7.1 Apply the Pythagorean Theorem

Obj.: Find side lengths in right triangles.

Key Vocabulary

- Pythagorean triple - A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation $c^{2}=a^{2}+b^{2}$.
- Right triangle - A triangle with one right angle.
- Leg of a right triangle - In a right triangle, the sidesadjacent to the right angle are called the legs.
- Hypotenuse - The side opposite the right angle is called the
 hypotenuse of the right triangle.

Pythagorean Theorem
 Pyth. Th.

 In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs. Solution

In the equation for the Pythagorean Theorem, "length of hypotenuse" and "length of leg" was shortened to "hypotenuse" and "leg".

Solution

In real-world applications, it is usually appropriate to use a calculator to approximate the square root of a number. Round your answer to the nearest tenth.

EXAMPLE 1 Find the length of a hypotenuse
Find the length of the hypotenuse of the right triangle.

$$
\begin{aligned}
(\text { hypotenuse })^{2} & =(\mathrm{leg})^{2}+(\mathrm{leg})^{2} \\
x^{2} & =7^{2}+{24^{2}}^{2} \\
x^{2} & =49+256 \\
x^{2} & =625 \\
x & =25
\end{aligned}
$$

Pythagorean Theorem
Substitute.
Multiply.
Add.
Find the positive square root.

EXAMPLE 2 Find the length of a leg

Door A 6 foot board rests under a doorknob and the base of the board is 5 feet away from the bottom of the door. Approximately how high above the ground is the doorknob?

$$
\binom{\text { Length }}{\text { of board }}^{2}=\binom{\text { Distance }}{\text { from door }}^{2}+\binom{\text { Height of }}{\text { doorknob }}^{2}
$$

$$
6^{2}=5^{2}+x^{2} \quad \text { Substitute. }
$$

The board is resting against the doorknob at about

$$
\mathbf{c}^{2}=\mathbf{a}^{2}+\mathrm{b}^{2}
$$

?

$$
36=25+x^{2} \quad \text { Multiply. }
$$

$$
\underline{11}=x^{2} \quad \text { Subtract } \underline{25} \text { from each side. }
$$

$$
\sqrt{11}=x \quad \text { Find positive square root. }
$$

$$
>\quad \overline{3.3} \approx x \quad \text { Approximate with a calculator. }
$$ 3.3 feet above the ground.

Find the area of the isosceles triangle with side lengths 16 meters,

17 meters, and 17 meters.

Solution

Step 1 Draw a sketch. By definition, the length of an altitude is the height of the triangle. In an isosceles triangle, the altitude to the base is also a perpendicular bisector. So, the altitude divides the triangle into two \qquad triangles with the dimensions shown.

Step 2 Use the Pythagorean Theorem to find the height of the triangle.

$$
c^{2}=a^{2}+b^{2}
$$

Pythagorean Theorem

$$
\underline{17}^{2}=\underline{8}^{2}+h^{2}
$$

Substitute.

$$
\begin{aligned}
& \overline{289}=\overline{64}+h^{2} \\
& \underline{225}=\overline{h^{2}}
\end{aligned}
$$

Multiply.
Subtract 64 from each side.

$$
15=h
$$

Find the positive square root.

Step 3 Find the area.

$$
\text { Area }=\frac{1}{2}(\text { base })(\text { height })=\frac{1}{2}(\underline{16})(15)=\underline{120}
$$

The area of the triangle is 120 square meters.

EXAMPLE 4 Find length of a hypotenuse using two methods

Find the length of the hypotenuse of the right triangle.

Solution

Method 1: Use a Pythagorean triple.
A common Pythagorean triple is $8,15,17$. Notice that if you multiply the lengths of the legs of the Pythagorean triple by 3 , you get the lengths of the legs of this triangle:
$8 \cdot 3=24$ and $15 \cdot 3=45$. So, the length of the hypotenuse is \qquad - 3 $=\underline{51}$.

