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7. Linearly Homogeneous Functions and Euler's Theorem

Let f(x1, . . ., xN) ≡ f(x) be a function of N variables defined over the positive
orthant, W ≡ {x:  x >> 0N}.  Note that x >> 0N means that each component of x is
positive while x ≥ 0N means that each component of x is nonnegative.  Finally,
x > 0N means x ≥ 0N but x ≠ 0N (i.e., the components of x are nonnegative and at
least one component is positive).

(96) Definition:  f is (positively) linearly homogeneous iff f (l x) = l f(x) for all
l > 0 and x >> 0N.

(97) Definition:  f is (positively) homogeneous of degree a iff f(l x) = laf(x) for
all l > 0 and x >> 0N.

We often assume that production functions and utility functions are linearly
homogeneous.  If the producer's production function f is linearly homogeneous,
then we say that the technology is subject to constant returns to scale; i.e., if we
double all inputs, output also doubles.  If the production function f is
homogeneous of degree a < 1, then we say that the technology is subject to
diminishing returns to scale while if a > 1, then we have increasing returns to scale.

Functions that are homogeneous of degree 1, 0 or -1 occur frequently in index
number theory.

Recall the profit maximization problem (i) in Problem 9 above.  The optimized
objective function, p(p, w1, w2), in that problem is called the firm's profit function
and it turns out to be linearly homogeneous in (p, w1, w2).

For another example of a linearly homogeneous function, consider the problem
which defines the producer's cost function.  Let x ≥ 0N be a vector of inputs, y ≥ 0
be the output produced by the inputs x and let y = f(x) be the producer's
production function.  Let p >> 0N be a vector of input prices that the producer
faces, and define the producer's cost function as

(98) C(y, p) ≡   minx≥0N {pTx:  f(x) ≥ y}.

It can readily be seen, that for fixed y, C(y, p) is linearly homogeneous in the
components of p; i.e., let l > 0, p >> 0N and we have

(99) C(y, lp) ≡   minx≥0N {lpTx:  f(x) ≥%y}
   ≡ l  minx≥0N {pTx:  f(x) ≥%y} using l > 0
   ≡ lC(y, p).
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Now recall the definition of a linearly homogeneous function f given by (96).
We have the following two very useful theorems that apply to differentiable
linearly homogeneous functions.

Euler's First Theorem:  If f is linearly homogeneous and once continuously
differentiable, then its first order partial derivative functions, fi(x) for i = 1, 2, . . .,
N, are homogeneous of degree zero and

(100) f(x) =   S i=1
N xifi(x) = xT—f(x).

Proof: Partially differentiate both sides of the equation in (96) with respect to xi;
we get for i = 1, 2, . . ., N:

(101) fi(lx) l = lfi(x) for all x >> 0N and l > 0, or

(102) fi(lx) = fi(x) = l0fi(x) for all x >> 0N and l > 0.

Using definition (97) for a = 0, we see that equation (102) implies that fi is
homogeneous of degree 0.

To establish (100), partially differentiate both sides of the equation in (96) with
respect to l and get:

(103)   S i=1
N fi(lx1, lx2, . . ., lxN)∂(lxi)/∂ l = f(x) or

  S i=1
N fi(lx1, lx2, . . ., lxN)xi                = f(x).

Now set l = 1 in (103) to obtain (100).
Q.E.D.

Euler's Second Theorem:  If f is linearly homogeneous and twice continuously
differentiable, then the second order partial derivatives of f satisfy the following
N linear restrictions:  for i = 1, . . ., N:

(104)   S j=1
N  fij(x)xj = 0 for x ≡ (x1, . . ., xN)T >>0.

The restrictions (104) can be rewritten as follows:

(105) —2 f(x)x = 0N for every x >>0N.

Proof:  For each i, partially differentiate both sides of equation (102) with respect
to l and get for i = 1, 2, . . ., N:

(106)   S j=1
N  fij(lx1, . . ., lxN) ∂(lxj)/∂l = 0 or

  S j=1
N  fij(lx)xj = 0.
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Now set l = 1 in (106) and the resulting equations are equations (104).
Q.E.D.

