7. Linearly Homogeneous Functions and Euler's Theorem

Let $f\left(x_{1}, \ldots, x_{N}\right) \equiv f(x)$ be a function of N variables defined over the positive orthant, $\square \equiv\left\{x: x \gg 0_{N}\right\}$. Note that $x \gg 0_{N}$ means that each component of x is positive while $x \geq 0_{N}$ means that each component of x is nonnegative. Finally, $x>0_{N}$ means $x \geq 0_{N}$ but $x \neq 0_{N}$ (i.e., the components of x are nonnegative and at least one component is positive).
(96) Definition: f is (positively) linearly homogeneous iff $f(\square x)=\square f(x)$ for all $\square>0$ and $x \gg 0_{N}$.
(97) Definition: f is (positively) homogeneous of degree \square iff $f(\square x)=\square \square f(x)$ for all $\square>0$ and $x \gg 0_{N}$.

We often assume that production functions and utility functions are linearly homogeneous. If the producer's production function f is linearly homogeneous, then we say that the technology is subject to constant returns to scale; i.e., if we double all inputs, output also doubles. If the production function f is homogeneous of degree $\square<1$, then we say that the technology is subject to diminishing returns to scale while if $\square>1$, then we have increasing returns to scale.

Functions that are homogeneous of degree 1, 0 or -1 occur frequently in index number theory.

Recall the profit maximization problem (i) in Problem 9 above. The optimized objective function, $\square\left(\mathrm{p}, \mathrm{w}_{1}, \mathrm{w}_{2}\right)$, in that problem is called the firm's profit function and it turns out to be linearly homogeneous in ($\mathrm{p}, \mathrm{w}_{1}, \mathrm{w}_{2}$).

For another example of a linearly homogeneous function, consider the problem which defines the producer's cost function. Let $x \geq 0_{N}$ be a vector of inputs, $y \geq 0$ be the output produced by the inputs x and let $y=f(x)$ be the producer's production function. Let $\mathrm{p} \gg 0_{\mathrm{N}}$ be a vector of input prices that the producer faces, and define the producer's cost function as

$$
\begin{equation*}
C(y, p) \equiv \min _{x \geq 0_{N}}\left\{p^{T} x: f(x) \geq y\right\} \tag{98}
\end{equation*}
$$

It can readily be seen, that for fixed $y, C(y, p)$ is linearly homogeneous in the components of p; i.e., let $\square>0, p \gg 0_{N}$ and we have

$$
\begin{array}{rlr}
C(y, \square p) & \equiv \min _{x \geq 0_{N}}\left\{\square p^{T} x: f(x) \geq y\right\} \tag{99}\\
& \equiv \square \min _{x \geq 0_{N}}\left\{p^{T} x: f(x) \geq y\right\} \\
& \equiv \square C(y, p) .
\end{array}
$$

Now recall the definition of a linearly homogeneous function f given by (96). We have the following two very useful theorems that apply to differentiable linearly homogeneous functions.

Euler's First Theorem: If f is linearly homogeneous and once continuously differentiable, then its first order partial derivative functions, $f_{i}(x)$ for $i=1,2, \ldots$, N , are homogeneous of degree zero and
(100) $f(x)=\square_{i=1}^{N} x_{i} f_{i}(x)=x^{T} \square f(x)$.

Proof: Partially differentiate both sides of the equation in (96) with respect to x_{i}; we get for $\mathrm{i}=1,2, \ldots, \mathrm{~N}$:

$$
\begin{equation*}
\mathrm{f}_{\mathrm{i}}(\square \mathrm{x}) \square=\square \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \quad \text { for all } \mathrm{x} \gg 0_{\mathrm{N}} \text { and } \square>0 \text {, or } \tag{101}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{i}}(\square \mathrm{x})=\mathrm{f}_{\mathrm{i}}(\mathrm{x})=\square^{0} \mathrm{f}_{\mathrm{i}}(\mathrm{x}) \quad \text { for all } \mathrm{x} \gg 0_{\mathrm{N}} \text { and } \square>0 . \tag{102}
\end{equation*}
$$

Using definition (97) for $\square=0$, we see that equation (102) implies that f_{i} is homogeneous of degree 0 .

