LOGICAL AGENTS

In which we design agents that can form representations of the world, use a pro-
cess of inference to derive new representations about the world, and use these new
representations to deduce what to do.

This chapter introduces knowledge-based agents. The concepts that we discuss—the repre-
sentation of knowledge and the reasoning processes that bring knowledge to life—are central
to the entire field of artificial intelligence.

Humans, it seems, know things and do reasoning. Knowledge and reasoning are also
important for artificial agents because they enable successful behaviors that would be very
hard to achieve otherwise. We have seen that knowledge of action outcomes enables problem-
solving agents to perform well in complex environments. A reflex agents could only find its
way from Arad to Bucharest by dumb luck. The knowledge of problem-solving agents is,
however, very specific and inflexible. A chess program can calculate the legal moves of its
king, but does not know in any useful sense that no piece can be on two different squares
at the same time. Knowledge-based agents can benefit from knowledge expressed in very
general forms, combining and recombining information to suit myriad purposes. Often, this
process can be quite far removed from the needs of the moment—as when a mathematician
proves a theorem or an astronomer calculates the earth’s life expectancy.

Knowledge and reasoning also play a crucial role in dealing with partially observable
environments. A knowledge-based agent can combine general knowledge with current per-
cepts to infer hidden aspects of the current state prior to selecting actions. For example, a
physician diagnoses a patient—that is, infers a disease state that is not directly observable—
prior to choosing a treatment. Some of the knowledge that the physician uses in the form of
rules learned from textbooks and teachers, and some is in the form of patterns of association
that the physician may not be able to consciously describe. If its inside the physician’s head,
it counts as knowledge.

Understanding natural language also requires inferring hidden state, namely, the inten-
tion of the speaker. When we hear, “John saw the diamond through the window and coveted
it,” we know “it” refers to the diamond and not the window—we reason, perhaps uncon-
sciously, with our knowledge of relative value. Similarly, when we hear, “John threw the
brick through the window and broke it,” we know “it” refers to the window. Reasoning allows

194

Section 7.1.

Knowledge-Based Agents 195

us to cope with the virtually infinite variety of utterances using a finite store of commonsense
knowledge. Problem-solving agents have difficulty with this kind of ambiguity because their
representation of contingency problems is inherently exponential.

Our final reason for studying knowledge-based agents is their flexibility. They are able
to accept new tasks in the form of explicitly described goals, they can achieve competence
quickly by being told or learning new knowledge about the environment, and they can adapt
to changes in the environment by updating the relevant knowledge.

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a simple
new environment, the wumpus world, and illustrates the operation of a knowledge-based
agent without going into any technical detail. Then, in Section 7.3, we explain the general
principles of logic. Logic will be the primary vehicle for representing knowledge throughout
Part 111 of the book. The knowledge of logical agents is always definite—each proposition is
either true or false in the world, although the agent may be agnostic about some propositions.

Logic has the pedagogical advantage of being simple example of a representation for
knowledge-based agents, but logic has some severe limitations. Clearly, a large portion of the
reasoning carried out by humans and other agents in partially observable environments de-
pends on handling knowledge that is uncertain. Logic cannot represent this uncertainty well,
so in Part V we cover probability, which can. In Part VI and Part VII we cover many repre-
sentations, including some based on continuous mathematics such as mixtures of Gaussians,
neural networks, and other representations.

Section 7.4 of this chapter defines a simple logic called propositional logic. While
much less expressive than first-order logic (Chapter 8), propositional logic serves to illustrate
all the basic concepts of logic. There is also a well-developed technology for reasoning in
propositional logic, which we describe in sections 7.5 and 7.6. Finally, Section 7.7 combines
the concept of logical agents with the technology of propositional logic to build some simple
agents for the wumpus world. Certain shortcomings in propositional logic are identified,
motivating the development of more powerful logics in subsequent chapters.

7.1 KNOWLEDGE-BASED AGENTS

KNOWLEDGE BASE
SENTENCE

KNOWLEDGE
REPRESENTATION
LANGUAGE

INFERENCE

LOGICAL AGENTS

The central component of a knowledge-based agent is its knowledge base, or KB. Informally,
a knowledge base is a set of sentences. (Here “sentence” is used as a technical term. It is
related but is not identical to the sentences of English and other natural languages.) Each sen-
tence is expressed in a language called a knowledge representation language and represents
some assertion about the world.

There must be a way to add new sentences to the knowledge base and a way to query
what is known. The standard names for these tasks are TELL and Ask, respectively. Both
tasks may involve inference—that is, deriving new sentences from old. In logical agents,
which are the main subject of study in this chapter, inference must obey the fundamental
requirement that when one Asks a question of the knowledge base, the answer should follow
from what has been told (or rather, TELLed) to the knowledge base previously. Later in the

196

Chapter 7. Logical Agents

BACKGROUND
KNOWLEDGE

KNOWLEDGE LEVEL

IMPLEMENTATION
LEVEL

function KB-AGENT(percept) returnsan action
static: KB, a knowledge base
t, a counter, initially O, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action <+ ASK(KB, MAKE-ACTION-QUERY (%))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t—t+1

return action

Figure7.1 A generic knowledge-based agent.

chapter, we will be more precise about the crucial word “follow.” For now, take it to mean
that the inference process should not just make things up as it goes along.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents,
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB,
which may initially contain some background knowledge. Each time the agent program is
called, it does two things. First, it TELLS the knowledge base what it perceives. Second,
it Asks the knowledge base what action it should perform. In the process of answering
this query, extensive reasoning may be done about the current state of the world, about the
outcomes of possible action sequences, and so on. Once the action is chosen, the agent
records its choice with TELL and executes the action. The second TELL is necessary to let
the knowledge base know that the hypothetical action has actually been executed.

The details of the representation language are hidden inside two functions that imple-
ment the interface between the sensors and actuators and the core representation and reason-
ing system. MAKE-PERCEPT-SENTENCE takes a percept and a time and returns a sentence
asserting that the agent perceived the percept at the given time. MAKE-ACTION-QUERY
takes a time as input and returns a sentence that asks what action should be performed at
that time. The details of the inference mechanisms are hidden inside TELL and AsK. Later
sections will reveal these details.

The agent in Figure 7.1 appears quite similar to the agents with internal state described
in Chapter 2. Because of the definitions of TELL and Ask, however, the knowledge-based
agent is not an arbitrary program for calculating actions. It is amenable to a description at the
knowledge level, where we need specify only what the agent knows and what its goals are,
in order to fix its behavior. For example, an automated taxi might have the goal of delivering
a passenger to Marin County and might know that it is in San Francisco and that the Golden
Gate Bridge is the only link between the two locations. Then we can expect it to cross the
Golden Gate Bridge because it knows that that will achieve its goal. Notice that this analysis
is independent of how the taxi works at the implementation level. It doesn’t matter whether
its geographical knowledge is implemented as linked lists or pixel maps, or whether it reasons
by manipulating strings of symbols stored in registers or by propagating noisy signals in a
network of neurons.

Section 7.2.

The Wumpus World 197

ey

DECLARATIVE

As we mentioned in the introduction to the chapter, one can build a knowledge-based
agent simply by TELLing it what it needs to know. The agent’s initial program, before
it starts to receive percepts, is built by adding one by one the sentences that represent the
designer’s knowledge of the environment. Designing the representation language to make it
easy to express this knowledge in the form of sentences simplifies the construction problem
enormously. This is called the declarative approach to system building. In contrast, the
procedural approach encodes desired behaviors directly as program code; minimizing the
role of explicit representation and reasoning can result in a much more efficient system. We
will see agents of both kinds in Section 7.7. In the 1970s and 1980s, advocates of the two
approaches engaged in heated debates. We now understand that a successful agent must
combine both declarative and procedural elements in its design.

In addition to TELLing it what it needs to know, we can provide a knowledge-based
agent with mechanisms that allow it to learn for itself. These mechanisms, which are dis-
cussed in Chapter 18, create general knowledge about the environment out of a series of
percepts. This knowledge can be incorporated into the agent’s knowledge base and used for
decision making. In this way, the agent can be fully autonomous.

All these capabilities—representation, reasoning, and learning—rest on the centuries-
long development of the theory and technology of logic. Before explaining that theory and
technology, however, we will create a simple world with which to illustrate them.

7.2 THEWuMPUS WORLD

WUMPUS WORLD

The wumpus world is a cave consisting of rooms connected by passageways. Lurking some-
where in the cave is the wumpus, a beast that eats anyone who enters its room. The wumpus
can be shot by an agent, but the agent has only one arrow. Some rooms contain bottomless
pits that will trap anyone who wanders into these rooms (except for the wumpus, which is
too big to fall in). The only mitigating feature of living in this environment is the possibility
of finding a heap of gold. Although the wumpus world is rather tame by modern computer
game standards, it makes an excellent testbed environment for intelligent agents. Michael
Genesereth was the first to suggest this.

A sample wumpus world is shown in Figure 7.2. The precise definition of the task
environment is given, as suggested in Chapter 2, by the PEAS description:

& Performance measure: +1000 for picking up the gold, —1000 for falling into a pit or
being eaten by the wumpus, —1 for each action taken and —10 for using up the arrow.

& Environment: A 4 x 4 grid of rooms. The agent always starts in the square labeled
[1,1], facing to the right. The locations of the gold and the wumpus are chosen ran-
domly, with a uniform distribution, from the squares other than the start square. In
addition, each square other than the start can be a pit, with probability 0.2.

¢ Actuators: The agent can move forward, turn left by 90°, or turn right by 90°. The
agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It
is safe, albeit smelly, to enter a square with a dead wumpus.) Moving forward has no

198 Chapter 7. Logical Agents

effect if there is a wall in front of the agent. The action Grab can be used to pick up an
object that is in the same square as the agent. The action Shoot can be used to fire an
arrow in a straight line in the direction the agent is facing. The arrow continues until it
either hits (and hence kills) the wumpus or hits a wall. The agent only has one arrow,
so only the first Shoot action has any effect.

¢ Sensors: The agent has five sensors, each of which gives a single bit of information:

— In the square containing the wumpus and in the directly (not diagonally) adjacent
squares the agent will perceive a stench.

— In the squares directly adjacent to a pit, the agent will perceive a breeze.
— In the square where the gold is, the agent will perceive a glitter.
— When an agent walks into a wall, it will perceive a bump.

— When the wumpus is killed, it emits a woeful scream that can be perceived any-
where in the cave.

The percepts will be given to the agent in the form of a list of five symbols; for example,
if there is a stench and a breeze, but no glitter, bump, or scream, the agent will receive
the percept [Stench, Breeze, None, None, None].