Problems:

12. [Shephard's Lemma].  Suppose that the producer's cost function C(y, p) is
defined by (98) above.  Suppose that when p = p* >> 0N and y = y* > 0, x* > 0N
solves the cost minimization problem, so that

(i) p*Tx* = C(y*, p*) ≡ minx{p*Tx:  f(x) ≥ y*}.

(a) Suppose further that C is differentiable with respect to the input prices at
(y*, p*).  Then show that

(ii) x* = —pC(y*, p*).

Hint:  Because x* solves the cost minimization problem defined by C(y*, p*) by
hypothesis, then x* must be feasible for this problem so we must have f(x*) ≥ y*.
Thus x* is a feasible solution for the following cost minimization problem where
the general input price vector p >> 0N has replaced the specific input price vector
p* >> 0N:

(iii) C(y*, p) ≡ minx{pTx:  f(x) ≥ y*}
  ≤ pTx*

where the inequality follows from the fact that x* is a feasible (but usually not
optional) solution for the cost minimization problem in (iii).  Now define for each
p >> 0N:

(iv) g(p) ≡ pTx* - C(y*, p).

Use (i) and (iii) to show that g(p) is minimized (over all p such that p >> 0N) at p
= p*.  Now recall the first order necessary conditions for a minimum.

(b) Under the hypotheses of part (a), suppose x** > 0N is another solution to
the cost minimization problem defined in (i).  Then show x* = x**; i.e., the
solution to (i) is unique under the assumption that C(y*, p*) is differentiable with
respect to the components of p.

13. Suppose C(y, p) defined by (98) is twice continuously differentiable with
respect to the components of the input price vector p and let the vector x(y, p)
solve (98); i.e., x(y, p) ≡ [x1 (y, p), . . ., xN (y, p)]T is the producer's system of cost
minimizing input demand functions.  Define the N by N matrix of first order
partial derivatives of the xi(y, p) with respect to the components of p as:
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(i) A ≡ [∂xi(y, p1, . . ., pN)/∂pj]%(≡ —px(y, p)).

Show that:

(ii) A = AT and

(iii) Ap = 0N.

Hint:  By the previous problem, x(y, p) ≡ —p C(y, p).  Recall also (99) and Euler's
Second Theorem.

Comment:  The restrictions (ii) and (iii) above were first derived by J.R. Hicks
(1939), Value and Capital, Appendix to Chapters II and III, part 8 and P.A.
Samuelson (1947), Foundations of Economic Analysis, page 69.  The restrictions (ii)
on the input demand derivatives ∂xi/∂pj are known as the Hicks-Samuelson
symmetry conditions.

So far, we have developed two methods for checking the second order conditions
that arise in unconstrained optimization theory:  (i) the Lagrange-Gauss
diagonalization procedure  explained in section  5 above and (iii) the determinantal
conditions method explained in section 6 above.  In the final sections of this
chapter, we are going to derive a third method:  the eigenvalue method.  Before we
can explain this method, we require some preliminary material on complex
numbers.

8. Complex Numbers and the Fundamental Theorem of Algebra

(107) Definition:  i is an algebraic symbol which has the property i2 = -1.

Hence i can be regarded as the square root of -1; i.e.,   -1  ≡ i.

(108) Definition:  A complex number z is a number which has the form z = x + iy
where x and y are ordinary real numbers.  The number x is called the real part of
z and the number y is called the imaginary part of z.

We can add and multiply complex numbers.  To add two complex numbers, we
merely add their real parts and imaginary parts to form the sum; i.e., if z1 ≡ x1 +
iy1 and z2 = x2 + iy2, then

(109) z1 + z2 = [x1 + iy1] + [x2 + iy2] ≡ (x1 + x2) + (y1 + y2)i.

To multiply together two complex numbers z1 and z2, we multiply them together
using ordinary algebra, replacing i2 by -1; i.e.,

(110) z1 • z2 = [x1 + iy1] • [x2 + iy2]
= x1x2 + iy1x2 + ix1y2 + i2y1y2
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= x1x2 + i2y1y2 + (x1y2 + x2y1)i
≡ (x1x2 - y1y2) + (x1y2 + x2y1)i.

Two complex numbers are equal iff their real parts and imaginary parts are
identical; i.e., if z1 = x1 + iy1 and z2 = x2 + iy2, then z1 = z2 iff x1 = x2 and y1 = y2.