To establish (100), partially differentiate both sides of the equation in (96) with respect to \square and get:

$$
\begin{align*}
& \square_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{i}}\left(\square \mathrm{x}_{1}, \square \mathrm{x}_{2}, \ldots, \square \mathrm{x}_{\mathrm{N}}\right) \partial\left(\square \mathrm{x}_{\mathrm{i}}\right) / \partial \square=\mathrm{f}(\mathrm{x}) \text { or } \tag{103}\\
& \square_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{i}}\left(\square \mathrm{x}_{1}, \square \mathrm{x}_{2}, \ldots, \square \mathrm{x}_{\mathrm{N}}\right) \mathrm{x}_{\mathrm{i}} \\
& =\mathrm{f}(\mathrm{x}) .
\end{align*}
$$

Now set $\square=1$ in (103) to obtain (100).
Q.E.D.

Euler's Second Theorem: If f is linearly homogeneous and twice continuously differentiable, then the second order partial derivatives of f satisfy the following N linear restrictions: for $\mathrm{i}=1, \ldots, \mathrm{~N}$:

$$
\begin{equation*}
\square_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{ij}}(\mathrm{x}) \mathrm{x}_{\mathrm{j}}=0 \quad \text { for } \quad \mathrm{x} \equiv\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)^{\mathrm{T}} \gg 0 \tag{104}
\end{equation*}
$$

The restrictions (104) can be rewritten as follows:

$$
\begin{equation*}
\square^{2} f(x) x=0_{N} \quad \text { for every } \quad x \gg 0_{N} \tag{105}
\end{equation*}
$$

Proof: For each i, partially differentiate both sides of equation (102) with respect to \square and get for $\mathrm{i}=1,2, \ldots, \mathrm{~N}$:

$$
\begin{align*}
& \square_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{ij}}\left(\square \mathrm{x}_{1}, \ldots, \square \mathrm{x}_{\mathrm{N}}\right) \partial\left(\square \mathrm{x}_{\mathrm{j}}\right) / \partial \square=0 \tag{106}\\
& \square_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{ij}}(\square \mathrm{x}) \mathrm{x}_{\mathrm{j}}=0 .
\end{align*}
$$

Now set $\square=1$ in (106) and the resulting equations are equations (104).

Problems:

12. [Shephard's Lemma]. Suppose that the producer's cost function $C(y, p)$ is defined by (98) above. Suppose that when $p=p^{*} \gg 0_{N}$ and $y=y^{*}>0, x^{*}>0_{N}$ solves the cost minimization problem, so that

$$
\begin{equation*}
\mathrm{p}^{* \mathrm{~T}} \mathrm{x}^{*}=\mathrm{C}\left(\mathrm{y}^{*}, \mathrm{p}^{*}\right) \equiv \min _{\mathrm{x}}\left\{\mathrm{p}^{*} \mathrm{~T} \mathrm{x}: \mathrm{f}(\mathrm{x}) \geq \mathrm{y}^{*}\right\} \tag{i}
\end{equation*}
$$

(a) Suppose further that C is differentiable with respect to the input prices at ($\mathrm{y}^{*}, \mathrm{p}^{*}$). Then show that
(ii) $\mathrm{x}^{*}=\square_{\mathrm{p}} C\left(\mathrm{y}^{*}, \mathrm{p}^{*}\right)$.

Hint: Because x^{*} solves the cost minimization problem defined by $C\left(y^{*}, p^{*}\right)$ by hypothesis, then x^{*} must be feasible for this problem so we must have $f\left(x^{*}\right) \geq y^{*}$. Thus x^{*} is a feasible solution for the following cost minimization problem where the general input price vector $p \gg 0_{N}$ has replaced the specific input price vector $\mathrm{p}^{*} \gg 0_{\mathrm{N}}$:

$$
\begin{align*}
C\left(y^{*}, p\right) & \equiv \min _{x}\left\{p^{T} x: f(x) \geq y^{*}\right\} \tag{iii}\\
& \leq p^{T} x^{*}
\end{align*}
$$

where the inequality follows from the fact that x^{*} is a feasible (but usually not optional) solution for the cost minimization problem in (iii). Now define for each $p \gg 0 \mathrm{~N}$:
(iv) $\mathrm{g}(\mathrm{p}) \equiv \mathrm{p}^{\mathrm{T}} \mathrm{x}^{*}-\mathrm{C}\left(\mathrm{y}^{*}, \mathrm{p}\right)$.