Exercise 7.1 asks you to define the wumpus environment along the various dimensions given
in Chapter 2. The principal difficulty for the agent is its initial ignorance of the configuration
of the environment; overcoming this ignorance seems to require logical reasoning. In most
instances of the wumpus world, it is possible for the agent to retrieve the gold safely. Occa-
sionally, the agent must choose between going home empty-handed and risking death to find
the gold. About 21% of the environments are utterly unfair, because the gold is in a pit or
surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in
Figure 7.2. The agent’s initial knowledge base contains the rules of the environment, as listed

4 | “oreeze | M
3 B ssns | Al | —eea
>SS ~Blesze —
~/[Gad L\
SSSS, Blease ~
2 {Stench ;&e//
1 % “heeze — | TRl |~ 5eere |
START
1 2 3 4

Figure7.2 A typical wumpus world. The agent is in the bottom left corner.

Section 7.2.

The Wumpus World 199

previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square. We will see
how its knowledge evolves as new percepts arrive and actions are taken.

The first percept is [None, None, None, None, None], from which the agent can con-
clude that its neighboring squares are safe. Figure 7.3(a) shows the agent’s state of knowledge
at this point. We list (some of) the sentences in the knowledge base using letters such as B
(breezy) and OK (safe, neither pit nor wumpus) marked in the appropriate squares. Fig-
ure 7.2, on the other hand, depicts the world itself.

1,4 2,4 3,4 4.4 = Agent 1,4 2,4 3.4 4,4
B = Breeze
G = Glitter, Gold
OK = Safe square
1,3 2,3 3,3 43 P =Pit 1,3 2,3 3,3 4,3
S =Stench
V = Visited
W = Wumpus
1,2 2,2 3,2 4,2 1,2 2,2 3,2 4,2
P?
OK OK
1,1 2,1 3,1 4,1 1,1 2,1 3,1 4,1
' ' ' ' ' 1A T P? '
\Y B
OK OK OK OK
@ (b)

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial sit-
uation, after percept [None, None, None, None, None]. (b) After one move, with percept
[None, Breeze, None, None, None].

From the fact that there was no stench or breeze in [1,1], the agent can infer that [1,2]
and [2,1] are free of dangers. They are marked with an OK to indicate this. A cautious agent
will move only into a square that it knows is OK . Let us suppose the agent decides to move
forward to [2,1], giving the scene in Figure 7.3(b).

The agent detects a breeze in [2,1], so there must be a pit in a neighboring square. The
pit cannot be in [1,1], by the rules of the game, so there must be a pit in [2,2] or [3,1] or both.
The notation P? in Figure 7.3(b) indicates a possible pit in those squares. At this point, there
is only one known square that is OK and has not been visited yet. So the prudent agent will
turn around, go back to [1,1], and then proceed to [1,2].

The new percept in [1,2] is [Stench, None, None, None, None], resulting in the state
of knowledge shown in Figure 7.4(a). The stench in [1,2] means that there must be a wumpus
nearby. But the wumpus cannot be in [1,1], by the rules of the game, and it cannot be in [2,2]
(or the agent would have detected a stench when it was in [2,1]). Therefore, the agent can
infer that the wumpus is in [1,3]. The notation W! indicates this. Moreover, the lack of a
Breeze in [1,2] implies that there is no pit in [2,2]. Yet we already inferred that there must
be a pit in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult
inference, because it combines knowledge gained at different times in different places and

200

Chapter 7. Logical Agents

s

14 2,4 3,4 4,4 = Agent 14 24 134 4,4
B =Breeze P
G = Glitter, Gold
OK = Safe square
L3 |28 33 43 P =Pit LBw (23R [P2er |42
S =Stench S G
V = Visited B
W = Wumpus
1y2 2,2 3,2 4,2 1,2 S 2,2 3,2 4,2
S \% \Y
OK OK OK OK
11 21 31 4,1 1,1 21 4 31 4,1
\% \% \% \Y
OK OK OK OK
@ (b)

Figure 7.4 Two later stages in the progress of the agent. (a) After the third move,
with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept
[Stench, Breeze, Glitter, None, None].

relies on the lack of a percept to make one crucial step. The inference is beyond the abilities
of most animals, but it is typical of the kind of reasoning that a logical agent does.

The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so
it is OK to move there. We will not show the agent’s state of knowledge at [2,2]; we just
assume that the agent turns and moves to [2,3], giving us Figure 7.4(b). In [2,3], the agent
detects a glitter, so it should grab the gold and thereby end the game.

In each case where the agent draws a conclusion from the available information, that
conclusion is guaranteed to be correct if the available information is correct. This is a
fundamental property of logical reasoning. In the rest of this chapter, we describe how to
build logical agents that can represent the necessary information and draw the conclusions
that were described in the preceding paragraphs.

7.3 LoOGIC

SYNTAX

This section provides an overview of all the fundamental concepts of logical representation
and reasoning. We postpone the technical details of any particular form of logic until the next
section. We will instead use informal examples from the wumpus world and from the familiar
realm of arithmetic. We adopt this rather unusual approach because the ideas of logic are far
more general and beautiful than is commonly supposed.

In Section 7.1, we said that knowledge bases consist of sentences. These sentences
are expressed according to the syntax of the representation language, which specifies all the
sentences that are well formed. The notion of syntax is clear enough in ordinary arithmetic:
“r +y = 4”7 is a well-formed sentence, whereas “x2y+ =" is not. The syntax of logical

Section 7.3.

Logic 201

SEMANTICS

TRUTH
POSSIBLE WORLD

MODEL

ENTAILMENT

languages (and of arithmetic, for that matter) is usually designed for writing papers and books.
There are literally dozens of different syntaxes, some with lots of Greek letters and exotic
mathematical symbols, and some with rather visually appealing diagrams with arrows and
bubbles. In all cases, however, sentences in an agent’s knowledge base are real physical
configurations of (parts of) the agent. Reasoning will involve generating and manipulating
those configurations.

A logic must also define the semantics of the language. Loosely speaking, semantics
has to do with the “meaning” of sentences. In logic, the definition is more precise. The
semantics of the language defines the truth of each sentence with respect to each possible
world. For example, the usual semantics adopted for arithmetic specifies that the sentence
“r 4+ y=4"is true in a world where z is 2 and y is 2, but false in a world where z is 1
and y is 1.1 In standard logics, every sentence must be either true or false in each possible
world—there is no “in between.”2

When we need to be precise, we will use the term model in place of “possible world.”
(We will also use the phrase “m is a model of «” to mean that sentence « is true in model
m.) Whereas possible worlds might be thought of as (potentially) real environments that the
agent might or might not be in, models are mathematical abstractions, each of which simply
fixes the truth or falsehood of every relevant sentence. Informally, we may think of x and
y as the number of men and women sitting at a table playing bridge, for example, and the
sentence x + y =4 is true when there are four in total; formally, the possible models are just
all possible assignments of numbers to the variables = and y. Each such assignment fixes the
truth of any sentence of arithmetic whose variables are x and .

Now that we have a notion of truth, we are ready to talk about logical reasoning. This
involves the relation of logical entailment between sentences—the idea that a sentence fol-
lows logically from another sentence. In mathematical notation, we write as

al=p
to mean that the sentence « entails the sentence 5. The formal definition of entailment is
this: « = g if and only if, in every model in which « is true, (3 is also true. Another way to
say this is that if « is true, then 5 must also be true. Informally, the truth of G is “contained”
in the truth of a.. The relation of entailment is familiar from arithmetic; we are happy with
the idea that the sentence « + y = 4 entails the sentence 4 = x + y. Obviously, in any model
where z + y = 4—such as the model in which x is 2 and y is 2—it is the case that 4 = x + y.
We will see shortly that a knowledge base can be considered a statement, and we often talk
of a knowledge base entailing a sentence.

We can apply the same kind of analysis to the wumpus-world reasoning example given
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected
nothing in [1,1] and a breeze in [2,1]. These percepts, combined with the agent’s knowledge
of the rules of the wumpus world (the PEAS description on page 197), constitute the KB. The

1 The reader will no doubt have noticed the similarity between the notion of truth of sentences and the notion of
satisfaction of constraints in Chapter 5. This is no accident—constraint languages are indeed logics and constraint
solving is a form of logical reasoning.

2 Fuzzy logic, discussed in Chapter 14, allows for degrees of truth.

202

Chapter 7. Logical Agents

LOGICAL INFERENCE

MODEL CHECKING

(@) (b)

Figure7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1], given
observations of nothing in [1,1] and a breeze in [2,1]. (a) Models of the knowledge base and
ay (no pitin [1,2]). (b) Models of the knowledge base and « (no pitin [2,2]).

agent is interested (among other things) in whether the adjacent squares [1,2], [2,2], and [3,1]
contain pits. Each of the three squares might or might not contain a pit, so (for the purposes
of this example) there are 22 = 8 possible models. These are shown in Figure 7.5.2

The KB is false in models that contradict what the agent knows—for example, the KB
is false in any model in which [1,2] contains a pit, because there is no breeze in [1,1]. There
are in fact just three models in which the KB is true, and these are shown as a subset of the
models in Figure 7.5. Now let us consider two possible conclusions:

a1 = “There is no pitin [1,2].”

ag = “There is no pitin [2,2].”
We have marked the models of «; and «s in Figures 7.5(a) and 7.5(b) respectively. By
inspection, we see the following:

in every model in which KB is true, o is also true.
Hence, KB |= «y: there is no pit in [1,2]. We can also see that

in some models in which KB is true, as is false.
Hence, KB [~ «y: the agent cannot conclude that there is no pit in [2,2]. (Nor can it conclude
that there is a pit in [2,2].)*

The preceding example not only illustrates entailment, but also shows how the defini-
tion of entailment can be applied to derive conclusions—that is, to carry out logical infer-

ence. The inference algorithm illustrated in Figure 7.5 is called model checking, because it
enumerates all possible models to check that « is true in all models in which KB is true.

3 Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments
of true and false to the sentences “there is a pit in [1,2]” etc. Models, in the mathematical sense, do not need to
have ’orrible "airy wumpuses in them.

4 The agent can calculate the probability that there is a pit in [2,2]; Chapter 13 shows how.

Section 7.3.

Logic 203

SOUND
TRUTH-PRESERVING

COMPLETENESS

iy

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB as a haystack and of « as a needle. Entailment is like the needle being in the
haystack; inference is like finding it. This distinction is embodied in some formal notation: if
an inference algorithm 7 can derive o from KB, we write

KBt a,

which is pronounced “« is derived from KB by i” or “i derives « from KB.”

An inference algorithm that derives only entailed sentences is called sound or truth-
preserving. Soundness is a highly desirable property. An unsound inference procedure es-
sentially makes things up as it goes along—it announces the discovery of nonexistent needles.
It is easy to see that model checking, when it is applicable,® is a sound procedure.

