Similarity in Right Triangles

What You'll Learn

- To find and use relationships in similar right triangles
. . . And Why
To find a distance indirectly, as in Example 3

Check Skills You'll Need

Algebra Solve each proportion.

1. $\frac{x}{8}=\frac{18}{24} 6$
2. $\frac{2}{3}=\frac{x}{7} \frac{14}{3}$
3. $\frac{15}{4}=\frac{18}{x} \frac{24}{5}$
4. $\frac{51}{x}=\frac{17}{13} 39$
5. $\frac{4}{10}=\frac{x}{5} 2$
6. $\frac{3}{m}=\frac{9}{8} \frac{8}{3}$
7. Draw a right triangle. Label the triangle $\triangle A B C$ with right angle $\angle C$. Draw the altitude to the hypotenuse. Label the altitude $\overline{C D}$. Name the two smaller right triangles that are formed. See back of book.

New Vocabulary

- geometric mean

Using Similarity in Right Triangles

Hands-On Activity: Similarity in Right Triangles

- Draw one diagonal on a rectangular sheet of paper. Cut the paper on the diagonal to make two congruent right triangles.
- In one of the triangles, use paper folding to locate the altitude to the hypotenuse. Cut the triangle along the altitude to make two smaller right triangles.
- Label the angles of the three triangles as shown.
- Compare the angles of the three triangles by placing the angles on top of one another.

1. Which angles have the same measure as $\angle 1$? $\angle 4$ and $\angle 7$
2. Which angles have the same measure as $\angle 2$? $\angle 6$ and $\angle 8$
3. Which angles have the same measure as $\angle 3$? $\angle 5$ and $\angle 9$
4. Based on your results, what is true about the three triangles?
5. Use the diagram at the right to complete the similarity statement. $\triangle R S T \sim \triangle$? $\sim \triangle$? RWS; SWT

Differentiated Instruction

Solutions for All Learners

Special Needs L1

Have students copy $\triangle A B C$ three times. Students use color to indicate: (1) two pairs of \cong angles in $\triangle A B C$ and $\triangle A C D ;(2)$ two pairs of \cong angles in $\triangle A B C$ and $\triangle C B D$; and (3) two pairs of \cong angles in $\triangle A C D$ and $\triangle C B D$.
learning style: visual

Below Level L2

Have students illustrate each theorem with a diagram and summarize each using proportions or similarity statements.

1. Plan

Objectives

1 To find and use relationships in similar right triangles

Examples

1 Finding the Geometric Mean
2 Applying Corollaries 1 and 2
3 Real-World Connection

Brovessional
 Math Background

The geometric mean g of two positive numbers a and b has the algebraic formulation $g=\sqrt{a b}$, but the theorems in this lesson show how the mean can be viewed geometrically. The geometric mean of n positive numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is defined as $g=\sqrt[n]{a_{1} a_{2} a_{3} \cdot \ldots \cdot a_{n}}$.

More Math Background: p. 364D

Lesson Planning and Resources

See p. 364E for a list of the resources that support this lesson.

Bell Ringer Practice

© Check Skills You'll Need
For intervention, direct students to:

Ratios and Proportions

Lesson 7-1: Example 3
Extra Skills, Word Problems, Proof Practice, Ch. 7

Medians and Altitudes

Lesson 5-3: Example 4

Extra Skills, Word Problems, Proof Practice, Ch. 5

2. Teach

Guided Instruction

Hands-On Activity

Suggest that students use single and double arcs indicating congruent acute angles to help them order the letters of the similar triangles correctly.

In discussing the proof of Theorem 7-3, have students refer to the right triangles they formed in the Hands-On Activity. Ask: Which property allows you to conclude that the corresponding angles of the smaller triangles are congruent? Transitive Property of Congruence

ExADPLIE
 Error Prevention

Check that students do not calculate the arithmetic mean, or average, when asked for the geometric mean. To help distinguish the two terms, have students calculate examples of each.

Visual Learners

Discuss as a class visual ways to remember Corollaries 1 and 2.

Ex:MPLE

Students may have trouble remembering the corollaries. Remind them that they can use Theorem 7-3 to write similarity statements for three triangles and then derive the proportions from the similar triangles.