Use (i) and (iii) to show that $g(p)$ is minimized (over all p such that $\mathrm{p} \gg 0_{\mathrm{N}}$) at p $=\mathrm{p}^{*}$. Now recall the first order necessary conditions for a minimum.
(b) Under the hypotheses of part (a), suppose $x^{* *}>0_{N}$ is another solution to the cost minimization problem defined in (i). Then show $x^{*}=x^{* *}$; i.e., the solution to (i) is unique under the assumption that $C\left(y^{*}, p^{*}\right)$ is differentiable with respect to the components of p.
13. Suppose $C(y, p)$ defined by (98) is twice continuously differentiable with respect to the components of the input price vector p and let the vector $x(y, p)$ solve (98); i.e., $x(y, p) \equiv\left[x_{1}(y, p), \ldots, x_{N}(y, p)\right]^{T}$ is the producer's system of cost minimizing input demand functions. Define the N by N matrix of first order partial derivatives of the $x_{i}(y, p)$ with respect to the components of p as:

$$
\begin{equation*}
A \equiv\left[\partial x_{i}\left(y, p_{1}, \ldots, p_{N}\right) / \partial p_{j}\right]\left(\equiv \square_{p} x(y, p)\right) \tag{i}
\end{equation*}
$$

Show that:
(ii) $\quad \mathrm{A}=\mathrm{A}^{\mathrm{T}}$ and
(iii) $\quad \mathrm{Ap}=0_{\mathrm{N}}$.

Hint: By the previous problem, $x(y, p) \equiv \square_{p} C(y, p)$. Recall also (99) and Euler's Second Theorem.

Comment: The restrictions (ii) and (iii) above were first derived by J.R. Hicks (1939), Value and Capital, Appendix to Chapters II and III, part 8 and P.A. Samuelson (1947), Foundations of Economic Analysis, page 69. The restrictions (ii) on the input demand derivatives $\partial \mathrm{x}_{\mathrm{i}} / \partial \mathrm{p}_{\mathrm{j}}$ are known as the Hicks-Samuelson symmetry conditions.

So far, we have developed two methods for checking the second order conditions that arise in unconstrained optimization theory: (i) the Lagrange-Gauss diagonalization procedure explained in section 5 above and (iii) the determinantal conditions method explained in section 6 above. In the final sections of this chapter, we are going to derive a third method: the eigenvalue method. Before we can explain this method, we require some preliminary material on complex numbers.

8. Complex Numbers and the Fundamental Theorem of Algebra

$$
\begin{equation*}
\text { Definition: } \mathrm{i} \text { is an algebraic symbol which has the property } \mathrm{i}^{2}=-1 \tag{107}
\end{equation*}
$$

Hence i can be regarded as the square root of -1 ; i.e., $\sqrt{\square 1} \equiv$ i.
(108) Definition: A complex number z is a number which has the form $\mathrm{z}=\mathrm{x}+$ iy where x and y are ordinary real numbers. The number x is called the real part of z and the number y is called the imaginary part of z.

We can add and multiply complex numbers. To add two complex numbers, we merely add their real parts and imaginary parts to form the sum; i.e., if $z_{1} \equiv x_{1}+$ iy_{1} and $z_{2}=x_{2}+\mathrm{y}_{2}$, then

$$
\begin{equation*}
z_{1}+z_{2}=\left[x_{1}+i_{1}\right]+\left[x_{2}+i y_{2}\right] \equiv\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)^{i} . \tag{109}
\end{equation*}
$$

