1.4 Showing Triangles are Similar: SSS and SAS

Goal

Show that two triangles are similar using the SSS and SAS Similarity Theorems.

Key Words

- similar polygons p. 365

The triangles in the Navajo rug look similar. To show that they are similar, you can use the definition of similar polygons or the AA Similarity Postulate.

In this lesson, you will learn two new methods to show that two triangles are similar.

THEOREM 7.2

Side-Side-Side Similarity Theorem (SSS)

Words If the corresponding sides of two triangles are proportional, then the triangles are similar.

Symbols if $\frac{F G}{A B}=\frac{G H}{B C}=\frac{H F}{C A}$, then $\triangle A B C \sim \triangle F G H$.

EXAMPLE 1 Use the SSS Similarity Theorem

Determine whether the triangles are similar. If they are similar, write a similarity statement and find the scale factor of Triangle B to Triangle A.

Solution

Find the ratios of the corresponding sides.

$$
\begin{array}{l|l}
\frac{S U}{P R}=\frac{6}{12}=\frac{6 \div 6}{12 \div 6}=\frac{1}{2} & \\
\frac{U T}{R Q}=\frac{5}{10}=\frac{5 \div 5}{10 \div 5}=\frac{1}{2} & \begin{array}{l}
\text { All three ratios are equal. } \\
\begin{array}{l}
\text { So, the corresponding sides of } \\
\text { the triangles are proportional. }
\end{array} \\
\frac{T S}{Q P}=\frac{4}{8}=\frac{4 \div 4}{8 \div 4}=\frac{1}{2}
\end{array}
\end{array}
$$

$A N S W E R>$ By the SSS Similarity Theorem, $\triangle P Q R \sim \triangle S T U$. The scale factor of Triangle B to Triangle A is $\frac{1}{2}$.

EXAMPLE 2 Use the SSS Similarity Theorem

Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$?

Student Help

Study Tip
When using the SSS Similarity Theorem, compare the shortest sides, the longest sides, and then the remaining sides.

Solution

(1) Look at the ratios of corresponding sides in $\triangle A B C$ and $\triangle D E F$.

- Shortest sides Longest sides Remaining sides

$$
\frac{D E}{A B}=\frac{4}{6}=\frac{2}{3} \quad \frac{F D}{C A}=\frac{8}{12}=\frac{2}{3} \quad \frac{E F}{B C}=\frac{6}{9}=\frac{2}{3}
$$

$A N S W E R$ Because all of the ratios are equal, $\triangle A B C \sim \triangle D E F$.
(2) Look at the ratios of corresponding sides in $\triangle A B C$ and $\triangle G H J$.

Shortest sides Longest sides Remaining sides

$$
\frac{G H}{A B}=\frac{6}{6}=\frac{1}{1} \quad \frac{J G}{C A}=\frac{14}{12}=\frac{7}{6} \quad \frac{H J}{B C}=\frac{10}{9}
$$

ANSWER Because the ratios are not equal, $\triangle A B C$ and $\triangle G H J$ are not similar.

Student Help

LOOK BACK
To review included angles, see p. 242.

Use the SSS Similarity Theorem

Determine whether the triangles are similar. If they are similar, write a similarity statement.

1.

2.

THEOREM 7.3

Side-Angle-Side Similarity Theorem (SAS)

Words If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides that include these angles are proportional, then the triangles are similar.

Symbols If $\angle X \cong \angle M$ and $\frac{P M}{Z X}=\frac{M N}{X Y}$, then $\triangle X Y Z \sim \triangle M N P$.

EXAMPLE 3 Use the SAS Similarity Theorem

Determine whether the triangles are similar. If they are similar, write a similarity statement.

Solution

$\angle C$ and $\angle F$ both measure 61°, so $\angle C \cong \angle F$.
Compare the ratios of the side lengths that include $\angle C$ and $\angle F$.

$$
\text { Shorter sides } \frac{D F}{A C}=\frac{5}{3} \quad \text { Longer sides } \frac{F E}{C B}=\frac{10}{6}=\frac{5}{3}
$$

The lengths of the sides that include $\angle C$ and $\angle F$ are proportional. ANSWER By the SAS Similarity Theorem, $\triangle A B C \sim \triangle D E F$.

EXAMPLE 4 Similarity in Overlapping Triangles

Show that $\triangle V Y Z \sim \triangle V W X$.

Solution

Student Help

Visual Strategy
Redraw overlapping triangles as two separate triangles, as shown on p. 356 .

Separate the triangles, $\triangle V Y Z$ and $\triangle V W X$, and label the side lengths.

$\angle V \cong \angle V$ by the Reflexive Property of Congruence.