ㅊxAMPLE

Have students explain why and how they can use Pythagorean triples to find $A B$.

Key Concepts

$\xrightarrow{\text { Proof }}$

Vocabulary Tip

In the proportion

$$
\frac{a}{b}=\frac{c}{d}
$$

b and c are the means.

Proof of Theorem 7-3

Given: Right triangle, $\triangle A B C$, with
$\overline{C D}$ the altitude to the hypotenuse
Prove: $\triangle A B C \sim \triangle A C D \sim \triangle C B D$

Proof: Both smaller triangles are right triangles. Each also shares an angle with $\triangle A B C$. Thus each smaller triangle is similar to $\triangle A B C$ by the $\mathrm{AA} \sim$ Postulate. Since both smaller triangles are similar to $\triangle A B C$, their corresponding angles are congruent. Thus they are similar to each other.

Proportions in which the means are equal occur frequently in geometry. For any two positive numbers a and b, the geometric mean of a and b is the positive number x such that $\frac{a}{x}=\frac{x}{b}$. Note that $x=\sqrt{a b}$.

1 Example Finding the Geometric Mean

Algebra Find the geometric mean of 4 and 18.

$$
\begin{aligned}
\frac{4}{x} & =\frac{x}{18} & & \text { Write a proportion. } \\
x^{2} & =72 & & \text { Cross-Product Property } \\
x & =\sqrt{72} & & \text { Take the square root. } \\
x & =6 \sqrt{2} & & \text { Write in simplest radical form. }
\end{aligned}
$$

- The geometric mean of 4 and 18 is $6 \sqrt{2}$.

Quick Check
Find the geometric mean of 15 and 20. $10 \sqrt{3}$

Two important corollaries of Theorem 7-3 involve a geometric mean.

Key Concepts

Corollary Corollary 1 to Theorem 7-3

The length of the altitude to the hypotenuse of a right triangle is the geometric mean of the lengths of the segments of the hypotenuse.

Proof of Corollary 1

Given: Right triangle, $\triangle A B C$, with $\overline{C D}$ the altitude to the hypotenuse
Prove: $\frac{A D}{C D}=\frac{C D}{D B}$

Proof: By Theorem 7-3, $\triangle A C D \sim \triangle C B D$. Since corresponding sides of similar triangles are proportional, $\frac{A D}{C D}=\frac{C D}{D B}$.

Difierentiated Instruction solutions for all Learners

Advanced Learners L4

After Example 1, challenge students to prove that the geometric mean of two numbers is always less than or equal to their arithmetic mean.

English Language Learners ELL
The name geometric mean has a precise definition. Remind students that b and c are the means in $\frac{a}{b}=\frac{c}{d}$; so x is the mean for $\frac{a}{x}=\frac{x}{d}$. The value of x in the proportion $\frac{a}{x}=\frac{x}{d}$ is $\sqrt{a b}$.

Corollary Corollary 2 to Theorem 7-3

The altitude to the hypotenuse of a right triangle separates the hypotenuse so that the length of each leg of the triangle is the geometric mean of the length of the adjacent hypotenuse segment and the length of the hypotenuse.

Proof

Proof of Corollary 2

Given: Right triangle, $\triangle A B C$, with $\overline{C D}$ the altitude to the hypotenuse
Prove: $\frac{A D}{A C}=\frac{A C}{A B}, \frac{D B}{C B}=\frac{C B}{A B}$

Proof: By Theorem 7-3, $\triangle A C D \sim \triangle A B C$. Their corresponding sides are proportional, so $\frac{A D}{A C}=\frac{A C}{A B}$. Similarly, $\triangle C B D \sim \triangle A B C$ and $\frac{D B}{C B}=\frac{C B}{A B}$.

Online
active math

For: Similarity Activity Use: Interactive Textbook, 7-4

2 Exajuplz

Applying Corollaries 1 and 2
Algebra Solve for x and y.