To multiply together two complex numbers z_{1} and z_{2}, we multiply them together using ordinary algebra, replacing i^{2} by -1 ; i.e.,

$$
\begin{align*}
z_{1} \cdot z_{2} & =\left[x_{1}+i y_{1}\right] \cdot\left[x_{2}+i y_{2}\right] \tag{110}\\
& =x_{1} x_{2}+i y_{1} x_{2}+i x_{1} y_{2}+i^{2} y_{1} y_{2}
\end{align*}
$$

$$
\begin{aligned}
& =x_{1} x_{2}+i^{2} y_{1} y_{2}+\left(x_{1} y_{2}+x_{2} y_{1}\right) i \\
& \equiv\left(x_{1} x_{2}-y_{1} y_{2}\right)+\left(x_{1} y_{2}+x_{2} y_{1}\right) i .
\end{aligned}
$$

Two complex numbers are equal iff their real parts and imaginary parts are identical; i.e., if $z_{1}=x_{1}+i y_{1}$ and $z_{2}=x_{2}+i y_{2}$, then $z_{1}=z_{2}$ iff $x_{1}=x_{2}$ and $y_{1}=y_{2}$.

The final definition we require in this section is the definition of a complex conjugate.
(111) Definition: If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, then the complex conjugate of z , denoted by $\overline{\mathrm{z}}$, is defined as the complex number x - iy; i.e., $\overline{\mathrm{z}} \equiv \mathrm{x}-\mathrm{iy}$.

An interesting property of a complex number and its complex conjugate is given in Problem 15 below.

Problems:

14. Let $\mathrm{a} \equiv 3+\mathrm{i} ; \mathrm{b} \equiv 1+5 \mathrm{i}$ and $\mathrm{c} \equiv 5-2 \mathrm{i}$. Calculate $\mathrm{ab}-\mathrm{c}$. Note that we have written $\mathrm{a} \cdot \mathrm{b}$ as ab .
15. Show that $\mathrm{z} \cdot \overline{\mathrm{z}} \geq 0$ for any complex number $\mathrm{z}=\mathrm{x}+\mathrm{iy}$.
16. Let $\mathrm{z}_{1}=\mathrm{x}_{1}+\mathrm{i} \mathrm{y}_{1}$ and $\mathrm{z}_{2}=\mathrm{x}_{2}+\mathrm{i}_{2}$ be two complex numbers calculate $\mathrm{z}_{3}=$ $z_{1} \cdot z_{2}$. Show that $\bar{z}_{3}=\bar{z}_{1} \cdot \bar{z}_{2}$; i.e., the complex conjugate of a product of two complex numbers is equal to the product of the complex conjugates.

Now let $f(x)$ be a polynomial of degree N; i.e.,

$$
\begin{equation*}
f(x) \equiv a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{N} x^{N} \quad \text { where } \quad a_{N} \neq 0 \tag{112}
\end{equation*}
$$

where the fixed numbers $a_{0}, a_{1}, a_{2}, \ldots, a_{N}$ are ordinary real numbers. If we try to solve the equation $f(x)=0$ for real roots x, then it can happen that no real roots to this polynomial equation exist; e.g., consider
(113) $1+x^{2}=0$
so that $x^{2}=-1$ and no real roots to (113) exist. However, note that if we allow solutions x to (113) to be complex numbers, then (113) has the roots $x_{1}=i$ and x_{2} $=-i$. In general, if we allow solutions to the equation $f(x)=0$ (where f is defined by (112)) to be complex numbers, then there are always N roots to the equation (some of which could be repeated or multiple roots).
(114) Fundamental Theorem of Algebra: Every polynomial equation of the form, $a_{0}+a_{1} x a_{2} x^{2}+\ldots+a_{N} x^{N}=0\left(\right.$ with $\left.a_{N} \neq 0\right)$ has N roots or solutions, x_{1}, x_{2}, \ldots, x_{N}, where in general, the x_{i} are complex numbers.

This is one of the few theorems which we will not prove in this course. For a
proof, see J.V. Uspensky, Theory of Equations.

9. The Eigenvalues and Eigenvectors of a Symmetric Matrix

Let A be a general N by N matrix; i.e., it is not restricted to be symmetric at this point.
(115) Definition: \square is a eigenvalue of A with the corresponding eigenvector $\mathrm{z} \equiv$ $\left[z_{1}, z_{2}, \ldots, z_{N}\right]^{T} \neq 0_{N}$ iff \square and z satisfy the following equation:

$$
\begin{equation*}
A z=\square z ; \quad z \neq 0_{N} \tag{116}
\end{equation*}
$$

Note that the eigenvector z which appears in (116) is not allowed to be a vector of zeros.