The property of completeness is also desirable: an inference algorithm is complete if
it can derive any sentence that is entailed. For real haystacks, which are finite in extent,
it seems obvious that a systematic examination can always decide whether the needle is in
the haystack. For many knowledge bases, however, the haystack of consequences is infinite,
and completeness becomes an important issue.® Fortunately, there are complete inference
procedures for logics that are sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true
in any world in which the premises are true; in particular, if KB is true in the real world,
then any sentence « derived from KB by a sound inference procedure is also true in the real
world. So, while an inference process operates on “syntax”—internal physical configurations
such as bits in registers or patterns of electrical blips in brains—the process corresponds
to the real-world relationship whereby some aspect of the real world is the case’ by virtue
of other aspects of the real world being the case. This correspondence between world and
representation is illustrated in Figure 7.6.

Sentences —— ™ Sentence

Entails
Representation

Aspects of the ™ Aspect of the
real world Follows real world

Figure7.6 Sentences are physical configurations of the agent, and reasoning is a process
of constructing new physical configurations from old ones. Logical reasoning should en-
sure that the new configurations represent aspects of the world that actually follow from the
aspects that the old configurations represent.

5 Model checking works if the space of models is finite—for example, in wumpus worlds of fixed size. For
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there
are infinitely many pairs of values for = and y in the sentence « + y = 4.

6 Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete.

7 As Wittgenstein (1922) put it in his famous Tractatus. “The world is everything that is the case.”

204

Chapter 7. Logical Agents

GROUNDING

The final issue that must be addressed by an account of logical agents is that of ground-
ing—the connection, if any, between logical reasoning processes and the real environment in
which the agent exists. In particular, how do we know that KB is true in the real world? (Af-
ter all, KB is just “syntax” inside the agent’s head.) This is a philosophical question about
which many, many books have been written. (See Chapter 26.) A simple answer is that the
agent’s sensors create the connection. For example, our wumpus-world agent has a smell sen-
sor. The agent program creates a suitable sentence whenever there is a smell. Then, whenever
that sentence is in the knowledge base, it is true in the real world. Thus, the meaning and truth
of percept sentences are defined by the processes of sensing and sentence construction that
produce them. What about the rest of the agent’s knowledge, such as its belief that wumpuses
cause smells in adjacent squares? This is not a direct representation of a single percept, but
a general rule—derived, perhaps, from perceptual experience but not identical to a statement
of that experience. General rules like this are produced by a sentence construction process
called learning, which is the subject of Part VVI. Learning is fallible. It could be the case that
wumpuses cause smells except on February 29 in leap years, which is when they take their
baths. Thus, KB may not be true in the real world, but with good learning procedures there
is reason for optimism.

7.4 PROPOSITIONAL Logic: A VERY SIMPLE LOGIC

PROPOSITIONAL
LOGIC

ATOMIC SENTENCES
PROPOSITION
SYMBOL

COMPLEX
SENTENCES

LOGICAL
CONNECTIVES
NEGATION
LITERAL

We now present a very simple logic called propositional logic.®2 We cover the syntax of
propositional logic and its semantics—the way in which the truth of sentences is determined.
Then we look at entailment—the relation between a sentence and another sentence that fol-
lows from it—and see how this leads to a simple algorithm for logical inference. Everything
takes place, of course, in the wumpus world.

Syntax

The syntax of propositional logic defines the allowable sentences. The atomic sentences—
the indivisible syntactic elements—consist of a single proposition symbol. Each such sym-
bol stands for a proposition that can be true or false. We will use uppercase names for
symbols: P, @, R, and so on. The names are arbitrary but are often chosen to have some
mnemonic value to the reader. For example, we might use W 3 to stand for the proposition
that the wumpus is in [1,3]. (Remember that symbols such as W, 3 are atomic, i.e., W, 1,
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with fixed
meanings: True is the always-true proposition and False is the always-false proposition.

Complex sentences are constructed from simpler sentences using logical connectives.
There are five connectives in common use:

— (not). A sentence such as - 3 is called the negation of W 3. A literal is either an
atomic sentence (a positive literal) or a negated atomic sentence (a negative literal).

8 Propositional logic is also called Boolean logic, after the logician George Boole (1815-1864).

Section 7.4.

Propositional Logic: A Very Simple Logic 205

CONJUNCTION

DISJUNCTION

IMPLICATION
PREMISE
CONCLUSION

BICONDITIONAL

A (and). A sentence whose main connective is A, such as Wy 3 A P31, is called a con-
junction; its parts are the conjuncts. (The A looks like an “A” for “And.”)

V (or). A sentence using V, such as (W1 3 A P3 1) VW 9, is a disjunction of the disjuncts
(Wi,s A Ps 1) and Wo 5. (Historically, the v comes from the Latin “vel,” which means
“or.” For most people, it is easier to remember as an upside-down A.)

= (implies). A sentence such as (W1 3A P31) = —Wha o is called an implication (or con-
ditional). Its premise or antecedent is (171 3 A P3.1), and its conclusion or consequent
is W5 5. Implications are also known as rules or if-then statements. The implication
symbol is sometimes written in other books as D or —.

& (ifand only if). The sentence Wy 3 < —Wha o is a biconditional.

Figure 7.7 gives a formal grammar of propositional logic; see page 984 if you are not familiar
with the BNF notation.

Sentence — AtomicSentence | ComplexSentence

True| False| Symbol
Pl Q| RJ ...

AtomicSentence
Symbol

]

!

ComplexSentence — — Sentence
| (Sentence A Sentence)
| (Sentence V Sentence)
| (Sentence = Sentence)
|

(Sentence < Sentence)

Figure7.7 A BNF (Backus—Naur Form) grammar of sentences in propositional logic.

Notice that the grammar is very strict about parentheses: every sentence constructed
with binary connectives must be enclosed in parentheses. This ensures that the syntax is
completely unambiguous. It also means that we have to write ((A A B) = C) instead of
ANB = (C, for example. To improve readability, we will often omit parentheses, relying
instead on an order of precedence for the connectives. This is similar to the precedence
used in arithmetic—for example, ab + c is read as ((ab) + ¢) rather than a(b + ¢) because
multiplication has higher precedence than addition. The order of precedence in propositional
logic is (from highest to lowest): —, A, V, =, and <. Hence, the sentence

“-PVQAR = S
is equivalent to the sentence
(=P)V(QAR)) = S.

Precedence does not resolve ambiguity in sentences such as A A B A C, which could be read
as ((AANB)AC)oras (AN (BAC)). Because these two readings mean the same thing
according to the semantics given in the next section, sentences such as AA BAC are allowed.
Wealsoallow Av BvCand A & B < (. Sentencessuchas A = B = (are not

206

Chapter 7. Logical Agents

TRUTH TABLE

allowed because the two readings have different meanings; we insist on parentheses in this
case. Finally, we will sometimes use square brackets instead of parentheses when it makes
the sentence clearer.

Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, a model simply fixes the truth value—true or false—for every
proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P; 2, P 2, and Ps 1, then one possible model is

my = { P12 = false, Py o= false, P31 =true} .

With three proposition symbols, there are 23 =8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that because we have pinned down the syntax, the models
become purely mathematical objects with no necessary connection to wumpus worlds. P; »
is just a symbol; it might mean “there is a pit in [1,2]” or “I’m in Paris today and tomorrow.”

The semantics for propositional logic must specify how to compute the truth value of
any sentence, given a model. This is done recursively. All sentences are constructed from
atomic sentences and the five connectives; therefore, we need to specify how to compute the
truth of atomic sentences and how to compute the truth of sentences formed with each of the
five connectives. Atomic sentences are easy:

e True is true in every model and False is false in every model.
e The truth value of every other proposition symbol must be specified directly in the
model. For example, in the model 2 given earlier, Py 5 is false.

For complex sentences, we have rules such as

e For any sentence s and any model m, the sentence —s is true in m if and only if s is
false in m.

Such rules reduce the truth of a complex sentence to the truth of simpler sentences. The
rules for each connective can be summarized in a truth table that specifies the truth value
of a complex sentence for each possible assignment of truth values to its components. Truth
tables for the five logical connectives are given in Figure 7.8. Using these tables, the truth
value of any sentence s can be computed with respect to any model m by a simple process of
recursive evaluation. For example, the sentence —P; 5 A (P22 V Ps 1), evaluated in mq, gives
true A (false V true) = true A true = true. Exercise 7.3 asks you to write the algorithm
PL-TRUE?(s, m), which computes the truth value of a propositional logic sentence s in a
model m.

Previously we said that a knowledge base consists of a set of sentences. We can now
see that a logical knowledge base is a conjunction of those sentences. That is, if we start with
anempty KB and do TELL(KB, S;) ... TELL(KB, S,) then we have KB = S1 A ... A Sp.
This means that we can treat knowledge bases and sentences interchangeably.

The truth tables for “and,” “or,” and “not” are in close accord with our intuitions about
the English words. The main point of possible confusion is that P Vv @ is true when P is true

Section 7.4. Propositional Logic: A Very Simple Logic 207
P Q -P PAQ PVvQ P = Q P < Q
false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of P v Q when P is true and @ is false, first look on the left for the row
where P is true and Q is false (the third row). Then look in that row under the PV @) column
to see the result: ¢rue. Another way to look at this is to think of each row as a model, and the
entries under each column for that row as saying whether the corresponding sentence is true
in that model.

or is true or both. There is a different connective called “exclusive or” (“xor” for short) that
yields false when both disjuncts are true.® There is no consensus on the symbol for exclusive
or; two choices are v and &.

The truth table for = may seem puzzling at first, because it might not quite fit one’s
intuitive understanding of “P implies Q” or “if P then).” For one thing, propositional logic
does not require any relation of causation or relevance between P and Q). The sentence “5 is
odd implies Tokyo is the capital of Japan” is a true sentence of propositional logic (under the
normal interpretation), even though it is a decidedly odd sentence of English. Another point
of confusion is that any implication is true whenever its antecedent is false. For example, “5
is even implies Sam is smart” is true, regardless of whether Sam is smart. This seems bizarre,
but it makes sense if you think of “P = @” as saying, “If P is true, then | am claiming that
Q is true. Otherwise | am making no claim.” The only way for this sentence to be false is if
P is true but Q is false.

The truth table for a biconditional, P < (), shows that it is true whenever both
P = @ and Q = P are true. In English, this is often written as “P if and only if Q" or “P
iff Q.” The rules of the wumpus world are best written using <. For example, a square is
breezy if a neighboring square has a pit, and a square is breezy only if a neighboring square
has a pit. So we need biconditionals such as

By & (Pi2V Pp),
where By 1 means that there is a breeze in [1,1]. Notice that the one-way implication
Big = (Pi2V Py)

is true in the wumpus world, but incomplete. It does not rule out models in which B ; is
false and P, » is true, which would violate the rules of the wumpus world. Another way of
putting it is that the implication requires the presence of pits if there is a breeze, whereas the
biconditional also requires the absence of pits if there is no breeze.