Use Corollary 2 to solve for x :
Use Corollary 1 to solve for y :

$$
\begin{aligned}
\frac{4}{x} & =\frac{x}{4+5} & \leftarrow \text { Write a proportion. } \rightarrow & \frac{4}{y} & =\frac{y}{5} \\
x^{2} & =36 & \leftarrow \text { Cross-Product Property } \rightarrow & y^{2} & =20 \\
x & =6 & \leftarrow \text { Take the square root. } \rightarrow & y & =2 \sqrt{5}
\end{aligned}
$$

(8) Quick Check

Solve for x and y.

$$
x=8 ; y=4 \sqrt{3}
$$

Real-World Connection
Paddling a canoe burns about 175 calories per hour.

(3) EXANUPLE

Real-World Connection

Recreation The $300-\mathrm{m}$ path to the information center and the $400-\mathrm{m}$ path to the canoe rental dock meet at a right angle at the parking lot. Marla walks straight from the parking lot to the lake as shown, where a sign tells her that she is 320 m from the dock. How far is Marla from the information center?

$$
\begin{array}{rlrl}
\frac{x}{300} & =\frac{300}{x+320} & & \text { Corollary 2 } \\
x^{2}+320 x & =90,000 & & \text { Cross-Product Property } \\
x^{2}+320 x-90,000 & =0 & & \text { Standard Form } \\
x & =180 & & \text { Quadratic Equation } \\
\text { Solve. Use a calculator } \\
& & \text { (see p. 372). }
\end{array}
$$

Marla is 180 m from the information center.

Quick Check
How far did Marla walk from the parking lot to the lake? 240 m

3. Practice

EXERCISES

Practice and Problem Solving

A Practice by Example

Example 1
(page 392)
for Help

Example (page 393)

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 8, 18, 23, 38, 39.

Exercises 15-20 Have students copy the diagrams and indicate congruent angles to help them identify the hypotenuses of the similar triangles.

Exercise 24 Ask: What special type of right triangle must this be? isosceles

Connection to Algebra

Exercise 37 Suggest that students use x and $2 x$ for the segments of the hypotenuse.

Exercise 38 Have students stand in place and try this measurement technique by using the corner of a 3 by 5 index card.

394
Example 3
(page 393)

24a.
Apply Your Skills

b. They are $=$.

Explanations may vary.
Sample: The altitude and hyp. segments are \cong sides of two isosc. $\mathbb{\triangle}$

Vocabulary Tip

Respectively in Exercise 25 means you match the lists in the order named: $A(4,2), D(4,6), B(4,15)$.

1. 4 and 96
2. 4 and $10 \quad 2 \sqrt{10}$
3. 4 and $124 \sqrt{3}$
4. 3 and 4812
5. 7 and $5614 \sqrt{2}$
6. 5 and 12525
7. 9 and $246 \sqrt{6}$
8. 7 and $93 \sqrt{7}$

Algebra Refer to the figure to complete each proportion.
9. $\frac{r}{h}=\frac{h}{\square} s$
10. $\frac{c}{a}=\frac{a}{\square} r$
11. $\frac{\square}{b}=\frac{b}{s} c$
12. $\frac{r}{\square}=\frac{\square}{c} \boldsymbol{a} ; \boldsymbol{a}$
13. $\frac{r}{h}=\frac{\square}{s} h$
14. $\frac{s}{b}=\frac{\square}{c} \boldsymbol{b}$

Algebra Solve for \boldsymbol{x}.

15. 9

16.

17. 10

18.

19. 12

20. 60

21. a. Civil Engineering Study the plan at the right. A service station will be built on the highway, and a road will connect it with Cray. How far from Blare should the service station be located so that the proposed road will be perpendicular to the highway? 18 mi
b. How long will the new road be? 24 mi
22. Complete:
$\triangle J K L \sim \triangle \underset{K}{?} \sim \triangle \underline{?}$