In the following theorem, we restrict A to be a symmetric matrix. In the case of a general N by N nonsymmetric A matrix, the eigenvalue \square which appears in (116) is allowed to be a complex number and the eigenvector z which appears in (116) is allowed to be a vector of complex numbers; i.e., z is allowed to have the form $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ where x and y are N dimensional vectors of real numbers.
(117) Theorem: Every N by N symmetric matrix A has N eigenvalues $\square_{1}, \square_{2}, \ldots$., \square_{N} where these eigenvalues are real numbers.

Proof: The equation (116) is equivalent to:
(118) $\left[A-\square I_{N}\right] z=0_{N} ; \quad z \neq 0_{N}$.

Now if $\left[\mathrm{A}-\left[\mathrm{I}_{\mathrm{N}}\right]^{-1}\right.$ were to exist, then we could premultiply both sides of (118) by this inverse matrix and obtain:

$$
\begin{equation*}
\left[\mathrm{A}-\square \mathrm{I}_{N}\right]^{-1}\left[\mathrm{~A}-\square \mathrm{I}_{N}\right] \mathrm{z}=\left[\mathrm{A}-\square \mathrm{I}_{\mathrm{N}}\right]^{-1} \quad 0_{\mathrm{N}}=0_{\mathrm{N}} \quad \text { or } \quad \mathrm{z}=0_{\mathrm{N}} \tag{119}
\end{equation*}
$$

But $\mathrm{z}=0_{\mathrm{N}}$ is not admissible as an eigenvector by definition (115). From our earlier material on determinants, we know that $\left[\mathrm{A}-\square \mathrm{I}_{N}\right]^{-1}$ exists iff $\left|\mathrm{A}-\square \mathrm{I}_{\mathrm{N}}\right| \neq 0$. Hence, in order to hope to find a \square and $\mathrm{z} \neq 0_{\mathrm{N}}$ which satisfy (116), we must have:
(120) $\left|A-\square_{N}\right|=0$.

If $\mathrm{N}=2$, the determinantal equation (120) becomes:

$$
0=\left|\begin{array}{ll}
\square_{11}, & a_{12} \square_{\square} \square, \tag{121}\\
\square_{12}, & a_{22} \square^{\square} \\
\square^{0} & \square \square
\end{array}\right|
$$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
a_{11} \square \square, & a_{12} \\
a_{12}, & a_{22} \square \square
\end{array}\right| \\
& =\left(a_{11}-\square\right)\left(a_{22}-\square\right)-a_{12}^{2},
\end{aligned}
$$

which is a quadratic equation in \square.
In the general N by N case, if we expand out the determinantal equation (120), we obtain an equation of degree N in \square of the form $b_{0}+b_{1} \square+b_{2} \square^{2}+\ldots+b_{N} \square^{N}=$ 0 and by the Fundamental Theorem of Algebra, this polynominal equation has N roots, $\square_{1}, \square_{2}, \ldots, \square_{N}$ say. Once we have found these eigenvalues \square_{i}, we can obtain corresponding eigenvectors $z^{i} \neq 0_{N}$ by solving

$$
\begin{equation*}
\left[\mathrm{A}-\square_{\mathrm{i}} \mathrm{I}_{\mathrm{N}}\right] \mathrm{z}^{\mathrm{i}}=0_{\mathrm{N}} ; \quad \mathrm{i}=1,2, \ldots, \mathrm{~N} \tag{122}
\end{equation*}
$$

for a nonzero vector z^{i}. (We will show exactly how this can be done later).
However, both the eigenvalues \square_{i} and the eigenvectors z^{i} can have complex numbers as components in general. We now show that the eigenvalues and eigenvectors have real numbers as components when $A=A^{T}$.