9 Latin has a separate word, aut, for exclusive or.

208

Chapter 7. Logical Agents

A simple knowledge base

Now that we have defined the semantics for propositional logic, we can construct a knowledge
base for the wumpus world. For simplicity, we will deal only with pits; the wumpus itself
is left as an exercise. We will provide enough knowledge to carry out the inference that was
done informally in Section 7.3.

First, we need to choose our vocabulary of proposition symbols. For each i, j:

e Let P; ; be true if there is a pitin [z, j].
e Let B; ; be true if there is a breeze in [4, j].
The knowledge base includes the following sentences, each one labeled for convenience:
e There is no pitin [1,1]:
Ri: —-Pp1.

e A square is breezy if and only if there is a pit in a neighboring square. This has to be
stated for each square; for now, we include just the relevant squares:

Ry: B, < (PLQ V P271) .

)

Rs3: By < (P171 V P272 vV Pg’l) .

)

e The preceding sentences are true in all wumpus worlds. Now we include the breeze
percepts for the first two squares visited in the specific world the agent is in, leading up
to the situation in Figure 7.3(b).

R4 : —|Bl71 .
Rs: DBa;.

The knowledge base, then, consists of sentences R; through Rs. It can also be considered as
a single sentence—the conjunction Ry A Rs A R3 A R4 N Rs—because it asserts that all the
individual sentences are true.

Inference

Recall that the aim of logical inference is to decide whether KB |= « for some sentence «.
For example, is P, o entailed? Our first algorithm for inference will be a direct implementa-
tion of the definition of entailment: enumerate the models, and check that « is true in every
model in which KB is true. For propositional logic, models are assignments of ¢rue or false
to every proposition symbol. Returning to our wumpus-world example, the relevant proposi-
tion symbols are By 1, Bo1, P11, P12, P21, P22, and Ps 1. With seven symbols, there are
27 = 128 possible models; in three of these, KB is true (Figure 7.9). In those three models,
—P 5 is true, hence there is no pit in [1,2]. On the other hand, P » is true in two of the three
models and false in one, so we cannot yet tell whether there is a pit in [2,2].

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A
general algorithm for deciding entailment in propositional logic is shown in Figure 7.10. Like
the BACKTRACKING-SEARCH algorithm on page 76, TT-ENTAILS? performs a recursive
enumeration of a finite space of assignments to variables. The algorithm is sound, because it

Section 7.4. Propositional Logic: A Very Simple Logic 209

Bii| Boi | Pii| Pip| Poi | Pap | P31 Ry Ry R3 Ry Rs KB

false | false | false | false | false | false| false | true | true | true | true | false || false
false | false | false | false | false | false | true || true | true | false | true | false || false

false | true | false | false | false | false | false | true | true | false | true | true || false

false | true | false | false | false | false | true || true | true | true | true | true || true
false | true | false | false | false | true | false | true | true | true | true | true || true
false | true | false | false | false | true | true || true | true | true | true | true || true

false | true | false | false | true | false | false || true | false | false | true | true || false

true | true | true | true | true | true | true || false | true | true | false | true || false

Figure7.9 A truth table constructed for the knowledge base given in the text. KB is true
if R; through R are true, which occurs in just 3 of the 128 rows. In all 3 rows, P; 5 is false,
so there is no pit in [1,2]. On the other hand, there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols, [])

function TT-CHECK-ALL (KB, «, symbols, model) returns true or false
if EMPTY?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(«, model)
elsereturn true
elsedo
P «— FIRST(symbols); rest < REST(symbols)
return TT-CHECK-ALL(KB, «, rest, EXTEND(P, true, model) and
TT-CHECK-ALL(KB, o, rest, EXTEND(P, false, model)

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment.
TT stands for truth table. PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to only some of the variables. The
function call EXTEND(P, true, model) returns a new partial model in which P has the value
true.

implements directly the definition of entailment, and complete, because it works for any KB
and « and always terminates—there are only finitely many models to examine.

Of course, “finitely many” is not always the same as “few.” If KB and « contain n sym-
bols in all, then there are 2 models. Thus, the time complexity of the algorithm is O(2").
(The space complexity is only O(n) because the enumeration is depth-first.) Later in this

210

Chapter 7. Logical Agents

LOGICAL
EQUIVALENCE

VALIDITY

TAUTOLOGY

DEDUCTION
THEOREM

s

(aNB) = (BA«a) commutativity of A
(aVvpB) = (BVa) commutativity of v
((aANB)Nvy) = (N (BA7)) associativity of A
((aVvp)Vy) = (aV(BVy)) associativity of v
—(—a) = « double-negation elimination
(a = B) = (-0 = —«) contraposition
(o« = B) = (—a Vv p) implication elimination
(¢ & B) = ((¢ = B)AN(B = «)) biconditional elimination
—(aNpB) = (-maV-8) deMorgan
—(aVpB) = (—aAN—-p) deMorgan
(aN(BV7) = ((aAB)V(aAv)) distributivity of A over v
(aV(BA7Y) = (aVB)A(aVy)) distributivity of v over A

Figure 7.11 Standard logical equivalences. The symbols «, 3, and ~ stand for arbitrary
sentences of propositional logic.

chapter, we will see algorithms that are much more efficient in practice. Unfortunately, every
known inference algorithm for propositional logic has a worst-case complexity that is expo-
nential in the size of the input. We do not expect to do better than this because propositional
entailment is co-NP-complete. (See Appendix A.)

Equivalence, validity, and satisfiability

Before we plunge into the details of logical inference algorithms, we will need some addi-
tional concepts related to entailment. Like entailment, these concepts apply to all forms of
logic, but they are best illustrated for a particular logic, such as propositional logic.

The first concept is logical equivalence: two sentences « and 3 are logically equivalent
if they are true in the same set of models. We write this as &« < 3. For example, we
can easily show (using truth tables) that P A @Q and Q A P are logically equivalent; other
equivalences are shown in Figure 7.11. They play much the same role in logic as arithmetic
identities do in ordinary mathematics. An alternative definition of equivalence is as follows:
for any two sentences « and S,

a=p ifandonlyif o pgandjfE=«

(Recall that |= means entailment.)

The second concept we will need is validity. A sentence is valid if it is true in all
models. For example, the sentence P v —P is valid. Valid sentences are also known as
tautologies—they are necessarily true and hence vacuous. Because the sentence True is true
in all models, every valid sentence is logically equivalent to True.

What good are valid sentences? From our definition of entailment, we can derive the
deduction theorem, which was known to the ancient Greeks:

For any sentences a and 3, « |= 3 if and only if the sentence (o = () is valid.

(Exercise 7.4 asks for a proof.) We can think of the inference algorithm in Figure 7.10 as

Section 7.5.

Reasoning Patterns in Propositional Logic 211

SATISFIABILITY

SATISFIES

s

REDUCTIO AD
ABSURDUM

REFUTATION

checking the validity of (KB = «). Conversely, every valid implication sentence describes
a legitimate inference.

The final concept we will need is satisfiability. A sentence is satisfiable if it is true in
some model. For example, the knowledge base given earlier, (R1 A Ra A R3 A Ry A R53),
is satisfiable because there are three models in which it is true, as shown in Figure 7.9. If
a sentence « is true in a model m, then we say that m satisfies «, or that m is a model of
«. Satisfiability can be checked by enumerating the possible models until one is found that
satisfies the sentence. Determining the satisfiability of sentences in propositional logic was
the first problem proved to be NP-complete.

Many problems in computer science are really satisfiability problems. For example, all
the constraint satisfaction problems in Chapter 5 are essentially asking whether the constraints
are satisfiable by some assignment. With appropriate transformations, search problems can
also be solved by checking satisfiability. Validity and satisfiability are of course connected:
«vis valid iff —« is unsatisfiable; contrapositively, « is satisfiable iff -« is not valid. We also
have the following useful result:

a = @ if and only if the sentence (a A —3) is unsatisfiable.

Proving 5 from « by checking the unsatisfiability of (a« A =) corresponds exactly to the
standard mathematical proof technique of reductio ad absurdum (literally, “reduction to an
absurd thing”). Itis also called proof by refutation or proof by contradiction. One assumes a
sentence (3 to be false and shows that this leads to a contradiction with known axioms «. This
contradiction is exactly what is meant by saying that the sentence (« A —(3) is unsatisfiable.

/.5 REASONING PATTERNS IN PROPOSITIONAL LOGIC

INFERENCE RULES
MODUS PONENS

AND-ELIMINATION

This section covers standard patterns of inference that can be applied to derive chains of
conclusions that lead to the desired goal. These patterns of inference are called inference
rules. The best-known rule is called Modus Ponens and is written as follows:

a = 0, «

5

The notation means that, whenever any sentences of the form o« = and « are given, then
the sentence (3 can be inferred. For example, if (WumpusAhead A WumpusAlive) = Shoot
and (WumpusAhead N WumpusAlive) are given, then Shoot can be inferred.

Another useful inference rule is And-Elimination, which says that, from a conjunction,
any of the conjuncts can be inferred:

alp

[0
For example, from (WumpusAhead N WumpusAlive), WumpusAlive can be inferred.

By considering the possible truth values of « and 3, one can show easily that Modus
Ponens and And-Elimination are sound once and for all. These rules can then be used in
any particular instances where they apply, generating sound inferences without the need for
enumerating models.

212

Chapter 7. Logical Agents

PROOF

MONOTONICITY

All of the logical equivalences in Figure 7.11 can be used as inference rules. For exam-

ple, the equivalence for biconditional elimination yields the two inference rules
a e 8 (@ = BAr(B = a)
and .
(@ = BN (B = a) a & p

Not all inference rules work in both directions like this. For example, we cannot run Modus
Ponens in the opposite direction to obtain o = (and o from S.

Let us see how these inference rules and equivalences can be used in the wumpus world.
We start with the knowledge base containing R; through Rs, and show how to prove —P; »,
that is, there is no pit in [1,2]. First, we apply biconditional elimination to R to obtain

Rs: (Big = (PiaVP)) A ((PigVPai) = Bia).
Then we apply And-Elimination to Rg to obtain
R;: ((Pi2V Py1) = Big).
Logical equivalence for contrapositives gives
Rg: (=B11 = —(Pi2V Pp)).
Now we can apply Modus Ponens with Rg and the percept R, (i.e., =By 1), to obtain
Ry: —(Pia2VP).
Finally, we apply de Morgan’s rule, giving the conclusion
Rip: —PiagNAN—Pay.

That is, neither [1,2] nor [2,1] contains a pit.