Method 2: Use the Pythagorean Theorem.

$$
\begin{array}{rll}
x^{2}=24^{2}+45^{2} & \text { Pythagorean Theo } \\
x^{2}=576+2025 & \text { Multiply. } \\
x^{2}=2601 & & \text { Add. } \\
x & =\boxed{51} & \begin{array}{l}
\text { Find the positive } \\
\text { square root. }
\end{array}
\end{array}
$$

KEY CONCEPT

For Your Notebook

Common Pythagorean Triples and Some of Their Multiples

$3,4,5$	$\mathbf{5}, 12,13$	$\mathbf{8}, \mathbf{1 5}, 17$	$\mathbf{7}, 24,25$
$6,8,10$	$10,24,26$	$16,30,34$	$14,48,50$
$9,12,15$	$15,36,39$	$24,45,51$	$21,72,75$
$30,40,50$	$50,120,130$	$80,150,170$	$70,240,250$
$3 x, 4 x, 5 x$	$5 x, 12 x, 13 x$	$8 x, 15 x, 17 x$	$7 x, 24 x, 25 x$

The most common Pythagorean triples are in bold. The other triples are the result of multiplying each integer in a bold face triple by the same factor.

7.1 Cont.

Checkpolnt Complete the following exercise.

1. Find the length of the hypotenuse of the right triangle.
$x=15$

2. A 5 foot board rests under a doorknob and the base of the board is 3.5 feet away from the bottom of the door. Approximately how high above the ground is the doorknob?
about 3.6 feet
3. Find the area of the triangle.
$672 \mathrm{ft}^{2}$

4. Use a Pythagorean triple to find the unknown side length of the right triangle.
50

7.2 Use the Converse of the Pythagorean Theorem

Obj.: Use its converse to determine if a triangle is a right triangle.

Key Vocabulary

- Acute triangle - A triangle with three acute angle
- Obtuse triangle - A triangle with one obtuse angle

Converse of the Pythagorean Theorem Conv. Pyth. Th. If the square of the length of the longest side of a triangle is equal to the sum of the squares
 of the lengths of the other two sides, then the triangle is a right triangle.
If $c^{2}=a^{2}+b^{2}$, then $\triangle A B C$ is a right triangle.

Acute Triangle Theorem

Acute \triangle Th. If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, then the triangle $A B C$ is an acute triangle.
 If $c^{2}<a^{2}+b^{2}$, then the triangle $A B C$ is acute.

Obtuse Triangle Theorem

Obtuse Δ Th. If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, then the triangle $A B C$ is an obtuse triangle.
 If $c^{2}>a^{2}+b^{2}$, then triangle $A B C$ is obtuse.

EXAMPLE 1 Verify right triangles

Tell whether the given triangle is a right triangle.
a.

Solution

b.

Let c represent the length of the longest side of the triangle. Check to see whether the side lengths satisfy
the equation $c^{2}=a^{2}+b^{2}$.

$$
\text { a. } \begin{aligned}
&\left(\frac{3 \sqrt{13}}{}\right)^{2} \stackrel{?}{=} 6^{2}+9^{2} \\
&-\frac{13}{117} \stackrel{?}{=} 36 \\
&=117
\end{aligned}
$$

b.
$\frac{29^{2}}{} \stackrel{?}{=} \frac{24^{2}}{841} \stackrel{?}{=}+\frac{16^{2}}{576}+\underline{256}$
$\frac{841}{=}+832$

The triangle is not a right triangle.
The triangle \qquad is a right triangle.

EXAMPLE 2 Classify triangles

Can segments with lengths of 2.8 feet, 3.2 feet, and 4.2 feet form a
The Triangle Inequality Theorem triangle? If so, would the triangle be acute, right, or obtuse?
Solution
Step 1 Use the Triangle Inequality Theorem to check that the segments can make a triangle.

$\Rightarrow \quad$| $2.8+3.2=6$ | $2.8+4.2=7$ | $3.2+4.2=\underline{7.4}$ |
| :---: | :---: | :---: |
| $7 \quad 6>4.2$ | $\underline{7}>3.2$ | $\underline{7.4}>2.8$ |

The side lengths 2.8 feet, 3.2 feet, and 4.2 feet form an acute triangle.

EXAMPLE 3 Use the Converse of the Pythagorean Theorem

Lights You are helping install a light pole in a parking lot. When the pole is positioned properly, it is perpendicular to the pavement. How can you check that the pole is perpendicular using a tape measure?

Solution

To show a line is perpendicular to a plane you must show that the line is perpendicular to two lines in the plane.
Think of the pole as a line and the pavement as a plane. Use a 3-4-5 right triangle and the Converse of the Pythagorean Theorem to show that the pole is perpendicular to different lines on the pavement.
First mark 3 feet up the pole and mark on the pavement 4 feet from the pole.