Suppose that \square_{1} is an eigenvalue of A (where $\square_{1}=a_{1}+b_{1} i$ say) and $z^{1}=x^{1}+i y^{1}$ is the corresponding eigenvector. Since $z^{1} \neq 0_{N}$, at least one component of the x^{1} and y^{1} vectors must be nonzero. Thus letting $\bar{z}^{1} \equiv x^{1}-$ iy ${ }^{1}$ be the vector of complex conjugates of the components of z^{1}, we have

$$
\begin{align*}
z^{1 \mathrm{~T}} \bar{z}^{1} & =\left[x^{1 \mathrm{~T}}+i y^{1 \mathrm{~T}}\right]\left[x^{1}-\mathrm{iy} 1\right] \\
& =x^{1 \mathrm{~T}} \mathrm{x}^{1}-\dot{i}^{2} y^{1 \mathrm{~T}} y^{1}-i x^{1 \mathrm{~T}} y^{1}+i y^{1 \mathrm{~T}} x^{1} \\
& =x^{1 \mathrm{~T}} \mathrm{x}^{1}+y^{1 \mathrm{~T}} y^{1}-i\left[x^{1 \mathrm{~T}} y^{1}-y^{1 \mathrm{~T}} \mathrm{x}^{1}\right] \\
& =x^{1 \mathrm{~T}} \mathrm{x}^{1}+y^{1 \mathrm{~T}} y^{1} \quad \text { since } \quad x^{1 \mathrm{~T}} y^{1}=y^{1 T} x^{1} \\
& =\square_{i=1}^{N}\left(x_{i}^{1}\right)^{2}+\square_{i=1}^{N}\left(y_{i}^{1}\right)^{2} \\
& >0 \tag{123}
\end{align*}
$$

where the inequality follows since at least one of the x_{i}^{1} or y_{i}^{1} is not equal to zero and hence its square is positive.

By the definition of \square_{1} and z^{1} being an eigenvalue and eigenvector of A, we have:

$$
\begin{equation*}
A z^{1}=\square_{1} z^{1} \tag{124}
\end{equation*}
$$

Since A is a real matrix, the matrix of complex conjugates of A, \bar{A}, is A. Now take complex conjugates on both sides of (124). Using $\overline{\mathrm{A}}=\mathrm{A}$ and Problem 16 above we obtain:

$$
\begin{equation*}
\mathrm{A} \overline{\mathrm{z}}^{1}=\overline{\mathrm{D}}_{1} \overline{\mathrm{z}}^{1} \tag{125}
\end{equation*}
$$

Premultiply both sides of (124) by $\bar{z}^{1 \mathrm{~T}}$ and we obtain the following equality:

$$
\begin{equation*}
\overline{\mathrm{Z}}^{1 \mathrm{~T}} \mathrm{~A} \mathrm{z}^{1}=\square_{1} \overline{\mathrm{z}}^{1 \mathrm{~T}_{\mathrm{Z}}}{ }^{1} \tag{126}
\end{equation*}
$$

Now take transposes of both sides of (126) and we obtain:

$$
\begin{equation*}
\square_{1} \overline{\mathrm{Z}}^{1 \mathrm{~T}} \overline{\mathrm{Z}}^{1}=\mathrm{z}^{1 \mathrm{~T}} \mathrm{~A}^{\mathrm{T}} \overline{\mathbf{Z}}^{1}=\mathrm{z}^{1 \mathrm{~T}} \mathrm{~A} \overline{\mathrm{z}}^{1} \tag{127}
\end{equation*}
$$

where the second equality in (127) follows from the symmetry of A; i.e., $A=A^{T}$. Now premultiply both sides of (125) by $z^{1 \mathrm{~T}}$ and obtain:

$$
\begin{equation*}
\bar{\square}_{1} \overline{\mathrm{z}}^{1 \mathrm{~T}} \overline{\mathrm{Z}}^{1}=\mathrm{z}^{1 \mathrm{~T}} \mathrm{~A}^{\mathrm{T}} \overline{\mathrm{Z}}^{1} \tag{128}
\end{equation*}
$$

Since the right hand sides of (127) and (128) are equal, so are the left hand sides so we obtain the following equality:

$$
\begin{equation*}
\square_{1} \mathrm{z}^{1 \mathrm{~T}} \overline{\mathrm{Z}}^{1}=\overline{\mathrm{D}}_{1} \mathrm{z}^{1 \mathrm{~T}} \overline{\mathrm{Z}}^{1} \tag{129}
\end{equation*}
$$