The preceding derivation—a sequence of applications of inference rules—is called a
proof. Finding proofs is exactly like finding solutions to search problems. In fact, if the
successor function is defined to generate all possible applications of inference rules, then all
of the search algorithms in Chapters 3 and 4 can be applied to find proofs. Thus, searching
for proofs is an alternative to enumerating models. The search can go forward from the
initial knowledge base, applying inference rules to derive the goal sentence, or it can go
backward from the goal sentence, trying to find a chain of inference rules leading from the
initial knowledge base. Later in this section, we will see two families of algorithms that use
these techniques.

The fact that inference in propositional logic is NP-complete suggests that, in the worst
case, searching for proofs is going to be no more efficient than enumerating models. In many
practical cases, however, finding a proof can be highly efficient simply because it can ignore
irrelevant propositions, no matter how many of them there are. For example, the proof given
earlier leading to —P; » A =P, 1 does not mention the propositions By 1, P 1, P2, Of P3 1.
They can be ignored because the goal proposition, P; o, appears only in sentence Ry; the
other propositions in R4 appear only in R4 and R»; so Ry, Rs, and Rs have no bearing on
the proof. The same would hold even if we added a million more sentences to the knowledge
base; the simple truth-table algorithm, on the other hand, would be overwhelmed by the
exponential explosion of models.

This property of logical systems actually follows from a much more fundamental prop-
erty called monotonicity. Monotonicity says that the set of entailed sentences can only in-

Section 7.5.

Reasoning Patterns in Propositional Logic 213

crease as information is added to the knowledge base.® For any sentences o and 3,
if KBl=ao then KBAfE=«.

For example, suppose the knowledge base contains the additional assertion [stating that there
are exactly eight pits in the world. This knowledge might help the agent draw additional con-
clusions, but it cannot invalidate any conclusion « already inferred—such as the conclusion
that there is no pitin [1,2]. Monotonicity means that inference rules can be applied whenever
suitable premises are found in the knowledge base—the conclusion of the rule must follow
regardless of what else is in the knowledge base.

Resolution

We have argued that the inference rules covered so far are sound, but we have not discussed
the question of completeness for the inference algorithms that use them. Search algorithms
such as iterative deepening search (page 78) are complete in the sense that they will find
any reachable goal, but if the available inference rules are inadequate, then the goal is not
reachable—no proof exists that uses only those inference rules. For example, if we removed
the biconditional elimination rule, the proof in the preceding section would not go through.
The current section introduces a single inference rule, resolution, that yields a complete
inference algorithm when coupled with any complete search algorithm.

We begin by using a simple version of the resolution rule in the wumpus world. Let us
consider the steps leading up to Figure 7.4(a): the agent returns from [2,1] to [1,1] and then
goes to [1,2], where it perceives a stench, but no breeze. We add the following facts to the
knowledge base:

Ri1: —Bigs.
Ria: Bip & (PiiVPypVPig3).

By the same process that led to R, earlier, we can now derive the absence of pits in [2,2]
and [1,3] (remember that [1,1] is already known to be pitless):

Riz: P
Riy: —-Pi3.

We can also apply biconditional elimination to R3, followed by modus ponens with Rs, to
obtain the fact that there is a pit in [1,1], [2,2], or [3,1]:

Ri5: PiaVPoVPFP3;.
Now comes the first application of the resolution rule: the literal =P» 5 in Ry3 resolves with
the literal P, 5 in R;5 to give
Rig: PiiVDP.
In English; if there’s a pit in one of [1,1], [2,2], and [3,1], and it’s not in [2,2], then it’s in
[1,1] or [3,1]. Similarly, the literal =P; ; in R; resolves with the literal P; ; in Ri¢ to give
Ri7z: P31

)

10 Nonmonotonic logics, which violate the monotonicity property, capture a common property of human rea-
soning: changing one’s mind. They are discussed in Section 10.7.

214

Chapter 7. Logical Agents

UNIT RESOLUTION

COMPLEMENTARY
LITERALS

CLAUSE

UNIT CLAUSE
RESOLUTION

FACTORING

ey

REFUTATION
COMPLETENESS

In English: if there’s a pit in [1,1] or [3,1], and it’s not in [1,1], then it’s in [3,1]. These last
two inference steps are examples of the unit resolution inference rule,
bV -V A, m
V- Nl AVl V-V

)

where each £ is a literal and £; and m are complementary literals (i.e., one is the negation
of the other). Thus, the unit resolution rule takes a clause—a disjunction of literals—and a
literal and produces a new clause. Note that a single literal can be viewed as a disjunction of
one literal, also known as a unit clause.

The unit resolution rule can be generalized to the full resolution rule,

V-V Ay, miV---Vmy
OV NL ANVl VN Vmg V- Vmi_ g Vmjg V-V,

)

where /; and m; are complementary literals. If we were dealing only with clauses of length
two we could write this as
l1V Ly, —fy V U3
01V U3
That is, resolution takes two clauses and produces a new clause containing all the literals of
the two original clauses except the two complementary literals. For example, we have

Pi1V P, P11V P
P31V —Poo

There is one more technical aspect of the resolution rule: the resulting clause should contain
only one copy of each literal.*! The removal of multiple copies of literals is called factoring.
For example, if we resolve (A v B) with (A vV —~B), we obtain (A v A), which is reduced to
just A.

The soundness of the resolution rule can be seen easily by considering the literal Z;. If
¢; is true, then m; is false, and hence m; V ---V mj_1 Vmjpq1 V --- V m, must be true,
because my V --- V m,, is given. If ¢; is false, then {1V - -V ;1 V £j1 V -+ - V £}, must
be true because ¢1 Vv - - -V £ is given. Now /; is either true or false, so one or other of these
conclusions holds—exactly as the resolution rule states.

What is more surprising about the resolution rule is that it forms the basis for a family of
complete inference procedures. Any complete search algorithm, applying only the resolution
rule, can derive any conclusion entailed by any knowledge base in propositional logic. There
is a caveat: resolution is complete in a specialized sense. Given that A is true, we cannot use
resolution to automatically generate the consequence A v B. However, we can use resolution
to answer the question of whether A v B is true. This is called refutation completeness,
meaning that resolution can always be used to either confirm or refute a sentence, but it
cannot be used to enumerate true sentences. The next two subsections explain how resolution
accomplishes this.

11 1f a clause is viewed as a set of literals, then this restriction is automatically respected. Using set notation for
clauses makes the resolution rule much cleaner, at the cost of introducing additional notation.

Section 7.5.

Reasoning Patterns in Propositional Logic 215

s

CONJUNCTIVE
NORMAL FORM

K-CNF

Conjunctive normal form

The resolution rule applies only to disjunctions of literals, so it would seem to be relevant only
to knowledge bases and queries consisting of such disjunctions. How, then, can it lead to a
complete inference procedure for all of propositional logic? The answer is that every sentence
of propositional logic is logically equivalent to a conjunction of disjunctions of literals. A
sentence expressed as a conjunction of disjunctions of literals is said to be in conjunctive
normal form or CNF. We will also find it useful later to consider the restricted family of
k-CNF sentences. A sentence in k-CNF has exactly & literals per clause:

(6171\/...\/élyk)/\.../\(ém\/...vén,k).

It turns out that every sentence can be transformed into a 3-CNF sentence that has an equiva-
lent set of models.

Rather than prove these assertions (see Exercise 7.10), we describe a simple conversion
procedure. We illustrate the procedure by converting Rs, the sentence By ; < (P12 V Pa 1),
into CNF. The steps are as follows:

1. Eliminate <, replacing a < g with (o = B) A (8 = «).
(Bin = (Pr2V Pp)) A(Pr2V Pai) = Bi).
2. Eliminate =, replacing o = g with —a Vv 3:
(_‘Bl,l V PLQ V P271) A\ (—|(P1’2 V P271) V Bl,l) .
3. CNF requires — to appear only in literals, so we “move — inwards” by repeated appli-
cation of the following equivalences from Figure 7.11:
—(—a) = a (double-negation elimination)
—(aApB) = (-aV-p) (de Morgan)
—(aV B) = (—~aA-F) (deMorgan)
In the example, we require just one application of the last rule:
(ﬁBl,l V PLQ V P271) AN ((_\PLQ A —\P271) vV Bl,l) .
4. Now we have a sentence containing nested A and Vv operators applied to literals. We
apply the distributivity law from Figure 7.11, distributing \V over A wherever possible.
(_‘Bl,l vV PLQ V P271) A (—|P172 V Bl,l) A (—\P271 V Bl,l) .
The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to
read, but it can be used as input to a resolution procedure.

A resolution algorithm

Inference procedures based on resolution work by using the principle of proof by contra-
diction discussed at the end of Section 7.4. That is, to show that KB = «, we show that
(KB A —a) is unsatisfiable. We do this by proving a contradiction.

A resolution algorithm is shown in Figure 7.12. First, (KB A —«) is converted into
CNF. Then, the resolution rule is applied to the resulting clauses. Each pair that contains
complementary literals is resolved to produce a new clause, which is added to the set if it is
not already present. The process continues until one of two things happens:

216 Chapter 7. Logical Agents

function PL-RESOLUTION(K B, «) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

clauses « the set of clauses in the CNF representation of KB A —~«
new «—{ }
loop do
for each C;, C; in clauses do
resolvents <+ PL-RESOLVE(C;, C;)
if resolvents contains the empty clause then return true
new «— new U resolvents
if new C clauses then return false
clauses < clauses U new

Figure 7.12 A simple resolution algorithm for propositional logic. The function
PL-RESOLVE returns the set of all possible clauses obtained by resolving its two inputs.

=P, 0By =By, 0P1,0P;,

b

B A D R o N p D

Figure7.13 Partial application of PL-RESOLUTION to a simple inference in the wumpus
world. —P; 5 is shown to follow from the first four clauses in the top row.

o there are no new clauses that can be added, in which case « does not entail 3 or
e an application of the resolution rule derives the empty clause, in which case « entails g.

The empty clause—a disjunction of no disjuncts—is equivalent to False because a disjunction
is true only if at least one of its disjuncts is true. Another way to see that an empty clause
represents a contradiction is to observe that it arises only from resolving two complementary
unit clauses such as P and —P.

We can apply the resolution procedure to a very simple inference in the wumpus world.
When the agent is in [1,1], there is no breeze, so there can be no pits in neighboring squares.
The relevant knowledge base is

KB =Ry NRy = (Bl,l & (PLQ V P271)) A _‘Bl,l

and we wish to prove a which is, say, =P; . When we convert (KB A —«) into CNF, we
obtain the clauses shown at the top of Figure 7.13. The second row of the figure shows all the
clauses obtained by resolving pairs in the first row. Then, when P; » is resolved with P 5,
we obtain the empty clause, shown as a small square. Inspection of Figure 7.13 reveals that

Section 7.5.

Reasoning Patterns in Propositional Logic 217

RESOLUTION
CLOSURE

GROUND
RESOLUTION
THEOREM

HORN CLAUSES

many resolution steps are pointless. For example, the clause By 1 vV —~Bj1 V P 2 is equivalent
to True V Py 2 Which is equivalent to True. Deducing that True is true is not very helpful.
Therefore, any clause in which two complementary literals appear can be discarded.