23. a. The altitude to the hypotenuse of a right triangle divides the hypotenuse into segments 2 cm and 8 cm long. Find the length h of the altitude. 4 cm
b. Drawing Use the value you found for h in part (a), along with the lengths 2 cm and 8 cm , to draw the right triangle accurately. b-c. See margin.
c. Writing Explain how you drew the triangle in part (b).
24. a. Open-Ended Draw a right triangle so that the altitude from the right angle to the hypotenuse bisects the hypotenuse. a-b. See left.
b. How does the length of the altitude compare with the lengths of the segments of the hypotenuse? Explain.
25. Coordinate Geometry $\overline{C D}$ is the altitude to the hypotenuse of right $\triangle A B C$. The coordinates of A, D, and B are $(4,2),(4,6)$, and $(4,15)$, respectively. Find all possible coordinates of point $C .(10,6),(-2,6)$

Algebra Find the geometric mean of each pair of numbers.
26. 3 and $164 \sqrt{3}$
27. 4 and 4914
28. $\sqrt{8}$ and $\sqrt{2} 2$
29. $\sqrt{28}$ and $\sqrt{7}$
30. $\frac{1}{2}$ and 21
31. 5 and 1.252 .5
32. 1 and 1000
33. 11 and 1331121
$10 \sqrt{ } 10$

23. b.

c. Answers may vary. Sample: Draw a $10-\mathrm{cm}$ segment; 2 cm from one endpoint, construct a \perp of length 4 cm . Connect to form a Δ.

34.

35.

36.

$x=12 ; y=3 \sqrt{7} ; z=4 \sqrt{7}$
$x=12 \sqrt{5} ; y \stackrel{x}{=} 12 ; z=6 \sqrt{5}$
37. Algebra The altitude to the hypotenuse of a right triangle divides the hypotenuse into segments with lengths in the ratio $1: 2$. The length of the altitude is 8 . How long is the hypotenuse? $12 \sqrt{ } 2$
38. Multiple Choice To estimate the height of a totem pole, Jorge uses a small square of plastic. He holds the square up to his eyes and walks backward from the pole. He stops when the bottom of the pole lines up with the bottom edge of the square and the top of the pole lines up with the top edge of the square. Jorge's eye level is about 2 m from the ground. He is about 3 m from the pole. Which is the best estimate for the height of the totem pole? C
(A) 4.5 m
(B) 5 m
(C) 6.5 m
(D) 9 m

For a right triangle, denote lengths as follows: ℓ_{1} and ℓ_{2} the legs, \boldsymbol{h} the hypotenuse, \boldsymbol{a} the altitude, and \boldsymbol{h}_{1} and $\boldsymbol{h}_{\mathbf{2}}$ the hypotenuse segments determined by the altitude. For the two given measures, find the other four. Use simplest radical form.
39. $h=2, h_{1}=1$
40. $h_{1}=4, h_{2}=9$
41. $a=6, h_{1}=6$
39-46. See margin.
43. $h=13, \ell_{2}=12$
44. $\ell_{1}=4, h_{1}=3$
45. $a=8, h_{1}=16$
46. $h_{1}=3, \ell_{2}=6 \sqrt{3}$

Exercise 38

Proof 47. Given: isosceles right $\triangle A B C$
Prove: $A B=x \sqrt{2}$ 47-48. See
 back of book.

Prove: $h=10 \sqrt{3}$

Homework Help
Visit: PHSchool.com
Web Code: aue-0704
(C) Challenge

52a.

Given: rt. $\triangle A B C$ with alt. $\overline{C D}$;
Prove: $A C \cdot C B=A B \cdot C D$
52b. Yes; $\triangle A C B \sim \triangle C D B$, so $\frac{A C}{A B}=\frac{C D}{C B}$.

Algebra Find the value of \boldsymbol{x}.
49. 3

50.4

51. 4.5
52. a. Lauren thinks she has found a new corollary: The product of the lengths of the two legs of a right triangle is equal to the product of the lengths of the hypotenuse and the altitude to the hypotenuse. Draw a figure for this corollary. Write the Given information and what you are to Prove.
b. Critical Thinking Is Lauren's corollary true? Explain. See left.
53. In the diagram $c=q+r$. Also, Corollary 2 to