The final definition we require in this section is the definition of a complex
conjugate.

(111) Definition:  If z = x + iy, then the complex conjugate of z, denoted by   z , is
defined as the complex number x - iy; i.e.,   z  ≡  x - iy.

An interesting property of a complex number and its complex conjugate is given
in Problem 15 below.

Problems:

14. Let a ≡ 3 + i; b ≡ 1 + 5i and c ≡ 5 - 2i.  Calculate ab-c.  Note that we have
written a • b as ab.

15. Show that z •   z  ≥ 0 for any complex number z = x + iy.

16. Let z1 = x1 + iy1 and z2 = x2 + iy2 be two complex numbers calculate z3 =
z1 • z2.  Show that   z 3 =   z 1 •   z 2; i.e., the complex conjugate of a product of two
complex numbers is equal to the product of the complex conjugates.

Now let f(x) be a polynomial of degree N; i.e.,

(112) f(x) ≡ a0 + a1x + a2x2 + . . . + aNxN where aN ≠ 0,

where the fixed numbers a0, a1, a2, . . ., aN are ordinary real numbers.  If we try to
solve the equation f(x) = 0 for real roots x, then it can happen that no real roots to
this polynomial equation exist; e.g., consider

(113) 1 + x2 = 0

so that x2 = -1 and no real roots to (113) exist.  However, note that if we allow
solutions x to (113) to be complex numbers, then (113) has the roots x1 = i and x2
= -i.  In general, if we allow solutions to the equation f(x) = 0 (where f is defined
by (112)) to be complex numbers, then there are always N roots to the equation
(some of which could be repeated or multiple roots).

(114) Fundamental Theorem of Algebra:  Every polynomial equation of the
form, a0 + a1x a2x2 + . . . + aNxN = 0 (with aN ≠%0) has N roots or solutions, x1, x2,
. . ., xN, where in general, the xi are complex numbers.

This is one of the few theorems which we will not prove in this course.  For a
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proof, see J.V. Uspensky, Theory of Equations.

9. The Eigenvalues and Eigenvectors of a Symmetric Matrix

Let A be a general N by N matrix; i.e., it is not restricted to be symmetric at this
point.

(115) Definition:  l is a eigenvalue of A with the corresponding eigenvector z ≡
[z1, z2, . . ., zN]T ≠ 0N iff l and z satisfy the following equation:

(116) Az = lz; z ≠ 0N.

Note that the eigenvector z which appears in (116) is not allowed to be a vector of
zeros.

In the following theorem, we restrict A to be a symmetric matrix.  In the case of a
general N by N nonsymmetric A matrix, the eigenvalue l which appears in (116)
is allowed to be a complex number and the eigenvector z which appears in (116)
is allowed to be a vector of complex numbers; i.e., z is allowed to have the form
z = x + iy where x and y are N dimensional vectors of real numbers.

(117) Theorem:  Every N by N symmetric matrix A has N eigenvalues l1, l2, . .
., lN where these eigenvalues are real numbers.

Proof:  The equation (116) is equivalent to:

(118) [A - lIN]z = 0N; z ≠ 0N.

Now if [A - lIN]-1 were to exist, then we could premultiply both sides of (118) by
this inverse matrix and obtain:

(119) [A - lIN]-1 [A - lIN]z = [A - lIN]-1  0N = 0N or z = 0N.

But z = 0N is not admissible as an eigenvector by definition (115).  From our
earlier material on determinants, we know that [A - lIN]-1 exists iff |A - lIN| ≠ 0.
Hence, in  order to hope to find a l and z ≠ 0N which satisfy (116), we must have:

(120) |A - lIN| = 0.

If N = 2, the determinantal equation (120) becomes:

(121)
  
0 =

a11, a12
a12, a22

È 
Î 

˘ 
˚ 

-
l, 0
0 l

È 
Î 

˘ 
˚ 
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   = 
  
a11 - l, a12

a12, a22 - l

   = (a11 - l)(a22 - l) -   a12
2 ,

which is a quadratic equation in l.

