The notion of a random variable is easily generalized to the case where several quantities are of 
interest. A vector random variable X is a function that assigns a vector of real numbers to each 
outcome ζ in S, the sample space of the random experiment. We use uppercase boldface notation 
for vector random variables. By convention X is a column vector (n rows by 1 column), so the 
vector random variable with components nXXX ,,, 21   corresponds to 

 Tn

n

XXX

X

X

X

X 



21

2

1





















  

We will sometimes write  nXXXX ,,, 21   to save space and omit the transpose unless 

dealing with matrices. Possible values of the vector random variable are denoted by 
 nxxxx ,,, 21   where ix corresponds to the value of iX . 
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6.1.1 Events and Probabilities 

 

 

6.1.2 Joint Distribution Functions 
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6.1.3 Independence 
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6.2 Functions of Several Random Variables 

Functions of vector random variables arise naturally in random experiments. For example 
 nXXXX ,,, 21   may correspond to observations from n repetitions of an experiment that 

generates a given random variable. We are almost always interested in the sample mean and the 
sample variance of the observations. In another example  nXXXX ,,, 21   may correspond to 

samples of a speech waveform and we may be interested in extracting features that are defined as 
functions of X for use in a speech recognition system. 

 

6.2.1 One Function of Several Random Variables 
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6.2.2 Transformations of Random Vectors 
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6.2.3 *pdf of General Transformations 
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6.3 Expected Values of Vector Random Variables 

 

6.3.1 Mean Vector and Covariance Matrix 
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6.3.2 Linear Transformations of Random Vectors 
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6.3.3 *Joint Characteristic Function 

6.3.4 *Diagonalization of Covariance Matrix 
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6.4 Jointly Gaussian Random Vectors 
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6.4.1 *Linear Transformation of Gaussian Random Variables 

6.4.2 *Joint Characteristic Function of a Gaussian Random Variable 
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6.5 Estimation of Random Variables 

In this book we will encounter two basic types of estimation problems. In the first type, we are 
interested in estimating the parameters of one or more random variables, e.g., probabilities, 
means, variances, or covariances.  

In Chapter 1, we stated that relative frequencies can be used to estimate the probabilities of 
events, and that sample averages can be used to estimate the mean and other moments of a 
random variable. In Chapters 7 and 8 we will consider this type of estimation further.  

In this section, we are concerned with the second type of estimation problem, where we are 
interested in estimating the value of an inaccessible random variable X in terms of the 
observation of an accessible random variable Y. For example, X could be the input to a 
communication channel and Y could be the observed output. In a prediction application, X could 
be a future value of some quantity and Y its present value. 

Estimators: 

Maximum a posteriori (MAP) estimator 

Maximum likelihood (ML) estimator 

Minimum MSE Estimator 

 

6.5.1 MAP and ML Estimators 

We have considered estimation problems informally earlier in the book. For example, in 
estimating the output of a discrete communications channel we are interested in finding the most 
probable input given the observation Y=y, that is, the value of input x that maximizes 
 yYxXP  | : 

 yYxXP
X

 |max  

In general we refer to the above estimator for X in terms of Y as the maximum a posteriori 
(MAP) estimator. The a posteriori probability is given by: 

     
 yYP

xXPxXyYP
yYxXP





|

|  

and so the MAP estimator requires that we know the a priori probabilities  xXP   .  
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In some situations we know  xXyYP  |  but we do not know the a priori probabilities, so we 
select the estimator value x as the value that maximizes the likelihood of the observed value 
Y=y: 

 xXyYP
X

 |max
 

We refer to this estimator of X in terms of Y as the maximum likelihood (ML) estimator.  

We can define MAP and ML estimators when X and Y are continuous random variables by 
replacing events of the form  yY   by  dyyYy  . If X and Y are continuous, the MAP 
estimator for X given the observation Y is given by: 

 yYxXfX
X

 |max  

and the ML estimator for X given the observation Y is given by: 
 xXyYfY

X
 |max
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Example 6.25 Comparison of ML and MAP Estimators 

Let X and Y be the random pair in Example 5.16. Find the MAP and ML estimators for X in 
terms of Y. 