Use the tape measure to check that the distance between the two marks is 5 feet. The pole makes a right angle with the line on the pavement.

Finally, repeat the procedure to show that the pole is perpendicular to another line on the pavement.

CONCEPT SUMMARY

Methods for Classifying a Triangle by Angles Using its Side Lengths

If $c^{2}=a^{2}+b^{2}$, then $m \angle C=90^{\circ}$ and $\triangle A B C$ is a right triangle.

If $c^{2}<a^{2}+b^{2}$, then $m \angle C<90^{\circ}$ and $\triangle A B C$ is an acute triangle.

Obtuse $\Delta T h$.

If $c^{2}>a^{2}+b^{2}$, then $m \angle C>90^{\circ}$ and $\triangle A B C$ is an obtuse triangle.

7.2 Cont.

(. checkpoint In Exercises 1 and 2, tell whether the triangle is a right triangle.
1.

not a right triangle

right triangle
3. Can segments with lengths of 6.1 inches, 9.4 inches, and 11.3 inches form a triangle? If so, would the triangle be acute, right, or obtuse?
Yes; obtuse
4. In Example 3, could you use triangles with side lengths 50 inches, 120 inches, and 130 inches to verify that you have perpendicular lines? Explain. Yes; A triangle with side lengths 50 inches, 120 inches, and 130 inches is a right triangle. The right triangle shows that you have perpendicular lines.

7.3 Use Similar Right Triangles

Obj.: Use properties of the altitude of a right triangle.

Key Vocabulary

- Altitude of a triangle - An altitude of a triangle is the perpendicular segment from a vertex to the opposite side or to the line that contains the opposite side.

- Geometric mean - The geometric mean of two positive numbers a and b is the positive number \underline{x} that satisfies $\frac{a}{\bar{x}}=\frac{x}{b}$. So, $x^{2}=a b$ and $x=\sqrt{\mathbf{a b}}$.
- Similar polygons - Two polygons are similar polygons if corresponding angles are congruent and corresponding side lengths are proportional.

Alt. of rt. $\Delta \rightarrow 3 \sim \Delta$
If the altitude is drawn to the hypotenuse of a right triangle, then the two triangles formed are similar to the original triangle and to each other. $\triangle C B D \sim \triangle A B C, \triangle A C D \sim \triangle A B C$, and $\triangle C B D \sim \triangle A C D$.

Geometric Mean (Altitude) Theorem
In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.
The length of the altitude is the geometric mean of the lengths of the two segments.

$\frac{B D}{C D}=\frac{C D}{A D}$

Geometric Mean (Leg) Theorem

In a right triangle, the altitude from the right angle to the hypotenuse divides the hypotenuse into two segments.
The length of each leg of the right triangle is the geometric mean of the lengths of the hypotenuse and the segment of the hypotenuse that is adjacent to the leg.

EXAMPLE 1 Identify similar triangles

Identify the similar triangles in the diagram.
Solution Sketch the three similar right triangles so that the corresponding angles and sides have the same

$$
\frac{\mathrm{AB}}{\mathrm{CB}}=\frac{\mathrm{CB}}{\mathrm{DB}} \text { and } \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{AD}}
$$ orientation.

$\triangle \underline{F J G} \sim \triangle \underline{G J H} \sim \triangle \underline{F G H}$

EXAMPLE 2 Find the length of the altitude to the hypotenuse
(7.3 cont.)

Stadium A cross section of a group of seats at a stadium shows a drainage pipe $\overline{B D}$ that leads from the seats to the inside of the stadium. What is the length of the pips?

Solution

Step 1 Identify the similar triangles and sketch them.

Step 2 Find the value of x. Use the fact that $>\quad \triangle B D C \sim \triangle A B C$ to write a proportion.

$(10 \sqrt{13}) x=\underline{20(30)}$ $x \approx 16.6 \quad$ Approximate.

Corresponding side lengths of similar triangles are in proportion.

Substitute.

Cross Products Property

The length of the pipe is about 16.6 feet.

Notice that if you tried to write a proportion using $\triangle A D B$ and $\triangle B D C$, there would be two unknowns, so you would not be able to solve for x.

EXAMPLE 3 Use a geometric mean

Find the value of y. Write your answer in simplest radical form.