Using (123), we see that $z^{1 \mathrm{~T}} \overline{\mathrm{Z}}^{1}$ is a positive number so we can divide both sides of (129) by $z^{1 T} \bar{z}^{1}$ to obtain:

$$
\begin{equation*}
\square_{1}=\mathrm{a}_{1}+\mathrm{b}_{1} \mathrm{i}=\bar{\square}_{1}=\mathrm{a}_{1}-\mathrm{b}_{1} \mathrm{i}, \tag{130}
\end{equation*}
$$

which in turn implies that the imaginary part of \square_{1} must be zero; i.e., we find that $\mathrm{b}_{1}=0$ and hence the eigenvalue \square_{1} must be an ordinary real number.

To find a real eigenvector $z^{1}=x^{1}+i 0_{N}=x^{1} \neq 0_{N}$ that corresponds to the eigenvalue \square_{1}, define the N by N matrix B^{1} as

$$
\begin{equation*}
\mathrm{B}^{1} \equiv \mathrm{~A}-\square_{1} \mathrm{I}_{\mathrm{N}} . \tag{131}
\end{equation*}
$$

We know that $\left|B^{1}\right|=0$ and we need to find a vector $x^{1} \neq 0_{N}$ such that $B^{1} x^{1}=0_{N}$. Apply the Gaussian triangularization algorithm to B^{1}. This leads to an elementary row matrix E^{1} with $\left|E^{1}\right|=1$ and

$$
\begin{equation*}
\mathrm{E}^{1} \mathrm{~B}^{1}=\mathrm{U}^{1} \tag{132}
\end{equation*}
$$

where U^{1} is an upper triangular N by N matrix. Since $\left|\mathrm{B}^{1}\right|=0$, taking determinants on both sides of (132) leads to $\left|\mathrm{U}^{1}\right|=0$ and hence at least one of the N diagonal elements $u_{i i}^{1}$ of U^{1} must be zero. Let $u_{i_{1} i_{1}}^{1}$ be the first such zero diagonal element. We choose the components of the x^{1} vector as follows: let $x_{i_{1}}^{1}$
$=1$, let $\mathrm{x}_{\mathrm{j}}^{1}=0$ for $\mathrm{j}>\mathrm{i}_{1}$ and choose the first $\mathrm{i}_{1}-1$ components of x^{1} by solving the following triangular system of equations:

$$
\begin{equation*}
\mathrm{U}^{1}\left[\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{i}_{\square}{ }^{1},}^{1}, 1,0_{\mathrm{N} \square \mathrm{i}_{1}}^{\mathrm{T}}\right]^{\mathrm{T}}=0_{\mathrm{N}} . \tag{133}
\end{equation*}
$$

Using the fact that the $\mathrm{u}_{\mathrm{ii}}^{1} \neq 0$ for $\mathrm{i}<\mathrm{i} \quad{ }_{1}$, it can be seen that the $\mathrm{x}_{1}^{1}, \mathrm{x}_{2}^{1}, \ldots, \mathrm{x}_{\mathrm{i}_{1} \square 1}^{1}$ solution to (133) is unique. Hence, we have exhibited the existence of an x^{1} vector such that:

$$
\begin{equation*}
\mathrm{U}^{1} \mathrm{x}^{1}=0_{\mathrm{N}} \quad \text { with } \quad \mathrm{x}^{1} \neq 0_{\mathrm{N}} . \tag{134}
\end{equation*}
$$

Now premulitply both sides of (134) by ($\left.\mathrm{E}^{1}\right)^{-1}$ and using (132), (134) becomes

$$
\begin{equation*}
\mathrm{B}^{1} \mathrm{x}^{1}=0_{\mathrm{N}} \quad \text { with } \quad \mathrm{x}^{1} \neq 0_{\mathrm{N}} . \tag{135}
\end{equation*}
$$

Obviously, the above procedure that showed that the first eigenvalue \square_{1} and eigenvector x^{1} for A were real can be repeated to show that all of the N eigenvalues of the symmetric matrix A are real with corresponding real eigenvectors.
Q.E.D.

