CS 1068

| ecture 7: Introduction to
Recursion

Thursday, July oth, 2017

Programming Abstractions
Summer 2017

Stanford University
Computer Science Department

Lecturer: Chris Gregg

reading:
Programming Abstractions in C++, Chapter 5.4-5.6

Rl (‘I }.{\\;1' ».\
RECI [(_\'l()\
RECURSION
RECURSION

RECURSION
=
RECURSION

Here we go again

RECURSION

Here we go again

RECURSION

Here we go again

loday's lopics

¢ | Ogistics:

e Handout in class: http://web.stanford.edu/class/cs106b//lectures/7 -
Intro ToRecursion/code/handout.pdf

o \Writing a simple program all by yourself

e Serafini Due Wednesday, July 12th, noon
e One submission of two files (wordLadder, Ngrams)

e Recursion!

http://web.stanford.edu/class/cs106b//lectures/7-IntroToRecursion/code/handout.pdf
http://web.stanford.edu/class/cs106b//lectures/7-IntroToRecursion/code/handout.pdf

loday's lopics

e [here was a question last quarter on Piazza:

B question

Ordering in Sets

For booleans and integers/doubles, how would the set be ordered? For integers would it be from most negative to positive???

lecture

m good question Updated 9 hours ago by (anon. to classmates)

e [his Is a great opportunity to write a quick program to test this yourself! Let's
see how we might do that!

'ﬁ

A Little Demo

The Towers of Hanol Puzzle

A Little Demo

By the end of today, we will be able to write this program, and
you may talk about the algorithm in section

QO Towers of Hanoi

Towers of Hanol

Here Is the way the game Is playeaq:

Move this Tower..

Towers of Hanol

Here Is the way the game Is playeaq:

Move this Tower.. .To this spindle,

Towers of Hanol

Here Is the way the game Is playeaq:

Move this Tower.. .To this spindle,

Towers of Hanol

Here Is the way the game Is playeaq:

Towers of Hanol

Here Is the way the game Is playeaq:

Towers of Hanol

Here Is the way the game Is playeaq:

lllegal move!

Towers of Hanol

Here Is the way the game Is playeaq:

Towers of Hanol

Here Is the way the game Is playeaq:

Towers of Hanol

Here Is the way the game Is playeaq:

etc.

What is Recursion?

© " GL recursion

Web Images Videos Maps Shopping More ~ Search tools

About 2,200,000 results (0.42 seconds)

Did you mean: recursion

Recursion - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Recursion ¥ Wikipedia
Recursion is the process of repeating items in a self-similar way. For instance, when the

surfaces of two mirrors are exactly parallel with each other the nested ...

Recursion (computer science) Category:Recursion
Recursion in computer science is a Wikimedia Commons has media

el el calla o A . Al A wamlambad b Ma i caaataea " Thh caam e

What is Recursion?

Recursion:

A problem solving technigue in which problems are solved by
reducing them to smaller problems of the same form.

Why Recursion”

1. Great style
2. Powertul tool
3. Master ot control flow

Many simple examples

Recursion In Programming

N programming, recursion simply means that a function
will call itself:

. . ULT‘.
int main() A SEG(FA

maln () ’ this is a terrible example, and will crash!)
return 0;

h

main() isn't supposed to call itself, but it we do write this
program, what happens®?
We'll get back to programming in a minute...

Recursion In Real Life

- T -

Recursion SRR Py P Bk F T
* How to solve a jigsaw puzzle 3 S bt A«C; 150 Sal Brd ~»;>:~.:"':"‘;'«ff'“f‘."fj{

recursively (“solve the puzzle”

* s the puzzle finished? If so, stop.

» FInd a correct puzzle piece and
place .

» Solve the puzzle

ridiculously hard puzzle

Recursion In Real Life

L et’'s recurse on you.

How many students total are directly benhind you
N your "column” of the classroom?

Rules:
1. You can see only the people directly In front and behind you.
SO, you can't just look back and count.
2. You are allowed to ask questions of the people in front /
pbehind you.

How can we solve this problem recursively’?

Recursion In Real Life

ANSwer:
1. The first person [ooks benind them, and sees If
there Is a person there. If not, the person

responds 0",
2. 1f there Is a person, repeat step 1, and walt for

a response.
3. ONnce a person receives a response, they add

1 for the person behind them, and they

respond to the person that asked them.

N C++:

int numStudentsBehind(Student curr) {
if (noOneBehind(curr)) {
return 0;
} else {
Student personBehind = curr.getBehind();
return numStudentsBehind(personBehind) + 1

} Recursive calll

N C++:

1 he structure of recursive functions is typically like the following:

recursiveFunction() {
if (test for simple case) {
Compute the solution without recursion
} else {
Break the problem into subproblems of the same form
Call recursiveFunction() on each subproblem
Reassamble the results of the subproblems

N C++:

Every recursive algorithm involves at least two cases:

e pase case: [he simple case; an occurrence that can be
answered directly; the case that recursive calls reduce to.

® recursive case: a more complex occurrence of the problem that
cannot be directly answered, but can be described In terms of

smaller occurrences of the same problem.