Solution

Write a proportion.
$>$
$\frac{\text { length of hyp. of } \triangle F D E}{\text { length of hyp. of } \triangle F E G}$

$$
=\frac{\text { length of shorter leg of } \triangle F D E}{\boxed{\text { length of shorter leg of } \triangle F E G}}
$$

$\frac{\boxed{15}}{y}=\frac{y}{\boxed{4}}$
$\underline{\underline{60}}=y^{2} \quad$ Cross Products Property

Cross Products Property
Take positive square roots.
Simplify. Simplify.
Substitute.

EXAMPLE 4 Find a height using indirect measurement

Overpass To find the clearance under an overpass, you need to find the height of a concrete support beam. You use a cardboard square to line up the top and bottom of the beam. Your friend measures the vertical distance from the ground to your eye and the distance from you to the beam. Approximate the height of the beam.

Solution

By Theorem 7.6, you know that 6.9 is the geometric mean of X and 5 .

$$
\begin{aligned}
\frac{x}{6.9} & =\frac{6.9}{5} & & \text { Write a proportion. } \\
x & \approx 9.5 & & \text { Solve for } x
\end{aligned}
$$

So, the clearance under the overpass is

$$
5+x \approx 5+9.5=14.5 \text { feet. }
$$

7.3 Cont.

Checkpolnt Complete the following exercise.

1. Identify the similar triangles in the diagram.

$\triangle N P L \sim \triangle L P M \sim \triangle N L M$
2. Identify the similar triangles. Then find the value of x.
$\triangle G F D \sim \triangle D F E \sim \triangle G D E ;$ $x=4.8$

3. Find the value of y. Write your answer in simplest radical form.
$y=6 \sqrt{6}$

4. The distance from the ground to Larry's eyes is 4.5 feet. How far from the beam in Example 4 would he have to stand in order to measure its helght? about 6.7 feet

7.4 Special Right Triangles

Obj.: Use the relationships among the sides in special right triangles.
Key Vocabulary

- Isosceles triangle - A triangle with at least two congruent sides.

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle Theorem

In a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle, the hypotenuse is $\sqrt{2}$ times
as long as each leg.
hypotenuse $=\underline{\text { leg }}$ " $\sqrt{2}$

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem

In a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, the hypotenuse is twice as long as the shorter leg, and the longer leg is $\sqrt{3}$ times as long as the shorter leg.

EXAMPLE 1 Find hypotenuse length in a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle

 Find the length of the hypotenuse.a.

Solution

a. By the Triangle Sum Theorem, the measure of the third angle must be \qquad 45° Then the triangle is a $45^{\circ}-45^{\circ}$ -90° triangle, so by Theorem 7.8, the hypotenuse is \qquad $\sqrt{2}$ times as long as each leg.
b.

Remember the following properties of radicals:
$\sqrt{a} \cdot \sqrt{b}$ $=\sqrt{a \cdot b} ;$
$\sqrt{a \cdot a}=a$
b. By the Base Angles Theorem and the Corollary to the Triangle Sum Theorem, the triangle is a $45^{\circ}-45^{\circ}-90^{\circ}$ triangle.

$$
\begin{aligned}
\text { hypotenuse } & =\operatorname{leg} \cdot \underline{\sqrt{2}} & & \begin{array}{l}
45^{\circ}-45^{\circ}-90^{\circ} \\
\text { Triangle Theorem }
\end{array} \\
& =4 \sqrt{2} \cdot \sqrt{2} & & \text { Substitute. } \\
& =4 \cdot 2 & & \text { Product of square roots }
\end{aligned}
$$

$$
=\underline{6 \sqrt{2}} \quad \text { Substitute. }
$$

Music You make a guitar pick that resembles an equilateral triangle with side lengths of 32 millimeters. What is the approximate height of the pick?
Solution
Draw the equilateral triangle described. Its altitude forms the longer leg of two $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. The length h of the altitude is approximately the height of the pick.

longer leg $=$ shorter leg $\cdot \sqrt{3}$

$$
h=16 \cdot \sqrt{3} \approx 27.7 \mathrm{~mm}
$$

EXAMPLE 4 Find lengths in a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle

Find the values of x and y. Write your answer in simplest radical form.

Solution

Step 1 Find the value of x.

longer leg	$=$ shorter leg $\cdot \underline{\sqrt{3}}$		
$\frac{8}{8}$	$=x \underline{\sqrt{3}}$		Substitute.
$\frac{\frac{8}{\sqrt{3}}}{l \mid}$	$=x$		Divide each side by $\underline{\sqrt{3}}$.
$\frac{8}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$	$=x$		Multiply numerator and denominator by $\sqrt{3}$.
$\frac{8 \sqrt{3}}{3}$	$=x$		Multiply fractions.