Example 1: $\mathrm{A}=\left[\mathrm{a}_{11}\right]$; i.e., consider the case $\mathrm{N}=1$. In this case, $\square_{1}=\mathrm{a}_{11}$ and the eigenvector $x^{1}=x_{1}^{1}$ can be any nonzero number x_{1}^{1}.

Example 2: $\mathrm{A}=\begin{array}{ll}\mathrm{d}_{1} & 0 \square \\ \square^{0} & \mathrm{~d}_{2} \square\end{array}$ i.e., A is diagonal. In this case, the determinantal equation that defines the 2 eigenvalues \square_{1} and \square_{2} is:
$\left|A-\square I_{2}\right|=\left|\begin{array}{rr}d_{1} \square \square & 0 \\ 0, & d_{2} \square \square\end{array}\right|=\left(d_{1}-\square\right)\left(d_{2}-\square\right)=0$.
Hence the eigenvalues of a diagonal matrix are just the diagonal elements; i.e., $\square_{1}=\mathrm{d}_{1}$ and $\square_{2}=\mathrm{d}_{2}$. Let us further suppose that the 2 diagonal elements of A are $d_{1}=1$ and $d_{2}=2$. Let us calculate the eigenvector $x^{1}=\left(x_{1}^{1}, x_{2}^{1}\right)^{T} \neq 02$ that corresponds to the eigenvalue $\square_{1}=d_{1}=1$. Define

In this case, B^{1} is already upper triangular and the first zero diagonal element of $B^{1}=U^{1}$ is $u_{11}^{1}=0$. In this case, we just set $x_{1}^{1}=1$ and $x_{2}^{1}=0$. It can be verified that we have $B^{1} x^{1}=0_{2}$ or $A x^{1}=\square_{1} x^{1}$ with $x^{1}=e^{1}$ and $\square_{1}=1$.

Now calculate the eigenvector that corresponds to the second eigenvalue of A, $\square_{2}=d_{2}=2$. Define

Also, in this case, B^{2} is upper triangular, so $\mathrm{B}^{2}=\mathrm{U}^{2}$ and the first zero diagonal element of U^{2} is $u_{22}^{2}=0$. In this case, we set $x_{2}^{2}=1$ and solve
$\mathrm{U}^{2} \mathrm{x}^{2}=\mathrm{B}^{2} \mathrm{x}^{2}=\begin{array}{ll}\square 1, & 0 \square \square \mathrm{x}_{1}^{2} \square=\square \square \\ \square^{0}, & 0 \square \square 1 母=\square \square\end{array}$
for $x_{1}^{2}=0$. Thus $x^{2}=e_{2}$ (the second unit vector) does the job as an eigenvector for the second eigenvalue $\square^{2}=d_{2}$ of a diagonal matrix.

Example 3: $\mathrm{A} \equiv \stackrel{1}{\square} \frac{1}{1}$ The determinantal equation that defines the 2 eigenvalues of this A is

$$
\begin{align*}
0=\left|\begin{array}{cc}
1 \square \square, & 1 \\
1, & 1 \square \square
\end{array}\right| & =(1 \square \square)^{2} \square 1 \tag{138}\\
& =1-2 \square+\square^{2}-1 \\
& =\square^{2}-2 \square \\
& =\square(\square-2) .
\end{align*}
$$

Hence the two roots of (138) are $\square_{1}=2$ and $\square_{2}=0$. To define an eigenvector x^{1} for \square_{1}, define:

To transform B^{1} into an upper triangular matrix, add the first row to the second row and we obtain U^{1} :
$\mathrm{U}^{1}=\begin{array}{ll}\square \square 1, & 1 \square \\ \square 0, & 0 \square\end{array}$
The first 0 diagonal element of U^{1} is $\mathbf{u}_{22}^{1}=0$. Hence set $\mathrm{x}_{2}^{1}=1$ and solve
$\mathrm{U}^{1} \mathrm{x}^{1}=\begin{array}{ll}\square 1, & 1 \square \square \mathrm{x}_{1}^{1} \square=\square \\ \square 0, & 0 \square \square 1-\square \square\end{array}$
for $x_{1}^{1}=1$. Hence $x^{1}=[1,1]^{T}$ is an eigenvector for $\square_{1}=2$.