N C++:

int numStudentsBehind(Student curr) {
if (noOneBehind(curr)) {
return 0;
} else {
Student personBehind = curr.getBehind();
return numStudentsBehind(personBehind) + 1

Base case

N C++:

int numStudentsBehind(Student curr) {
if (noOneBehind(curr)) {
return 0;
} else {
Student personBehind = curr.getBehind();
return numStudentsBehind(personBehind) + 1

} Recursive case

Base case

N C++:

int numStudentsBehind(Student curr) {
if (noOneBehind(curr)) {
return 0;
} else {
Student personBehind = curr.getBehind();
return numStudentsBehind(personBehind) + 1

} Recursive call

Three Musts of Recursion /°

1. Your code must have a case for all valid inputs

2. YOU must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress
towards the base case.

Ihere Is a "recursive leap of faith”

Viore Examples!

The power() function:

Write a recursive function that takes in a number (x) and an
exponent (n) and returns the result of x"

e | ct's code |

Powers

e Fach previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;

int power(int x, int exp) {

if (exp == 0) {
return 1;

} else {
return X x power(x, exp - 1);

Powers

e Fach previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;

int power(int x, int exp) {

if (exp == 0) {
return 1; This call returns 1
1 else {

return X x power(x, exp - 1);

Powers

e Fach previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;

// Tirst call:
1n// second call:

in|// third call: power (5, 1)
int power(int x, int exp) {
if (exp == 0) {

return 1;
} else { equals 1 from call

return x *x power(x, exp - 1);

¥

this entire statement returns 5 * 1

Powers

e Fach previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;

// Tirst call:

in// second call: power (5, 2)
int power(int x, int exp) {
if (exp == 0) {
return 1;
} else { equals 5 from call

return x x power(x, exp - 1);

b this entire statement returns 5* 5

Powers

e Fach previous call waits for the next call to finish (just like any function).
cout << power(5, 3) << endl;

// first call: power (5, 3)
int power(int x, int exp) {
if (exp == 0) {
return 1;

} else { equals 25 from call
return x x power(x, exp - 1);

} this entire statement returns 5 * 25

the original function call was to this one, so it returns 125, which is 5°

Faster Method!

int power(int x, int exp) {
if(exp == 0) {
// base case
return 1;
} else {
if (exp % 2 == 1) {
// 1f exp 1s odd
return x x power(x, exp - 1);
} else {
// else, if exp 1is even
int y = power(x, exp / 2);
return y x vy,

Vlystery Recursion: [race this function

int mystery(int n) {
if (n < 10) {
return n;
} else {
int a n/10;
int b n % 10:;
return mystery(a + b);

What 1s the result
of mystery(648)?

A. 8
B. 9
C.54
D. /2
E. 048

Vlystery Recursion: [race this function

int mystery(int n) { // n = 648
if (n < 10) {

return n;

1 else {
int a = n/10; // a 64
int b = = 8

n % 10: // b
b

return mystery(a + b); // mystery(72);

1n

Vlystery Recursion: [race this function

int mystery(int n) { // n
if (n < 10) {

return n;

} else {
int a = n/10; // a
int b =n% 10; //

return mystery(a +

b
b

)

4

2
// mystery(9);

Vlystery Recursion: [race this function

1Nnt_no 2 LI 5 1= A48
int _mysterv(int n n = 72
int mystery(int n) { // n = 9

if (n < 10) {
return n; // return 9;

} else {
int a = n/10;
int b =n % 10;
1 } return mystery(a + b);
+

1n

Vlystery Recursion: [race this function

T - 5 N N = Nha4as
int mystery(int n) { // n = 72
if (n < 10) {
return n;
} else {
int a = n/1® // a = 7
int b=n%10; // b =
return mystery(a + b);
s returns 9

// mystery(9);

Vlystery Recursion: [race this function

int mystery(int n) { // n = 648

if (n < 10) { What 1s the result

of mystery(648)?

return n;

1 else {
int a = n/10; // a 64
int b = =

n % 10; // b
return mystery(a + b
1 returns 9

More Examples! isPalendrome(string s)

Write a recursive function isPalindrome accepts a string and
returns true If it reads the same forwards as backwards.

isPalindrome("madam") - true
isPalindrome("racecar") - true
isPalindrome("step on no pets") - true
isPalindrome("Java") - false
isPalindrome('"byebye") -false

Three Musts of Recursion /°

1. Your code must have a case for all valid inputs

2. YOU must have a base case that makes no
recursive calls

3. When you make a recursive call it should be to a
simpler instance and make forward progress
towards the base case.

ISPalendrome

// Returns true 1f the given string reads the same
// forwards as backwards.
// Trivially true for empty or l-letter strings.
bool isPalindrome(const string& s) {
if (s.length() < 2) { // base case
return true,
} else { // recursive case
if (s[@] '= s[s.length() - 1]) <
return false;
}

string middle = s.substr(1, s.length() - 2);
return isPalindrome(middle);

Flashback to 100A: Hallstone

// Couts the sequence of numbers from n to one
// produced by the Hailstone (aka Collatz) procedure
void hailstone(int n) <
cout << n << endl;
if(n == 1) A
return;
} else A
if(n %2 ==0) {
// n 1s even so we repeat with n/2
hailstone(n / 2);
} else {
// n 1s odd so we repeat with 3 x n + 1
hailstone(3 x n + 1);

Flashback to 100A: Hallstone

// Couts the sequence of numbers from n to one
// produced by the Hailstone (aka Collatz) procedure
void hailstone(int n) {

cout << n << endl:;
if(n == 1) {
return;

3. When you make a recursive call it should be to a
simpler instance and make forward progress

towards the base case.