Completeness of resolution

To conclude our discussion of resolution, we now show why PL-RESOLUTION is complete.
To do this, it will be useful to introduce the resolution closure RC(S) of a set of clauses S,
which is the set of all clauses derivable by repeated application of the resolution rule to clauses
in S or their derivatives. The resolution closure is what PL-RESOLUTION computes as the
final value of the variable clauses. It is easy to see that RC(.S) must be finite, because there
are only finitely many distinct clauses that can be constructed out of the symbols Py, ..., Py
that appear in S. (Notice that this would not be true without the factoring step that removes
multiple copies of literals.) Hence, PL-RESOLUTION always terminates.

The completeness theorem for resolution in propositional logic is called the ground
resolution theorem:

If a set of clauses is unsatisfiable, then the resolution closure of those clauses
contains the empty clause.

We prove this theorem by demonstrating its contrapositive: if the closure RC'(S) does not
contain the empty clause, then S is satisfiable. In fact, we can construct a model for .S with
suitable truth values for Py, ..., P,. The construction procedure is as follows:

For ¢ from 1 to k,

— Ifthereisaclause in RC(S) containing the literal = P; such that all its other literals
are false under the assignment chosen for P;, ..., P;_1, then assign false to P;.
— Otherwise, assign true to P;.

It remains to show that this assignment to Py, ..., P is a model of S, provided that RC(.S)
is closed under resolution and does not contain the empty clause. The proof of this is left as
an exercise.

Forward and backward chaining

The completeness of resolution makes it a very important inference method. In many practical
situations, however, the full power of resolution is not needed. Real-world knowledge bases
often contain only clauses of a restricted kind called Horn clauses. A Horn clause is a
disjunction of literals of which at most one is positive. For example, the clause (—L1; V
—BreezeV By 1), where Ly ; means that the agent’s location is [1,1], is a Horn clause, whereas
(_‘Bl,l V P172 V P271) is not.

The restriction to just one positive literal may seem somewhat arbitrary and uninterest-
ing, but it is actually very important for three reasons:

1. Every Horn clause can be written as an implication whose premise is a conjunction of
positive literals and whose conclusion is a single positive literal. (See Exercise 7.12.)
For example, the Horn clause (—L1 1 V—BreezeV By 1) can be written as the implication

218

Chapter 7. Logical Agents

DEFINITE CLAUSES
HEAD
BODY
FACT

INTEGRITY
CONSTRAINTS

FORWARD CHAINING

BACKWARD
CHAINING

AND-OR GRAPH

FIXED POINT

(L1,1 A Breeze) = By 1. In the latter form, the sentence is much easier to read: it says
that if the agent is in [1,1] and there is a breeze, then [1,1] is breezy. People find it easy
to read and write sentences in this form for many domains of knowledge.

Horn clauses like this one with exactly one positive literal are called definite clauses.
The positive literal is called the head and the negative literals form the body of the
clause. A definite clause with no negative literals simply asserts a given proposition—
sometimes called a fact. Definite clauses form the basis for logic programming,
which is discussed in Chapter 9. A Horn clause with no positive literals can be writ-
ten as an implication whose conclusion is the literal False. For example, the clause
(=Wi 1 vV =W 2)—the wumpus cannot be in both [1,1] and [1,2]—is equivalent to
W11 A W2 = False. Such sentences are called integrity constraints in the database
world, where they are used to signal errors in the data. In the algorithms that follow,
we assume for simplicity that the knowledge base contains only definite clauses and no
integrity constraints. We say these knowledge bases are in Horn form.

2. Inference with Horn clauses can be done through the forward chaining and backward
chaining algorithms, which we explain next. Both of these algorithms are very natural,
in that the inference steps are obvious and easy to follow for humans.

3. Deciding entailment with Horn clauses can be done in time that is linear in the size of
the knowledge base.

This last fact is a pleasant surprise. It means that logical inference is very cheap for many
propositional knowledge bases that are encountered in practice.

The forward-chaining algorithm PL-FC-ENTAILS?(KB, ¢) determines whether a sin-
gle proposition symbol g—the query—is entailed by a knowledge base of Horn clauses. It
begins from known facts (positive literals) in the knowledge base. If all the premises of an
implication are known, then its conclusion is added to the set of known facts. For example, if
Ly ,1 and Breeze are known and (L1 1 A Breeze) = B 3 is in the knowledge base, then B; ;
can be added. This process continues until the query ¢ is added or until no further inferences
can be made. The detailed algorithm is shown in Figure 7.14; the main point to remember is
that it runs in linear time.

The best way to understand the algorithm is through an example and a picture. Fig-
ure 7.15(a) shows a simple knowledge base of Horn clauses with A and B as known facts.
Figure 7.15(b) shows the same knowledge base drawn as an AND-OR graph. In AND-OR
graphs, multiple links joined by an arc indicate a conjunction—every link must be proved—
while multiple links without an arc indicate a disjunction—any link can be proved. It is easy
to see how forward chaining works in the graph. The known leaves (here, A and B) are set,
and inference propagates up the graph as far as possible. Wherever a conjunction appears,
the propagation waits until all the conjuncts are known before proceeding. The reader is
encouraged to work through the example in detail.

It is easy to see that forward chaining is sound: every inference is essentially an appli-
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence
will be derived. The easiest way to see this is to consider the final state of the inferred table
(after the algorithm reaches a fixed point where no new inferences are possible). The table

Section 7.5.

Reasoning Patterns in Propositional Logic 219

DATA-DRIVEN

function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional Horn clauses
q, the query, a proposition symbol
local variables: count, a table, indexed by clause, initially the number of premises
inferred, a table, indexed by symbol, each entry initially false
agenda, a list of symbols, initially the symbols known to be true in KB

while agenda is not empty do
p «— PoP(agenda)
unless inferred[p] do
inferred[p] < true
for each Horn clause ¢ in whose premise p appears do
decrement count[c]
if count[c] =0 then do
if HEAD[c] = ¢ then return true
PUsSH(HEADI], agenda)
return false

Figure 7.14 The forward-chaining algorithm for propositional logic. The agenda keeps
track of symbols known to be true but not yet “processed.” The count table keeps track of
how many premises of each implication are as yet unknown. Whenever a new symbol p from
the agenda is processed, the count is reduced by one for each implication in whose premise
p appears. (These can be identified in constant time if KB is indexed appropriately.) If a
count reaches zero, all the premises of the implication are known so its conclusion can be
added to the agenda. Finally, we need to keep track of which symbols have been processed:;
an inferred symbol need not be added to the agenda if it has been processed previously. This
avoids redundant work; it also prevents infinite loops that could be caused by implications
suchas P = Qand Q = P.

contains true for each symbol inferred during the process, and false for all other symbols.
We can view the table as a logical model; moreover, every definite clause in the original KB is
true in this model. To see this, assume the opposite, namely that some clause a1 A. .. Aag = b
is false in the model. Then a1 A ... A a; must be true in the model and b must be false in
the model. But this contradicts our assumption that the algorithm has reached a fixed point!
We can conclude, therefore, that the set of atomic sentences inferred at the fixed point defines
a model of the original KB. Furthermore, any atomic sentence ¢ that is entailed by the KB
must be true in all its models and in this model in particular. Hence, every entailed sentence
q must be inferred by the algorithm.

Forward chaining is an example of the general concept of data-driven reasoning—that
is, reasoning in which the focus of attention starts with the known data. It can be used within
an agent to derive conclusions from incoming percepts, often without a specific query in
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using
an incremental forward-chaining algorithm in which new facts can be added to the agenda to
initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new

220

Chapter 7. Logical Agents

GOAL-DIRECTED
REASONING

Q

P=Q

LANM = P P

BAL = M

ANP = L M

ANB = L

A L

B

A B
(a) (b)

Figure7.15 (a) A simple knowledge base of Horn clauses. (b) The corresponding AND—
OR graph.

information arrives. For example, if I am indoors and hear rain starting to fall, it might occur
to me that the picnic will be canceled. Yet it will probably not occur to me that the seventeenth
petal on the largest rose in my neighbor’s garden will get wet; humans keep forward chaining
under careful control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backwards from the
query. If the query ¢ is known to be true, then no work is needed. Otherwise, the algorithm
finds those implications in the knowledge base that conclude ¢. If all the premises of one of
those implications can be proved true (by backward chaining), then ¢ is true. When applied
to the query @ in Figure 7.15, it works back down the graph until it reaches a set of known
facts that forms the basis for a proof. The detailed algorithm is left as an exercise; as with
forward chaining, an efficient implementation runs in linear time.

Backward chaining is a form of goal-directed reasoning. It is useful for answering
specific questions such as “What shall I do now?” and “Where are my keys?” Often, the
cost of backward chaining is much less than linear in the size of the knowledge base, because
the process touches only relevant facts. In general, an agent should share the work between
forward and backward reasoning, limiting forward reasoning to the generation of facts that
are likely to be relevant to queries that will be solved by backward chaining.

7.6 EFFECTIVE PROPOSITIONAL INFERENCE

In this section, we describe two families of efficient algorithms for propositional inference
based on model checking: one approach based on backtracking search, and one on hillclimb-
ing search. These algorithms are part of the “technology” of propositional logic. This section
can be skimmed on a first reading of the chapter.

Section 7.6.

Effective propositional inference 221

DAVIS-PUTNAM
ALGORITHM

PURE SYMBOL

The algorithms we describe are for checking satisfiability. We have already noted the
connection between finding a satisfying model for a logical sentence and finding a solution
for a constraint satisfaction problem, so it is perhaps not surprising that the two families
of algorithms closely resemble the backtracking algorithms of Section 5.2 and the local-
search algorithms of Section 5.3. They are, however, extremely important in their own right
because so many combinatorial problems in computer science can be reduced to checking the
satisfiability of a propositional sentence. Any improvement in satisfiability algorithms has
huge consequences for our ability to handle complexity in general.