From Example 5.16 and 5.32, the conditional pdf of X given Y is given by: 
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The MAP estimator  
 yYxXfX

X
 |max  

    yxforeyxf yx
X   ,|  

As the function is a smooth curve in x, using the derivative to determine the max and min does 
not help and the bounds must be at either y or ∞. As the function decreases as x increases beyond 
y, the maximum must occur at y. Therefore the MAP estimator is .ˆ yX MAP   

The ML estimator  
 xXyYfY

X
 |max  

    xyfor
e

e
xyf

x

y

Y 


 



0,
1

|  

The derivative is again not useful; however, as x increases beyond y, the denominator becomes 
larger so the conditional pdf decreases. Therefore the ML estimator is .ˆ yX ML   

In this example the ML and MAP estimators agree. 
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Example 6.26 Jointly Gaussian Random Variables 

Find the MAP and ML estimator of X in terms of Y when X and Y are jointly Gaussian random 
variables. 

Jointly Gaussian RV from section 5.9: 
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The conditional pdf of X given Y is given by: 
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which is maximized by the value of x for which the exponent is zero. Therefore  

  0ˆ  xy
y

x
MAP mmyX




   xy
y

x
MAP mmyX 


ˆ  

The conditional pdf of Y given X is given by: 

 
 

 

 



















































22

2

22 12
exp

12

1
|








 y

yx
x

y

y

Y

mmxy

xyf

 
which is again maximized by the value of x for which the exponent is zero. Therefore  

  0ˆ  yxML
x

y mmXy



  

  xy
y

x
ML mmyX 





ˆ  

Therefore we conclude that the two estimators are not equal. In other words, knowledge of the a 
priori probabilities of X will affect the estimator. 
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6.5.2 Minimum MSE Linear Estimator 

Another estimate for X is given by a function of the observation  YgX ˆ . In general, the 

estimation error,  YgXXXX  ˆ~
, is nonzero, and there is a cost associated with the 

error,   YgXcXc 
~

cost . We are usually interested in finding the function g(Y) that 

minimizes the expected value of the cost,      YgXcEXcE  ~
. For example, if X and Y 

are the discrete input and output of a communication channel, and c is zero when  YgX   and 
one otherwise, then the expected value of the cost corresponds to the probability of error, that is, 
that  YgX   .When X and Y are continuous random variables, we frequently use the mean 
square error (MSE) as the cost: 

     22~
YgXEXEe   

In the remainder of this section we focus on this particular cost function. We first consider the 
case where g(Y) is constrained to be a linear function of Y, and then consider the case where 
g(Y) can be any function, whether linear or nonlinear. 

First, consider the problem of estimating a random variable X by a constant a so that the mean 
square error is minimized: 

       222 2min aXEaXEaXE
a

  

The best a is found by taking the derivative with respect to a, setting the result to zero, and 
solving for a. The result is 

  022  aXE  

 XEa *  

which makes sense since the expected value of X is the center of mass of the pdf.  Note that the 
conjugate of a is shown in case a is complex.  

The mean square error for this estimator is equal to     2*aXEXVAR  .  

Now consider estimating X by a linear function   bYaYg   

  2

,
min bYaXE

ba
  

Equation (6.53a) can be viewed as the approximation of YaX   by the constant b. And then 
finding the best a. This is the minimization posed in Eq. (6.51) and the best b is 

     YEaXEYaXEb *  

Substitution into Eq. (6.53a) implies that the best a is found by 

       2min YEYaXEXE
a
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We once again differentiate with respect to a, set the result to zero, and solve for a: 
           02  YEYYEYaXEXE  

           022 2  YEYEaYEYXEXE  

    02,2  YVARaYXCOV  

The best coefficient a is found to be 
 
  Y

X
YX

Y

YXYX

YVAR

YXCOV
a










 ,2

,* ,
 

Therefore, the minimum mean square error (mmse) linear estimator for X in terms of Y is 
**ˆ bYaX   