// n 1s odd so we repeat with 3 x n + 1
hailstone(3 x n + 1);

b s this simpler??

Flashback to 100A: Hallstone

hailstone(int n)
Hailstone has been checked for values up to 5 x 108
out No one has proved that it always reaches 1!

There Is a cash prize for proving It!

The prize is $1400.

Flashback to 100A: Hallstone

Print the sequences of numbers that you take to get from N
until 1, using the Hailstone (Collatz) production rules:

fn==1, you are done.
f N IS even your next numberisn/ 2.

f N Is odd your next numberis 3*n + 1.

Back to lowers of Hanoil

This is a hard problem to solve iteratively, but can bbe done recursively (though the
recursive insight is not trivial to figure out)

A B C

...heeds to get over here.
This disk... -

Back to lowers of Hanoil

...needs to get over here.

This disk...

Back to lowers of Hanoil

...needs to get over here.

This disk...

Back to lowers of Hanoil

/ This disk ...needs to get over here.

Back to lowers of Hanoil

...needs to get over here.

Back to lowers of Hanoil

This disk...

...needs to get over here.

Back to lowers of Hanoil

...needs to get over here.

Back to lowers of Hanoil

e\\e need to find a very simple case that we can solve
directly In order for the recursion to work.

o |f the tower has size one, we can just move that single
disk from the source to the destination.

¢ [f the tower has more than one, we have to use the
auxiliary spinale.

Back to lowers of Hanoil

¢\\Ve can break the entire process down Into very simple
steps -- not necessarily easy to think of steps, but
simple ones!

O
C
M

1

—
O
)
\ -
D
5

_l
®,
.

A'd
O
M®

af

Back to lowers of Hanoil

A B C

Step One: Move the four smaller disks from Spindle A to Spindle B.

Back to lowers of Hanoil

A I3 C

Step One: Move the four smaller disks from Spindle A to Spindle B.
Step Two: Move the blue disk from Spindle A to Spindle C.

Back to lowers of Hanoil

A 15 C

Step One: Move the four smaller disks from Spindle A to Spindle B.
Step Two: Move the blue disk from Spindle A to Spindle C.
Step Three: Move the four smaller disks from Spindle B to Spindle C.

Back to lowers of Hanoil

A 15 C

N Step One: Move the four smaller disks from Spindle A to Spindle B.
Q@Q &0 Q’e\ Step Two: Move the blue disk from Spindle A to Spindle C.
0 Step Three: Move the four smaller disks from Spindle B to Spindle C.

O
C
M

1

—
O
)
\ -
D
5

_l
®,
.

A'd
O
M®

af

Recap

*Recursion
eBreak a problem into smaller subproblems of the same form, and call the same
function again on that smaller form.
eSuper powerful programming tool
oot always the perfect choice, but often a good one
eSome beautiful problems are solved recursively

* Three Musts for Recursion:
1.Your code must have a case for all valid inputs
2.You must have a base case that makes no recursive calls
3.WWhen you make a recursive call it should be to a simpler instance and make
forward progress towards the base case.

References and Advanced Reading

- References:
e Nttp://www.cs.utah.edu/~germain/PPS/Topics/recursion.html

e \\Why Is iteration generally better than recursion”? http://stackoverflow.com/a/
3093/561677

» Advanced Reading:

e Jail recursion: http://stackoverflow.com/questions/33923/what-is-tail-recursion

® |[nteresting story on the history of recursion in programming languages: http://
900.9l/P6EINb

http://www.cs.utah.edu/~germain/PPS/Topics/recursion.html
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/a/3093/561677
http://stackoverflow.com/questions/33923/what-is-tail-recursion
http://goo.gl/P6Einb
http://goo.gl/P6Einb

%
O,
O
)
q
e
>
L1

Converting Decimal to Binary

Recursion IS apout solving a small piece of a large problem.
— What is 69743 in binary”?

e Do we know anything about its representation in binary?
— Case analysis:

e \What is/are easy numbers to print in binary?

e Can we express a larger number in terms of a smaller
number(s)”?

Converting Decimal to Binary

SUppPOse we are examining some arbitrary integer N.
— If N's binary representationis 10010101011
— (N / 2)'s binary representation is 1001010101

— (N % 2)'s binary representation IS 1

— What can we infer from this relationship®?

Converting Decimal to Binary

// Prints the given 1integer's binary representation.
// Precondition: n >= 0
void printBinary(int n) {
if (n < 2) {
// base case; same as base 10
Cout << n;
} else {
// recursive case; break number apart
orintBinary(n / 2);
orintBinary(n % 2);