A complete backtracking algorithm

The first algorithm we will consider is often called the Davis—Putnam algorithm, after the
seminal paper by Martin Davis and Hilary Putnam (1960). The algorithm is in fact the version
described by Davis, Logemann, and Loveland (1962), so we will call it DPLL after the initials
of all four authors. DPLL takes as input a sentence in conjunctive normal form—a set of
clauses. Like BACKTRACKING-SEARCH and TT-ENTAILS?, it is essentially a recursive,
depth-first enumeration of possible models. It embodies three improvements over the simple
scheme of TT-ENTAILS?:

e Early termination: The algorithm detects whether the sentence must be true or false,
even with a partially completed model. A clause is true if any literal is true, even if
the other literals do not yet have truth values; hence, the sentence as a whole could be
judged true even before the model is complete. For example, the sentence (A vV B) A
(AV Q) is true if A is true, regardless of the values of B and C. Similarly, a sentence
is false if any clause is false, which occurs when each of its literals is false. Again, this
can occur long before the model is complete. Early termination avoids examination of
entire subtrees in the search space.

e Pure symbol heuristic: A pure symbol is a symbol that always appears with the same
“sign” in all clauses. For example, in the three clauses (A vV —B), (=B Vv —(C), and
(C v A), the symbol A is pure because only the positive literal appears, B is pure
because only the negative literal appears, and C' is impure. It is easy to see that if
a sentence has a model, then it has a model with the pure symbols assigned so as to
make their literals ¢true, because doing so can never make a clause false. Note that, in
determining the purity of a symbol, the algorithm can ignore clauses that are already
known to be true in the model constructed so far. For example, if the model contains
B = false, then the clause (=B Vv —C)) is already true, and C' becomes pure because it
appears only in (C v A).

o Unit clause heuristic: A unit clause was defined earlier as a clause with just one lit-
eral. In the context of DPLL, it also means clauses in which all literals but one are
already assigned false by the model. For example, if the model contains B = false,
then (B v —~C') becomes a unit clause because it is equivalent to (False V =C), or just
—C'. Obviously, for this clause to be true, C' must be set to false. The unit clause
heuristic assigns all such symbols before branching on the remainder. One important
consequence of the heuristic is that any attempt to prove (by refutation) a literal that is

222

Chapter 7. Logical Agents

UNIT PROPAGATION

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses « the set of clauses in the CNF representation of s
symbols < a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value «— FIND-PURE-SYMBOL (symbols, clauses, model)
if P isnon-null then return DPLL(clauses, symbols — P,EXTEND(P, value, model)
P, value < FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL (clauses, symbols — P, EXTEND(P, value, model)
P «— FIRST(symbols); rest < REST(symbols)
return DPLL(clauses, rest, EXTEND(P, true, model)) or
DPLL(clauses, rest, EXTEND(P, false, model))

Figure7.16 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in the text; each returns
a symbol (or null) and the truth value to assign to that symbol. Like TT-ENTAILS?, it operates
over partial models.

already in the knowledge base will succeed immediately (Exercise 7.16). Notice also
that assigning one unit clause can create another unit clause—for example, when C'is
set to false, (C' vV A) becomes a unit clause, causing true to be assigned to A. This
“cascade” of forced assignments is called unit propagation. It resembles the process
of forward chaining with Horn clauses, and indeed, if the CNF expression contains only
Horn clauses then DPLL essentially replicates forward chaining. (See Exercise 7.17.)

The DPLL algorithm is shown in Figure 7.16. We have given the essential skeleton of the al-
gorithm, which describes the search process itself. We have not described the data structures
that must be maintained in order to make each search step efficient, nor the tricks that can
be added to improve performance: clause learning, variable selection heuristics, and random-
ized restarts. When these are included DPLL is one of the fastest satisfiability algorithms
yet developed, despite its antiquity. The CHAFF implementation is used to solve hardware
verification problems with a million variables.

Local-search algorithms

We have seen several local-search algorithms so far in this book, including HILL-CLIMBING
(page 112) and SIMULATED-ANNEALING (page 116). These algorithms can be applied di-
rectly to satisfiability problems, provided that we choose the right evaluation function. Be-
cause the goal is to find an assignment that satisfies every clause, an evaluation function that
counts the number of unsatisfied clauses will do the job. In fact, this is exactly the measure

Section 7.6.

Effective propositional inference 223

function WALKSAT (clauses, p, maz _flips) returnsa satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a “random walk” move, typically around 0.5
mazx _flips, number of flips allowed before giving up

model < a random assignment of true/false to the symbols in clauses
for i = 1to maz_flips do
if model satisfies clauses then return model
clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Figure 7.17 The WALKSAT algorithm for checking satisfiability by randomly flipping
the values of variables. Many versions of the algorithm exist.

used by the MIN-CoNFLIcTSsalgorithm for CSPs (page 151). All these algorithms take steps
in the space of complete assignments, flipping the truth value of one symbol at a time. The
space usually contains many local minima, to escape from which various forms of random-
ness are required. In recent years, there has been a great deal of experimentation to find a
good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called
WALKSAT (Figure 7.17). On every iteration, the algorithm picks an unsatisfied clause and
picks a symbol in the clause to flip. It chooses randomly between two ways to pick which
symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in
the new state, and (2) a “random walk” step that picks the symbol randomly.

Does WALKSAT actually work? Clearly, if it returns a model, then the input sentence
is indeed satisfiable. What if it returns failure? Unfortunately, in that case we cannot tell
whether the sentence is unsatisfiable or we need to give the algorithm more time. We could
try setting maz _flips to infinity. In that case, it is easy to show that WALK SAT will eventually
return a model (if one exists), provided that the probability p > 0. This is because there is
always a sequence of flips leading to a satisfying assignment, and eventually the random
walk steps will generate that sequence. Alas, if max_flips is infinity and the sentence is
unsatisfiable, then the algorithm never terminates!

What this suggests is that local-search algorithms such as WALKSAT are most useful
when we expect a solution to exist—for example, the problems discussed in Chapters 3 and 5
usually have solutions. On the other hand, local search cannot always detect unsatisfiability,
which is required for deciding entailment. For example, an agent cannot reliably use local
search to prove that a square is safe in the wumpus world. Instead, it can say, “I thought about
it for an hour and couldn’t come up with a possible world in which the square isn’t safe.” If
the local-search algorithm is usually really fast at finding a model when one exists, the agent
might be justified in assuming that failure to find a model indicates unsatisfiability. This isn’t
the same as a proof, of course, and the agent should think twice before staking its life on it.

224

Chapter 7. Logical Agents

UNDERCONSTRAINED

CRITICAL POINT

Hard satisfiability problems

We now look at how DPLL and WALKSAT perform in practice. We are particularly inter-
ested in hard problems, because easy problems can be solved by any old algorithm. In Chap-
ter 5, we saw some surprising discoveries about certain kinds of problems. For example, the
n-gqueens problem—thought to be quite tricky for backtracking search algorithms—turned
out to be trivially easy for local-search methods, such as min-conflicts. This is because solu-
tions are very densely distributed in the space of assignments, and any initial assignment is
guaranteed to have a solution nearby. Thus, n-queens is easy because it is underconstrained.

When we look at satisfiability problems in conjunctive normal form, an undercon-
strained problem is one with relatively few clauses constraining the variables. For example,
here is a randomly generated'? 3-CNF sentence with five symbols and five clauses:

(-DV-BVC)A(BV-AV-C)A(~CV-BVE)
A(EV-DVB)A(BVEV-C).

16 of the 32 possible assignments are models of this sentence, so, on average, it would take
just two random guesses to find a model.

So where are the hard problems? Presumably, if we increase the number of clauses,
keeping the number of symbols fixed, we make the problem more constrained, and solutions
become harder to find. Let m be the number of clauses and n be the number of symbols.
Figure 7.18(a) shows the probability that a random 3-CNF sentence is satisfiable, as a func-
tion of the clause/symbol ratio, m/n, with n fixed at 50. As we expect, for small m/n the
probability is close to 1, and at large m /n the probability is close to 0. The probability drops
fairly sharply around m /n = 4.3. CNF sentences near this critical point could be described
as “nearly satisfiable” or “nearly unsatisfiable.” Is this where the hard problems are?

Figure 7.18(b) shows the runtime for DPLL and WALKSAT around this point, where
we have restricted attention to just the satisfiable problems. Three things are clear: First,
problems near the critical point are much more difficult than other random problems. Second,
even on the hardest problems, DPLL is quite effective—an average of a few thousand steps
compared with 2°0 =~ 105 for truth-table enumeration. Third, WALKSAT is much faster
than DPLL throughout the range.

Of course, these results are only for randomly generated problems. Real problems do
not necessarily have the same structure—in terms of proportions of positive and negative liter-
als, densities of connections among clauses, and so on—as random problems. Yet, in practice,
WALKSAT and related algorithms are very good at solving real problems too—often as good
as the best special-purpose algorithms for those tasks. Problems with thousands of symbols
and millions of clauses are routinely handled by solvers such as CHAFF. These observa-
tions suggest that some combination of the min-conflicts heuristic and random-walk behavior
provides a general-purpose capability for resolving most situations in which combinatorial
reasoning is required.

12 Each clause contains three randomly selected distinct symbols, each of which is negated with 50% probability.

Section 7.7. Agents Based on Propositional Logic

225

P(satisfiable)
o o o
N ()] [e"]

o
N

o 1 2 3 4 5 6 7 8
Clause/symbol ratio m/n

(@)

o

2 3 4 5 6 7 8
Clause/symbol ratio m/n

(b)

Figure7.18

(a) Graph showing the probability that a random 3-CNF sentence with n =50

symbols is satisfiable, as a function of the clause/symbol ratio m /n. (b) Graph of the median
runtime of DPLL and WALKSAT on 100 satisfiable random 3-CNF sentences with n =50,
for a narrow range of m /n around the critical point.

/.7 AGENTS BASED ON PROPOSITIONAL LOGIC

In this section, we bring together what we have learned so far in order to construct agents
that operate using propositional logic. We will look at two kinds of agents: those which
use inference algorithms and a knowledge base, like the generic knowledge-based agent in
Figure 7.1, and those which evaluate logical expressions directly in the form of circuits. We
will demonstrate both kinds of agents in the wumpus world, and will find that both suffer
from serious drawbacks.

Finding pits and wumpuses using logical inference

Let us begin with an agent that reasons logically about the location of pits, wumpuses, and
safe squares. It begins with a knowledge base that states the “physics” of the wumpus world.
It knows that [1,1] does not contain a pit or a wumpus; that is, =P ; and =W ;. For every
square [z, y|, it knows a sentence stating how a breeze arises:

Bzyy = (Pg;7y+1 V Pg;7y_1 V Px+17y V Pac—l,y) . (7.2)
For every square [x, y], it knows a sentence stating how a stench arises:
S%y =2 (Wr,y—i-l V Wm,y—l V W$+17y V Wm—l,y) . (7.2)

Finally, it knows that there is exactly one wumpus. This is expressed in two parts. First, we
have to say that there is at least one wumpus:

W171 \Y Wl,z VeV W4,3 V W474 .