In the general N by N case, if we expand out the determinantal equation (120),
we obtain an equation of degree N in l of the form b0 + b1l +b2l2 + . . . + bNlN =
0 and by the Fundamental Theorem of Algebra, this polynominal equation has N
roots, l1, l2, . . ., l N say.  Once we have found these eigenvalues li, we can
obtain corresponding eigenvectors zi ≠ 0N by solving

(122) [A - liIN]zi = 0N; i = 1, 2, . . ., N

for a nonzero vector zi.  (We will show exactly how this can be done later).

However, both the eigenvalues li and the eigenvectors zi can have complex
numbers as components in general.  We now show that the eigenvalues and
eigenvectors have real numbers as components when A = AT.

Suppose that l1 is an eigenvalue of A (where l1 = a1 + b1i say) and z1 = x1 + iy1 is
the corresponding eigenvector.  Since z1 ≠ 0N, at least one component of the x1

and y1 vectors must be nonzero.  Thus letting   z 1 ≡ x 1 - iy1 be the vector of
complex conjugates of the components of z1, we have

z1T   z 1 = [x1T + iy1T] [x1 - iy1]
= x1T x1 - i2y1T y1 - ix1T y1 + iy1Tx1
= x1T x1 + y1T y1 - i[x1T y1 - y1T x1]
= x1T x1 + y1T y1 since x1Ty1 = y1Tx1

=   S i=1
N (xi

1)2 + S i=1
N (yi

1)2

 (123) > 0

where the inequality follows since at least one of the   xi
1  or   y i

1  is not equal to zero
and hence its square is positive.

By the definition of l1 and z1 being an eigenvalue and eigenvector of A, we have:

(124) Az1 = l1z1.

Since A is a real matrix, the matrix of complex conjugates of A,   A , is A.  Now
take complex conjugates on both sides of (124).  Using   A  = A and Problem 16
above we obtain:
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(125) A  z 1 = l 1  z 1.

Premultiply both sides of (124) by   z 1T and we obtain the following equality:

(126)   z 1TAz1 = l1  z 1Tz1.

Now take transposes of both sides of (126) and we obtain:

(127) l1  z 1T  z 1 = z1TAT  z 1 = z1TA  z 1

where the second equality in (127) follows from the symmetry of A; i.e., A = AT.
Now premultiply both sides of (125) by z1T and obtain:

(128) l 1   z 1T  z 1  = z1TAT  z 1.

Since the right hand sides of (127) and (128) are equal, so are the left hand sides
so we obtain the following equality:

(129) l1 z1T  z 1 = l 1z1T  z 1.

Using (123), we see that z1T  z 1 is a positive number so we can divide both sides
of (129) by z1T  z 1 to obtain:

(130) l1 = a1 + b1i = l 1 = a1 - b1i,

which in turn implies that the imaginary part of l1 must be zero; i.e., we find that
b1 = 0 and hence the eigenvalue l1  must be an ordinary real number.

To find a real eigenvector z1 = x1 + i0N = x1 ≠%0N that corresponds to the
eigenvalue l1, define the N by N matrix B1 as

(131) B1 ≡ A - l1 IN.

We know that |B1| = 0 and we need to find a vector x1 ≠ 0N such that B1x1 = 0N.
Apply the Gaussian triangularization algorithm to B1.  This leads to an
elementary row matrix E1 with |E1| = 1 and

(132) E1B1 = U1

where U1 is an upper triangular N by N matrix.  Since |B1| = 0, taking
determinants on both sides of (132) leads to |U1| = 0 and hence at least one of
the N diagonal elements   uii

1  of U 1 must be zero.  Let   ui1i1
1  be the first such zero

diagonal element.  We choose the components of the x1 vector as follows:  let   xi1
1
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= 1, let   xj
1  = 0 for j > i 1 and choose the first i 1 - 1 components of x 1 by solving the

following triangular system of equations:

(133) U1[  x1
1, x2

1 , . . .,xi1-1
1 ,1,0N- i1

T ]T = 0N.
Using the fact that the   uii

1  ≠ 0 for i < i 1, it can be seen that the   x1
1, x2

1 , . . ., xi1-1
1

solution to (133) is unique.  Hence, we have exhibited the existence of an x1
vector such that:

(134) U1x1 = 0N with x1 ≠ 0N.