Shorter sides

$$
\frac{V W}{V Y}=\frac{4}{4+8}=\frac{4}{12}=\frac{1}{3}
$$

Longer sides

$$
\frac{X V}{Z V}=\frac{5}{5+10}=\frac{5}{15}=\frac{1}{3}
$$

The lengths of the sides that include $\angle V$ are proportional.
ANSWER By the SAS Similarity Theorem, $\triangle V Y Z \sim \triangle V W X$.

Checkyplint Use the SAS Similarity Theorem

Determine whether the triangles are similar. If they are similar, write a similarity statement. Explain your reasoning.
3. G

4. P

7.4 Showing Triangles are Similar: SSS and SAS

7.4 Exercises

Guided Practice

Vocabulary Check

1. If two sides of a triangle are proportional to two sides of another triangle, can you conclude that the triangles are similar?

Skill Check In Exercises 2 and 3, determine whether the triangles are similar. If they are similar, write a similarity statement.
2.

3.

4. Is either $\triangle L M N$ or $\triangle X Y Z$ similar to $\triangle A B C$? Explain.

Practice and Applications

Extra Practice

See p. 688.

SSS Similarity Theorem Determine whether the two triangles are similar. If they are similar, write a similarity statement and find the scale factor of Triangle B to Triangle A.
5.

7.

8.

6.

9.

10.

Example 1: Exs. 5-10, 21-26
Example 2: Exs. 11-13
Example 3: Exs. 14-18, 21-26
Example 4: Exs. 19, 20 , 26-29

SSS Similarity Theorem Is either $\triangle R S T$ or $\triangle X Y Z$ similar to $\triangle A B C ?$ Explain your reasoning.
11.

12.

13.

14. A-Frame Building Suppose you are constructing an A-frame home that is modeled after a ski lodge. The ski lodge and home are shown below. Are the triangles similar? Explain your reasoning.

SAS Similarity Theorem Determine whether the two triangles are similar. If they are similar, write a similarity statement.
15.

16.

17.

18.

Student Help

Visual Strategy
Redraw overlapping triangles as two separate triangles, as shown on p .356 .

SHUFFLEBOARD is played on a long flat court. Players earn points by using sticks called cues to push circular disks onto a scoring area at the opposite end of the court.

Overlapping Triangles Show that the overlapping triangles are similar. Then write a similarity statement.
19.

20.

Determining Similarity Determine whether the triangles are similar. If they are similar, state the similarity and the postulate or theorem that justifies your answer.
21.

23.

22.

24.

25.

26.

Shuffleboard In the portion of a shuffleboard court shown, $\frac{A D}{A B}=\frac{D E}{B C}$.
27. What piece of information do you need in order to show that $\triangle A D E \sim \triangle A B C$ using the SSS Similarity Theorem?
28. What piece of information do you need in order to show that $\triangle A D E \sim \triangle A B C$ using the SAS Similarity Theorem?

29. You be the Judge Jon claims that $\triangle S U V$ is similar to $\triangle S R T$ when $x=6$. Dave believes that the triangles are similar when $x=5$. Who is right? Explain your reasoning.

Technology In Exercises 30 and 31, use geometry software to complete the steps below.
(1) Draw $\triangle A B C$.
(2) Construct a line perpendicular to $\overline{A B}$ through C. Label the intersection D.
(3) Measure $\overline{C A}, \overline{C D}, \overline{C B}$, and $\overline{B D}$.
(4) Calculate the ratios $\frac{C A}{C D}$ and $\frac{C B}{B D}$.
(5) Drag point C until $\frac{C A}{C D}=\frac{C B}{B D}$.

30. For what measure of $\angle A C B$ are $\triangle A B C$ and $\triangle C B D$ similar?
31. What theorem supports your answer to Exercise 30?

Standardized Test Practice

32. Multiple Choice Which method can be used to show that the two triangles at the right are similar?
(A) AA
(B) SSS
(C) SAS
(D) Cannot be shown

33. Multiple Choice In the diagram, $\triangle M N P \sim \triangle R S T$. Find the value of x.
(F) 20
(G) 24
(H) 30
(J) 32

Mixed Review Using Bisectors In the diagram below, $\overrightarrow{T V}$ bisects $\angle S T U$. (Lesson 5.6)
34. $\overline{S T} \cong$?
35. $\angle V T U \cong$?
36. $m \angle S T U=$?

37. Is $\angle T V S$ congruent to $\angle T V U$? Explain your reasoning.

Solving Proportions Solve the proportion. (Lesson 7.1)
38. $\frac{b}{12}=\frac{5}{6}$
39. $\frac{24}{y}=\frac{4}{9}$
40. $\frac{5}{8}=\frac{c}{56}$
41. $\frac{5}{2}=\frac{60}{a}$

Algebra Skills Writing Decimals as Fractions Write the decimal as a fraction

 in simplest form. (Skills Review, p. 657)42. 0.4
43. 0.25
44. 0.64
45. 0.88
46. 0.26
47. 0.55
48. 0.7
49. 0.34