Step 2 Find the value of y. hypotenuse $=\underline{2} \cdot$ shorter leg

$$
y=2 \cdot \frac{8 \sqrt{3}}{3}=\frac{16 \sqrt{3}}{3}
$$

EXAMPLE 5 Find a height

Windshield wipers A car is turned off while the windshield wipers are moving. The 24 inch wipers stop, making a 60° angle with the bottom of the windshield. How far from the bottom of
the windshield are the ends of the wipers?

Solution

The distance d is the length of the longer leg of a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
The length of the hypotenuse is \qquad 24 inches.

$$
\begin{aligned}
& \text { hypotenuse }=\underline{2} \cdot \text { shorter leg } \\
& \frac{24}{12}=\underline{2} \cdot s \\
& \underline{s}
\end{aligned}
$$

$30^{\circ} \cdot 60^{\circ}-90^{\circ}$
Triangle Theorem
Substitute.
Divide each side by
longer leg $=$ shorter leg $\cdot \underline{\sqrt{3}}$

$$
\begin{aligned}
d & =12 \sqrt{3} \\
d & \approx \underline{20.8}
\end{aligned}
$$

\qquad

The ends of the wipers are about 20.8 inches from the bottom of the windshield.

7.4 Cont.

Checkpolnt Find the value of the variable.
1.

$x=4$
2.

$x=12$
c checkpoint In Exercises 3 and 4, find the value of the variable.
3.

$x=6$
4.

$h=6 \sqrt{3}$
5. In Example 5, how far from the bottom of the windshield are the ends of the wipers if they make a 30° angle with the bottom of the windshield?

12 inches

7.5 Apply the Tangent Ratio

Obj.: Use the tangent ratio for indirect measurement.

Key Vocabulary

- Trigonometric ratio - A trigonometric ratio is a ratio of the lengths of two sides in a right triangle. You will use trigonometric ratios to find the measure of a side or an acute angle in a right triangle.
- Tangent - The ratio of the lengths of the legs in a right triangle is constant for a given angle measure. This ratio is called the tangent of the angle.

Tangent Ratio \rightarrow tan
Let $\triangle A B C$ be a right triangle with acute $\angle A$.
The tangent of $\angle A$ (written as tan A) is defined as follows:

$\tan A=\frac{\text { length of leg opposite } \angle \mathrm{A}}{\text { length of leg adjacent to } \angle \mathrm{A}}=\frac{\mathrm{BC}}{\mathrm{AC}}$

$$
\tan \mathrm{A}=\frac{\mathbf{o p p} .}{\text { adj } .}
$$

EXAMPLE 1 Find tangent ratios

Find $\tan S$ and $\tan R$. Write each answer as a fraction and as a Decimal rounded to four places.

Solution

$\tan \mathrm{S}=\frac{\text { opp. } \angle \mathrm{S}}{\text { adj. to } \angle \mathrm{S}}=\frac{\boxed{R T}}{\boxed{\boxed{S T}}}=\frac{\boxed{60}}{\boxed{25}}=\frac{\boxed{12}}{\boxed{5}}=\underline{2.4}$
$\tan R=\frac{\text { opp. } \angle R}{\text { adj. to } \angle R}=\frac{\boxed{S T}}{\boxed{R T}}=\frac{\boxed{25}}{\boxed{60}}=\frac{5}{\boxed{12}} \approx \frac{0.4167}{}$

EXAMPLE 2 Find a leg length

Find the value of x.

Solution

Use the tangent of an acute angle to find a leg length.

Solution

Multiply each side by 100 . Use a calculator and simplify.

EXAMPLE 4 Use a special right triangle to find a tangent

Use a special right triangle to find the tangent of a 30° angle.

Solution

Step 1 Choose $\sqrt{3}$ as the length of the shorter leg to simplify calculations. Use the $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem to find the length of the longer leg.

longer leg $=$ shorter leg $\cdot \sqrt{3}$

$$
x=\sqrt{3} \cdot \sqrt{3}=3
$$

Step 2 Find $\tan 30^{\circ}$. $\tan 30^{\circ}=\underline{\frac{\text { opp. }}{\text { adj. }}}$ Write ratio for tangent of 30°. $\tan 30^{\circ}=\underline{\frac{\sqrt{3}}{3}} \quad$ Substitute. The tangent of any 30° angle is $\frac{\sqrt{3}}{3} \approx 0.5774$.