Now premulitply both sides of (134) by (E1) -1 and using (132), (134) becomes

(135) B1x1 = 0N with x1 ≠ 0N.

Obviously, the above procedure that showed that the first eigenvalue l1 and
eigenvector x1 for A were real can be repeated to show that all of the N
eigenvalues of the symmetric matrix A are real with corresponding real
eigenvectors.

Q.E.D.

Example 1:  A = [a11]; i.e., consider the case N = 1.  In this case, l1 = a11 and the
eigenvector x1 =   x1

1  can be any nonzero number   x1
1 .

Example 2:  
  
A =

d1 0
0 d2

È 
Î 

˘ 
˚ 
;  i.e., A is diagonal.  In this case, the determinantal

equation that defines the 2 eigenvalues l1 and l2 is:

|A - lI2| = 
  
d1 - l, 0

0, d2 - l  = (d1 - l)(d2 - l) = 0.

Hence the eigenvalues of a diagonal matrix are just the diagonal elements; i.e.,
l1 = d1 and l2 = d2.  Let us further suppose that the 2 diagonal elements of A are
d1 = 1 and d2 = 2.  Let us calculate the eigenvector x1 = (  x1

1 ,   x2
1 )T ≠ 0 2 that

corresponds to the eigenvalue l1 = d1 = 1.  Define

(136)
  
B1 ≡ A - l1I2 = 1 0

0 2
È 
Î 

˘ 
˚ 

- 1 0
0 1

È 
Î 

˘ 
˚ 

=
0, 0
0, 1

È 
Î 

˘ 
˚ 
.

In this case, B1 is already upper triangular and the first zero diagonal element of
B1 = U1 is   u11

1  = 0.  In this case, we just set   x1
1  = 1 and   x2

1  = 0.  It can be verified
that we have B1x1 = 02 or Ax1 = l1x1 with x1 = e1 and l1 = 1.
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Now calculate the eigenvector that corresponds to the second eigenvalue of A,
l2 = d2 = 2.  Define

(137)
  
B2 ≡ A - l2I2 = 1 0

0 2
È 
Î 

˘ 
˚ 

- 2 1 0
0 1

È 
Î 

˘ 
˚ 

=
-1, 0
0, 0

È 
Î 

˘ 
˚ 
.

Also, in this case, B2 is upper triangular, so B2 = U2 and the first zero diagonal
element of U2 is   u22

2  = 0.  In this case, we set   x2
2  = 1 and solve

  
U2x2 = B2x2 =

-1, 0
0, 0

È 
Î 

˘ 
˚ 

x1
2

1
È 

Î Í 
˘ 

˚ ˙ =
0
0

È 
Î 

˘ 
˚ 

for   x1
2  = 0.  Thus x 2 = e 2 (the second unit vector) does the job as an eigenvector

for the second eigenvalue l2 = d2 of a diagonal matrix.

Example 3:  
  
A ≡ 1 1

1 1
È 
Î 

˘ 
˚ 
.  The determinantal equation that defines the 2 eigenvalues

of this A is

(138)
  
0 =

1- l , 1
1, 1- l = (1- l)2 - 1

     = 1 - 2l + l2 - 1
     = l2 - 2l
     = l(l - 2).

Hence the two roots of (138) are l1 = 2 and l2 = 0.  To define an eigenvector x1
for l1, define:

  
B1 ≡ A - l1I2 =

1, 1
1, 1

È 
Î 

˘ 
˚ 

- 2 1, 0
0, 1

È 
Î 

˘ 
˚ 

=
-1, 1
1, -1

È 
Î 

˘ 
˚ 
.

To transform B1 into an upper triangular matrix, add the first row to the second
row and we obtain U1:

  
U1 =

-1, 1
0, 0

È 
Î 

˘ 
˚ 
.

The first 0 diagonal element of U1 is   u22
1  = 0.  Hence set   x2

1  = 1 and solve

  
U1x1 =

-1, 1
0, 0

È 
Î 

˘ 
˚ 

x1
1

1
È 

Î Í 
˘ 

˚ ˙ =
0
0

È 
Î 

˘ 
˚ 

for   x1
1  = 1.  Hence x1 = [1, 1]T is an eigenvector for l1 = 2.