Theorem 7-3 gives you two more equations involving a, b, c, q, and r. The result is a system of three equations in five variables.
a. Reduce the system to one equation in three variables by eliminating q and r. a. Check $\begin{aligned} & \text { students' work. }\end{aligned}$

b. State in words what the one resulting equation tells you. The square of the hypotenuse equals the sum of the squares of the legs.
39. $\ell_{1}=\sqrt{2}, \ell_{2}=\sqrt{2}$,
$a=1, h_{2}=1$
40. $\begin{aligned} & \ell_{1}=2 \sqrt{13}, \ell_{2}=3 \sqrt{13}, \\ & h=13, a=6\end{aligned}$

$$
\begin{array}{ll}
\text { 41. } & \ell_{1}=\ell_{2}=6 \sqrt{2} \\
& h=12, h_{2}=6 \\
\text { 42. } & \ell_{2}=2 \sqrt{3}, h=4 \\
& a=\sqrt{3}, h_{1}=1, h_{2}=3
\end{array}
$$

43. $\ell_{1}=5, a=\frac{60}{13}, h_{1}=\frac{25}{13}$, $h_{2}=\frac{144}{13}$
44. $\ell_{2}=\frac{4 \sqrt{7}}{3}, h=\frac{16}{3}$,

$$
a=\sqrt{7}, h_{2}=\frac{7}{3}
$$

Lesson Quiz

1. Find the geometric mean of 32 and 2. 8
2. Find the geometric mean of 6 and 20. 2 $\sqrt{30}$
3. Solve for x.

$5 \sqrt{3}$
4. Solve for x and y.

$$
x=9, y=16
$$

5. The roof of a house forms a right angle, with each side of the roof measuring 28 ft in length. Find the width and height of the roof.

width $=28 \sqrt{2} \mathrm{ft}$,
height $=14 \sqrt{ } 2 \mathrm{ft}$

Alternative Assessment

Have students work in pairs to calculate $A M, B M, C M$, and $D M$ in kite $A B C D$.

$A M=\frac{128}{17}, B M=\frac{240}{17}$,
$C M=\frac{450}{17}, D M=\frac{240}{17}$
45. $\ell_{1}=8 \sqrt{5}, \ell_{2}=4 \sqrt{5}$
$h_{2}=4, h=20$
46. $\ell_{1}=6, h=12$,
$a=3 \sqrt{3}, h_{2}=9$

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 411
- Test-Taking Strategies, p. 406
- Test-Taking Strategies with Transparencies

Proof 54. Given: equilateral $\triangle A B C$
Prove: $h=x \sqrt{3}$

Test Prep

Multiple Choice
55. What is the geometric mean of 12 and 18? D
A. 1.5
B. $\sqrt{6}$
C. 15
D. $6 \sqrt{6}$
56. What is the geometric mean of 2 and 36? G
F. 17
G. $6 \sqrt{2}$
H. 38
J. $2 \sqrt{6}$
57. Solve for m. C
A. 7
B. 15
C. 20
D. 25

58. The altitude to the hypotenuse of a right triangle divides the hypotenuse into segments of lengths 5 and 15 . What is the length of the altitude? H
F. 3
G. 10
H. $5 \sqrt{3}$
J. $5 \sqrt{5}$

Short Response
59. a. Explain how you could solve for x. b. What is the value of x ?
a-b. See margin.

Mixed Review

for
Help
60a. $\triangle R N M \sim \triangle P N Q$
b. AA ~ Post.

61a. $\triangle P R Q \sim \triangle A C B$
b. $\mathrm{SSS} \sim$ Thm.

Lesson 6-2 x^{2}
Algebra Find the values of \boldsymbol{x} and \boldsymbol{y} in $\square R S T V$
63. $R P=2 x, P T=y+2, V P=y, P S=\begin{gathered}x=5 ; y=8 \\ x+3\end{gathered}$
64. $R P=4 x, P T=3 y-3, V P=2 x+3, P S=y+6$

65. $R V=2 x+3, V T=5 x, T S=y+5, S R=4 y-1 x=3 ; y=4$

Lesson 5-1 Find the value of \boldsymbol{x}.
66.

67.

Chapter 7 Similarity
59. [2] a. Solve for x by making a prop. from similar rt. ©. The proportion is $\frac{x}{13}=\frac{9}{x}$. Now cross multiply and solve for x.