ACHIVIHY RIGHT TRIANGLE RATIO

Materials: metric ruler, protractor, calculator STEP 1 Draw a 30° angle and mark a point every 5 centimeters on a side as shown. Draw perpendicular segments through the 3 points.
STEP 2 Measure the legs of each right triangle. Copy and complete the table.

Triangle	Adjacent leg	Opposite leg	$\frac{\text { Opposite leg }}{\text { Adjacent leg }}$
$\triangle A B C$	5 cm	$?$	$?$
$\triangle A D E$	10 cm	$?$	$?$
$\triangle A F G$	15 cm	$?$	$?$

STEP 3 Explain why the proportions $\frac{B C}{D E}=\frac{A C}{A E}$ and $\frac{B C}{A C}=\frac{D E}{A E}$ are true.
STEP 4 Make a conjecture about the ratio of the lengths of the legs in a right triangle. Test your conjecture by using different acute angle measures.

7.5 Cont.

(v) checkpolnt Find $\tan B$ and $\tan C$. Write each answer as a fraction and as a decimal rounded to four places.
1.

$\tan B=\frac{24}{7} \approx 3.4286, \tan C=\frac{7}{24} \approx 0.2917$

- checkpoint In Exercises 2 and 3, find the value of x. Round to the nearest tenth.

2.

$x \approx 6.6$

$x \approx 34.9$
4. In Example 4, suppose the length of the shorter leg is 1 instead of $\sqrt{3}$. Show that the tangent of 30° is still equal to $\frac{\sqrt{3}}{3}$.
longer leg $=$ shorter leg $\cdot \sqrt{3}$

$$
x=1 \cdot \sqrt{3}=\sqrt{3}
$$

$\tan 30^{\circ}=\frac{\text { opp. }}{\text { adj. }}=\frac{1}{\sqrt{3}}=\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{3}}{3}$

7.6 Apply the Sine and Cosine Ratios

Obj.: Use the sine and cosine ratios.

Key Vocabulary

- Sine, cosine - The sine and cosine ratios are trigonometric ratios for acute angles that involve the lengths of a leg and the hypotenuse of a right triangle.
- Angle of elevation - If you look up at an object, the angle your line of sight makes with a horizontal line is called the angle of elevation.
- Angle of depression - If you look down at an object, the angle your line of sight makes with a horizontal line is called the angle of depression.

Sine and Cosine Ratios $\rightarrow \underline{\sin } \& \underline{\text { cos }}$
Let $\triangle A B C$ be a right triangle with acute $\angle A$.
The sine of $\angle A$ and cosine of $\angle A$ (written $\underline{\sin } A$ and $\underline{\cos } A$) are defined as follows:

$\sin A==\frac{\text { length of leg opposite } \angle \mathrm{A}}{\text { length of hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AB}}$
$\cos A==\frac{\text { length of leg adjacent } \angle \mathrm{A}}{\text { length of hypotenuse }}=\frac{\mathrm{AC}}{\mathrm{AB}}$
$\sin \mathrm{A}=\frac{\text { opp } .}{\text { hyp. }}$

$\cos \mathrm{A}=\frac{\text { adj } .}{\text { hyp. }}$

EXAMPLE 1 Find sine ratios

Find $\sin U$ and $\sin W$. Write each answer as a fraction and as a decimal rounded to four places.
Solution

$$
\begin{aligned}
& \sin W=\frac{\text { opp. } \angle W}{\text { hyp. }}=\frac{\boxed{ } \text { UV }}{U W}=\frac{30}{34}=\frac{15}{17} \approx 0.8824
\end{aligned}
$$

EXAMPLE 2 Find cosine ratios

Find $\cos S$ and $\cos R$. Write each answer as a fraction and as a decimal rounded to four places.

Solution

$\cos \mathrm{S}=\frac{\text { adj. to } \angle \mathrm{S}}{\text { hyp. }} \frac{\sqrt[S T]{ }}{\frac{S R}{53}}=\frac{45}{50.8491}$
$\cos R=\frac{\text { adj. to } \angle R}{\text { hyp. }} \frac{R T}{S R}=\frac{28}{53} \approx$ \qquad

EXAMPLE 3 Use a trigonometric ratio to find a hypotenuse
Basketball You walk from one corner of a basketball court to the opposite corner. Write and solve a proportion using a trigonometric ratio to approximate the distance of the walk.