   YEaXEYaX  **ˆ  

    XEYEYX
Y

X
YX 

 ,

ˆ  

The term    YYEY  is simply a zero-mean, unit-variance version of Y. Thus 

   YX YEY    is a rescaled version of Y that has the variance of the random variable that is 

being estimated, namely 2
X  .The term E[X] simply ensures that the estimator has the correct 

mean. The key term in the above estimator is the correlation coefficient: YX ,  that specifies the 

sign and extent of the estimate of Y relative to    YX YEY   . If X and Y are uncorrelated 

then the best estimate for X is its mean, E[X]. On the other hand, if 1, YX  then the best 

estimate is equal to  
    XEYEYX YX  ˆ  

We draw our attention to the second equality in Eq. (6.54): 
           0*  YEYYEYaXEXE  

This equation is called the orthogonality condition because it states that the error of the best 
linear estimator, the quantity inside the braces, is orthogonal to the observation   YEY   The 
orthogonality condition is a fundamental result in mean square estimation. 
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Computing the cost function for this estimator 

 

where the second equality follows from the orthogonality condition. Note that when 1, YX  

the mean square error is zero. This implies that  
    10 ****  bYaXPbYaXP  

so that X is essentially a linear function of Y. 
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6.5.3 Minimum MSE Estimator (generally nonlinear) 

In general the estimator for X that minimizes the mean square error is a nonlinear function of Y. 
The estimator g(Y) that best approximates X in the sense of minimizing mean square error must 
satisfy 

 
   2min YgXE

g



 

The problem can be solved by using conditional expectation: 
        YYgXEEYgXE |22   

         




 dyyfyYYgXEYgXE Y|22  

The integrand above is positive for all y; therefore, the integral is minimized by minimizing 
   yYYgXE  |2  for each y. But g(y) is a constant as far as the conditional expectation is 

concerned, so the problem is equivalent to Eq. (6.51) and the “constant” that minimizes 
   yYYgXE  |2  is 

   yYXEYg  |*  

The function is called the regression curve which simply traces the conditional expected value of 
X given the observation Y=y. 

The mean square error of the best estimator is: 

          
R

Y dyyfyYyYXEXEYgXEe || 22*  

    
R

Y dyyfyYXVARe |*  

Linear estimators in general are suboptimal and have larger mean square errors. 
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6.5.4 Estimation using a Vector of Observations 

The MAP, ML, and mean square estimators can be extended to where a vector of observations is 
available. Here we focus on mean square estimation. We wish to estimate X by a function g(Y) 
of a random vector of observations so that the mean square error is minimized: 

 
   2min YgXE

g



 

To simplify the discussion we will assume that X and the have zero means. The same derivation 
that led to Eq. (6.58) leads to the optimum minimum mean square estimator: 

   yYXEYg  |*  

The minimum mean square error is then: 

          
R

Y dyyfyYyYXEXEYgXEe || 22*  

    
R

Y dyyfyYXVARe |*  

 

 

Note that the solution is based on an “auto-correlation” matrix and a “cross-correlation” vector. 
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6.6 *Generating Correlated Vector Random Variables 

Many applications involve vectors or sequences of correlated random variables. Computer 
simulation models of such applications therefore require methods for generating such random 
variables. In this section we present methods for generating vectors of random variables with 
specified covariance matrices. We also discuss the generation of jointly Gaussian vector random 
variables. 

6.6.1 Generating Random Vectors with Specified Covariance Matrix 
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6.6.2 Generating Vectors of Jointly Gaussian Random Variables 
%% 
% Example 6.34 
% The necessary steps for generating the Gaussian random variables 
% with the covariance matrix from Example 6.32. 
 
clear 
%close all 
  
U1=rand(10000, 1);       % Create a 1000-element vector U1. 
U2=rand(10000, 1);      % Create a 1000-element vector U2. 
R2=-2*log(U1);          % Find 
TH=2*pi*U2;             % Find 
X1=sqrt(R2).*sin(TH);   % Generate X1. 
X2=sqrt(R2).*cos(TH);   % Generate X2. 
  
mx1 = mean(X1) 
mx2 = mean(X2) 
vx1=sqrt(cov(X1)) 
vx2=sqrt(cov(X2)) 
  