Solution

$$
\begin{aligned}
& \text { Multiply each side by } X
\end{aligned}
$$

\qquad - $\underline{\sin 62^{\circ}}=\underline{94}$ \qquad The distance of the walk is about 106.5 feet.

EXAMPLE 4 Find a hypotenuse using an angle of depression Roller Coaster You are at the top of a roller coaster 100 feet above the ground. The angle of depression is 44°. About how far do you ride down the hill?

Solution

$\sin 44^{\circ}$	$=\frac{\text { opp. }}{\frac{\text { hyp. }}{100}}$
$\sin 44^{\circ}$	$=\frac{10}{x}$
$x \cdot \sin 44^{\circ}$	$=100$

Write ratio for sine of 44°.
Substitute.
Multiply each side by X.
\qquad .

EXAMPLE 5 Find leg lengths using an angle of elevation
Railroad A railroad crossing arm that is 20 feet long is stuck with an angle of elevation of 35°. Find the lengths x and y.

Solution

Step 1 Find x.

$\sin 35^{\circ}=\frac{\text { opp. }}{\text { hyp. }}$	Write ratio for \qquad sine of \qquad 35°.	Step 2 Find y. $\cos 35^{\circ}=\frac{\mathrm{adj} .}{\text { hyp. }}$	Write ratio for cosine of 35°.
$\sin 35^{\circ}=\underline{\frac{x}{20}}$	Substitute.	$\cos 35^{\circ}=\frac{y}{20}$	Substitute.
$20 \cdot \sin 35^{\circ}=x$	Multiply each side by 20	$20 \cdot \cos 35^{\circ}=$	Multiply each side by 20
$11.5 \approx x$	Use a calculator to simplify.	$16.4 \approx y$	Use a calculator to simp

EXAMPLE 6 Use a special right triangle to find a sine and cosine

Use a special right triangle to find the sine and cosine of a 30° angle.
Solution
Use the $30^{\circ}-60^{\circ}-90^{\circ}$ Triangle Theorem to draw a right triangle with side lengths of $1, \sqrt{3}$, and 2 . Then set up sine and cosine ratios for the 30° angle.

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{\frac{\text { opp. }}{\text { hyp. }}}{\text { adj. }}=\underline{\frac{1}{2}}=0.5000 \\
& \cos 30^{\circ}=\frac{\sqrt{3}}{2} \approx \underline{0.8660}
\end{aligned}
$$

7.6 Cont.

C Checkpoint Find $\sin B, \sin C, \cos B$, and $\cos C$. Write each answer as a fraction and as a decimal rounded to four places.
1.

$\sin B=\frac{21}{29} \approx 0.7241, \sin C=\frac{20}{29} \approx 0.6897$,
$\cos B=\frac{20}{29} \approx 0.6897, \cos C=\frac{21}{29} \approx 0.7241$
2. In Example 3, use the cosine ratio to approximate the width of the basketball court.
about 50 feet
3. Suppose the angle of depression in Example 4 is 72°. About how far would you ride down the hill? about 105 feet
4. In Example 5, suppose the angle of elevation is 40°. What are the new lengths x and y ?

$$
x \approx 12.9, y \approx 15.3
$$

5. Use a special right triangle to find the sine and cosine of a 60° angle.
$\sin 60^{\circ} \approx 0.8660$
$\cos 60^{\circ}=0.5000$

7.7 Solve Right Triangles

Obj.: Use inverse tangent, sine, and cosine ratios.
Key Vocabulary

- Solve a right triangle - To solve a right triangle means to find the measures of all of its sides and angles.
- Inverse tangent - An inverse trigonometric ratio, abbreviated as $\tan ^{-1}$.
- Inverse sine - An inverse trigonometric ratio, abbreviated as $\sin ^{-1}$.
- Inverse cosine - An inverse trigonometric ratio, abbreviated as cos ${ }^{-1}$.

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.
Inverse Tangent If tan $A=x$, then $\tan ^{-1} x=m \angle A$.
Inverse Sine

$$
\text { If } \sin A=y, \text { then } \underline{\sin ^{-1} y}=m \angle A \text {. }
$$

Inverse Cosine If $\cos A=z$, then $\cos ^{-1} z=\underline{m} \angle \boldsymbol{A}$.

$$
\begin{aligned}
& A \\
& \tan ^{-1} \frac{B C}{A C}=m \angle A \\
& \sin ^{-1} \frac{B C}{A B}=\underline{m} \angle A \\
& \cos ^{-1} \frac{B C}{A B}=m \angle A
\end{aligned}
$$

EXAMPLE 1 Use an inverse tangent to find an angle measure
Use a calculator to approximate the measure of $\angle A$ to the nearest tenth of a degree.
Solution

Because $\tan A=\frac{16}{20}=\frac{4}{5}=\underline{0.8}$, $\tan ^{-1} 0.8=m \angle A$. Using a calculator, $\tan ^{-1} \overline{\underline{0.8}} \approx 38.65980825 \ldots$.

So, the measure of $\angle A$ is approximately \qquad 38.7° .

EXAMPLE 2 Use an inverse sine and an inverse cosine

Let $\angle A$ and $\angle B$ be acute angles in a right triangle. Use a calculator to approximate the measures of $\angle A$ and $\angle B$ to the nearest tenth of a degree.
a. $\sin A=0.76$
b. $\cos B=0.17$

Solution

$$
\text { a. } \begin{aligned}
m \angle A & =\sin ^{-1} 0.76 \\
& \approx 49.5^{\circ}
\end{aligned}
$$

b. $m \angle B=$ \qquad $\cos ^{-}$ 0.17

$$
\approx 80.2^{\circ}
$$

EXAMPLE 3 Solve a right triangle

Solve the right triangle. Round decimal answers to the nearest tenth.

Solution

Step 1 Find $m \angle B$ by using the Triangle Sum Theorem.

$$
\begin{aligned}
180^{\circ} & =90^{\circ}+23^{\circ}+m \angle B \\
\underline{67^{\circ}} & =m \angle B
\end{aligned}
$$

Step 2 Approximate $B C$ using a sine ratio.

$$
\begin{array}{rll}
\frac{\sin 23^{\circ}}{}=\frac{B C}{40} & \text { Write ratio for } \sin 23^{\circ} . \\
40 \cdot \sin 23^{\circ} & =B C & \text { Multiply each side by } 40 \\
\frac{40 \cdot 0.3907}{} \approx B C & \text { Approximate } \sin 23^{\circ} .
\end{array}
$$

Step 3 Approximate $A C$ using a cosine ratio.

$$
\cos 23^{\circ}=\frac{A C}{40}
$$

$$
40 \cdot \cos 23^{\circ}=A C
$$

—00000

$$
40 \cdot 0.9205 \approx A C
$$

$36.8 \approx A C$

Write ratio for $\cos 23^{\circ}$.
Multiply each side by 40 .
Approximate $\cos 23^{\circ}$.
Simplify and round answer. The angle measures are $23^{\circ}, 67^{\circ}$, and 90°. The side lengths are 40 feet, about 15.6 feet, and about 36.8 feet.

EXAMPLE 4 Solve a real-world problem

Model Train You are building a track for a model train. You want the track to incline from the first level to the second level, 4 inches higher, in 96 inches. Is the angle of elevation less than 3° ?

Solution

Use the tangent and inverse tangent ratios to find the
 degree measure x of the incline.
$\tan x^{\circ}=\underline{\frac{\text { opp. }}{\text { adj. }}}=\underline{\frac{4}{96}} \approx \underline{0.0417}$
$x \approx \tan ^{-1} 0.0417 \approx 2.4$
The incline is about 2.4°, so it is less than 3°.
Checkpoint Complete the following exercise.

1. In Example 1, use a calculator and an inverse tangent to approximate $m \angle C$ to the nearest tenth of a degree.
$m \angle C \approx 51.3$
2. Find $m \angle D$ to the nearest tenth of a degree if $\sin D=0.48$.
$m \angle D \approx 28.7^{\circ}$
3. Solve a right triangle that has a 50° angle and a 15 inch hypotenuse.
Angles: $90^{\circ}, 50^{\circ}$, and 40°; Side lengths: 15 in ., about 9.6 in ., and about 11.5 in .
4. In Example 4, suppose another incline rises 8 inches in 120 inches. Is the incline less than 3° ?

No, the incline is about 3.8°.