Y1= X1+sqrt(3)*X2;        % Generate Y1. 
Y2=-X1+sqrt(3)*X2;       % Generate Y2. 
  
figure 
plot(X1,X2,'+')          % Plot scattergram 
  
figure 
plot(Y1,Y2,'+')          % Plot scattergram 
 
mx1 =    -0.0170 
mx2 =    -0.0101 
vx1 =     1.0009 
vx2 =     0.9921 
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%% 
% Example 6.34 
% The necessary steps for generating the Gaussian random variables 
% with the covariance matrix from Example 6.32. 
 
  
clear 
close all 
  
X1=randn(10000, 1);     % Create a 1000-element vector U1. 
X2=randn(10000, 1);     % Create a 1000-element vector U2. 
mx1 = mean(X1) 
mx2 = mean(X2) 
vx1=sqrt(cov(X1)) 
vx2=sqrt(cov(X2)) 
  
Y1= X1+sqrt(3)*X2;       % Generate Y1. 
Y2=-X1+sqrt(3)*X2;       % Generate Y2. 
  
figure 
plot(X1,X2,'+')          % Plot scattergram 
  
figure 
plot(Y1,Y2,'+')          % Plot scattergram 
 
mx1 =    0.0154 
mx2 =    0.0094 
vx1 =    1.0072 
vx2 =    0.9990 
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Summary  

• The joint statistical behavior of a vector of random variables X is specified by the joint 
cumulative distribution function, the joint probability mass function, or the joint 
probability density function. The probability of any event involving the joint behavior of 
these random variables can be computed from these functions. 

• The statistical behavior of subsets of random variables from a vector X is specified by the 
marginal cdf, marginal pdf, or marginal pmf that can be obtained from the joint cdf, joint 
pdf, or joint pmf of X. 

• A set of random variables is independent if the probability of a product-form event is 
equal to the product of the probabilities of the component events. Equivalent conditions 
for the independence of a set of random variables are that the joint cdf, joint pdf, or joint 
pmf factors into the product of the corresponding marginal functions. 

• The statistical behavior of a subset of random variables from a vector X, given the exact 
values of the other random variables in the vector, is specified by the conditional cdf, 
conditional pmf, or conditional pdf. Many problems naturally lend themselves to a 
solution that involves conditioning on the values of some of the random variables. In 
these problems, the expected value of random variables can be obtained through the use 
of conditional expectation. 

• The mean vector and the covariance matrix provide summary information about a vector 
random variable. The joint characteristic function contains all of the information provided 
by the joint pdf. 

• Transformations of vector random variables generate other vector random variables. 
Standard methods are available for finding the joint distributions of the new random 
vectors. 

• The orthogonality condition provides a set of linear equations for finding the minimum 
mean square linear estimate. The best mean square estimator is given by the conditional 
expected value. 

• The joint pdf of a vector X of jointly Gaussian random variables is determined by the 
vector of the means and by the covariance matrix. All marginal pdf’s and conditional 
pdf’s of subsets of X have Gaussian pdf’s. Any linear function or linear transformation of 
jointly Gaussian random variables will result in a set of jointly Gaussian random 
variables. 

• A vector of random variables with an arbitrary covariance matrix can be generated by 
taking a linear transformation of a vector of unit-variance, uncorrelated random variables. 
A vector of Gaussian random variables with an arbitrary covariance matrix can be 
generated by taking a linear transformation of a vector of independent, unit-variance 
jointly Gaussian random variables. 
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CHECKLIST OF IMPORTANT TERMS 

Conditional cdf 

Conditional expectation 

Conditional pdf 

Conditional pmf 

Correlation matrix 

Covariance matrix 

Independent random variables 

Jacobian of a transformation 

Joint cdf 

Joint characteristic function 

Joint pdf 

Joint pmf 

Jointly continuous random variables 

Jointly Gaussian random variables 

Karhunen-Loeve expansion 

MAP estimator 

Marginal cdf 

Marginal pdf 

Marginal pmf 

Maximum likelihood estimator 

Mean square error 

Mean vector 

MMSE linear estimator 

Orthogonality condition 

Product-form event 

Regression curve 

Vector random variables 