Then, we have to say that there is at most one wumpus. One way to do this is to say that
for any two squares, one of them must be wumpus-free. With n squares, we get n(n — 1)/2

226

Chapter 7. Logical Agents

function PL-WUMPUS-AGENT (percept) returnsan action
inputs: percept, a list, [stench,breeze, glitter]
static: KB, a knowledge base, initially containing the “physics” of the wumpus world
x, y, orientation, the agent’s position (initially 1,1) and orientation (initially right)
visited, an array indicating which squares have been visited, initially false
action, the agent’s most recent action, initially null
plan, an action sequence, initially empty

update z,y,orientation, visited based on action

if stench then TELL(KB, S;) else TELL(KB,— Sy)

if breeze then TELL(KB, B,) else TELL(KB, ~ By)

if glitter then action < grab

eseif plan is nonempty then action < POP(plan)

elseif for some fringe square [i,j], ASK(KB, (-~ P; ; A = W; ;)) is true or

for some fringe square [4,5], ASK(KB, (P; ; V W; ;)) is false then do

plan «— A*-GRAPH-SEARCH(ROUTE-PROBLEM([z,y], orientation, [i,j],visited))
action <+ POP(plan)

else action < a randomly chosen move

return action

Figure 7.19 A wumpus-world agent that uses propositional logic to identify pits, wum-
puses, and safe squares. The subroutine ROUTE-PROBLEM constructs a search problem
whose solution is a sequence of actions leading from [,y] to [¢,7] and passing through only
previously visited squares.

sentences such as =W 1 vV ~Wi 2. For a 4 x 4 world, then, we begin with a total of 155
sentences containing 64 distinct symbols.

The agent program, shown in Figure 7.19, TELLS its knowledge base about each new
breeze and stench percept. (It also updates some ordinary program variables to keep track of
where it is and where it has been—more on this later.) Then, the program chooses where to
look next among the fringe squares—that is, the squares adjacent to those already visited. A
fringe square [4,5] is provably safe if the sentence (—P; ; A =W, ;) is entailed by the knowl-
edge base. The next best thing is a possibly safe square, for which the agent cannot prove that
there is a pit or a wumpus—that is, for which (P; ; vV W; ;) is not entailed.

The entailment computation in Ask can be implemented using any of the methods
described earlier in the chapter. TT-ENTAILS? (Figure 7.10) is obviously impractical, since
it would have to enumerate 264 rows. DPLL (Figure 7.16) performs the required inferences
in a few milliseconds, thanks mainly to the unit propagation heuristic. WALKSAT can also
be used, with the usual caveats about incompleteness. In wumpus worlds, failures to find a
model, given 10,000 flips, invariably correspond to unsatisfiability, so no errors are likely due
to incompleteness.

PL-WuMPUS-AGENT works quite well in a small wumpus world. There is, however,
something deeply unsatisfying about the agent’s knowledge base. KB contains “physics”
sentences of the form given in Equations (7.1) and (7.2) for every single square. The larger

Section 7.7.

Agents Based on Propositional Logic 227

CIRCUIT-BASED
AGENT

SEQUENTIAL
CIRCUIT

GATES
REGISTERS

the environment, the larger the initial knowledge base needs to be. We would much prefer
to have just two sentences that say how breezes and stenches arise in all squares. These are
beyond the powers of propositional logic to express. In the next chapter, we will see a more
expressive logical language in which such sentences are easy to express.

Keeping track of location and orientation

The agent program in Figure 7.19 “cheats” because it keeps track of location outside the
knowledge base, instead of using logical reasoning.’® To do it “properly,” we will need
propositions for location. One’s first inclination might be to use a symbol such as L ; to
mean that the agent is in [1,1]. Then the initial knowledge base might include sentences like

L1 1 A FacingRight N\ Forward = Lo .

Instantly, we see that this won’t work. If the agent starts in [1,1] facing right and moves
forward, the knowledge base will entail both L ; (the original location) and L > (the new
location). Yet these propositions cannot both be true! The problem is that the location propo-
sitions should refer to two different times. We need Lil to mean that the agent is in [1,1] at
time 1, L%,l to mean that the agent is in [2,1] at time 2, and so on. The orientation and action
propositions also need to depend on time. Therefore, the correct sentence is

Lil A FacingRight' A Forward' = L%l
FacingRight A TurnLeft' = FacingUp? ,

and so on. It turns out to be quite tricky to build a complete and correct knowledge base
for keeping track of everything in the wumpus world; we will defer the full discussion until
Chapter 10. The point we want to make here is that the initial knowledge base will contain
sentences like the preceding two examples for every time ¢, as well as for every location. That
is, for every time ¢ and location [z, y], the knowledge base contains a sentence of the form

Lt , A FacingRight' A Forward" = L1 . (7.3)

Even if we put an upper limit on the number of time steps allowed—2100, perhaps—we end
up with tens of thousands of sentences. The same problem arises if we add the sentences
“as needed” for each new time step. This proliferation of clauses makes the knowledge base
unreadable for a human, but fast propositional solvers can still handle the 4 x 4 Wumpus
world with ease (they reach their limit at around 100 x 100). The circuit-based agents in
the next subsection offer a partial solution to this clause proliferation problem, but the full
solution will have to wait until we have developed first-order logic in Chapter 8.

Circuit-based agents

A circuit-based agent is a particular kind of reflex agent with state, as defined in Chapter 2.
The percepts are inputs to a sequential circuit—a network of gates, each of which imple-
ments a logical connective, and registers, each of which stores the truth value of a single
proposition. The outputs of the circuit are registers corresponding to actions—for example,

13 The observant reader will have noticed that this allowed us to finesse the connection between the raw percepts
such as Breeze and the location-specific propositions such as By 1.

228

Chapter 7. Logical Agents

DATAFLOW

DELAY LINE

Breeze [] Forward

Sench [] TurnLeft

Glitter [

TurnRight
Bump [] N Grab

D_I—>

sream
A\
JARY

Figure7.20 Part of a circuit-based agent for the wumpus world, showing inputs, outputs,
the circuit for grabbing the gold, and the circuit for determining whether the wumpus is alive.
Registers are shown as rectangles and one-step delays are shown as small triangles.

the Grab output is set to true if the agent wants to grab something. If the Glitter input is
connected directly to the Grab output, the agent will grab the goal whenever it sees it. (See
Figure 7.20.)

Circuits are evaluated in a dataflow fashion: at each time step, the inputs are set and
the signals propagate through the circuit. Whenever a gate has all its inputs, it produces an
output. This process is closely related to the process of forward chaining in an AND-OR
graph such as Figure 7.15(b).

We said in the preceding section that circuit-based agents handle time more satisfac-
torily than propositional inference-based agents. This is because the value stored in each
register gives the truth value of the corresponding proposition symbol at the current time ¢,
rather than having a different copy for each different time step. For example, we might have
an Alive register that should contain true when the wumpus is alive and false when it is dead.
This register corresponds to the proposition symbol Alive’, so on each time step it refers to
a different proposition. The internal state of the agent—i.e., its memory—is maintained by
connecting the output of a register back into the circuit through a delay line. This delivers the
value of the register at the previous time step. Figure 7.20 shows an example. The value for
Alive is given by the conjunction of the negation of Scream and the delayed value of Alive
itself. In terms of propositions, the circuit for Alive implements the biconditional

Alive! < —Scream® A Alive!™! (7.4)

which says that the wumpus is alive at time ¢ if and only if there was no scream perceived
at time ¢ (from a scream at ¢t — 1) and it was alive at ¢ — 1. We assume that the circuit is
initialized with Alive set to ¢true. Therefore, Alive will remain true until there is a scream,
whereupon it will become false and stay false. This is exactly what we want.

Section 7.7.

Agents Based on Propositional Logic 229

ALY
Breeze D (
aeren [

Glitter [
Bump D_j' Grab
B T
cream |:|
J
J

Figure7.21 The circuit for determining whether the agent is at [1,1]. Every location and
orientation register has a similar circuit attached.

The agent’s location can be handled in much the same way as the wumpus’s health. We
need an L, , register for each = and y; its value should be true if the agent is at [z, y]. The
circuit that sets the value of L, , is, however, much more complicated than the circuit for
Alive. For example, the agent is at [1,1] at time ¢ if (a) it was there at ¢ — 1 and either didn’t
move forward or tried but bumped into a wall; or (b) it was at [1,2] facing down and moved
forward; or (c) it was at [2,1] facing left and moved forward:

Li, & (L’i | A (~Forward=' v Bump'))
v (Lﬁ A (FacingDouwn!=' A Forward'™1)) (7.5)
\Y (Lé A (FacingLeft'™' A Forward'™1)) .

The circuit for Ly is shown in Figure 7.21. Every location register has a similar circuit
attached to it. Exercise 7.13(b) asks you to design a circuit for the orientation propositions.

The circuits in Figures 7.20 and 7.21 maintain the correct truth values for Alive and
L, for all time. These propositions are unusual, however, in that their correct truth values
can always be ascertained. Consider instead the proposition B, 4. square [4,4] is breezy.
Although this proposition’s truth value remains fixed, the agent cannot learn that truth value
until it has visited [4,4] (or deduced that there is an adjacent pit). Propositional and first-
order logic are designed to represent true, false, and unknown propositions automatically,
but circuits are not: the register for B4 4 must contain some value, either true or false, even
before the truth has been discovered. The value in the register might well be the wrong one,
and this could lead the agent astray. In other words, we need to represent three possible states
(Ba4,4 is known true, known false, or unknown) and we only have one bit to do it with.

The solution to this problem is to use two bits instead of one. By 4 is represented by two
registers that we will call K'(By4,4) and K (—B4.4), where K stands for “known.”. (Remember
that these are still just symbols with complicated names, even though they look like structured

230

Chapter 7. Logical Agents

KNOWLEDGE
PROPOSITION

ACYCLICITY

expressions!) When both K (B4 4) and K(—By 4) are false, it means the truth value of By 4
is unknown. (If both are true, there’s a bug in the knowledge base!) Now whenever we would
use By 4 in some part of the circuit, we use K (By 4) instead ; and whenever we would use
—By 4, We use K (—By 4). In general, we represent each potentially indeterminate proposition
with two knowledge propositions that state whether the underlying proposition is known to
be true and known to be false.

We will see an example of how to use knowledge propositions shortly. First, we need to
work out how to determine the truth values of the knowledge propositions themselves. Notice
that, whereas By 4 has a fixed truth value, K (B, 4) and K (—By4) do change as the agent
finds out more about the world. For example, K (B4 4) starts out false and then becomes true
as soon as B4 4 can be determined to be true—that is, when the agent is in [4,4] and detects a
breeze. It stays true thereafter. So we have

K(Bya)' < K(Bya)'" 'V (Lj4 A Breeze') . (7.6)

A similar equation can be written for K (=B 4)".

Now that the agent knows about breezy squares, it can deal with pits. The absence of a
pit in a square can be ascertained if and only if one of the neighboring squares is known not
to be breezy. For example, we have

K(=Py4)t < K(=Bs4)'V K(=By3)". (7.7)

Determining that there is a pit in a square is more difficult—there must be a breeze in an
adjacent square that cannot be accounted for by another pit:

K(P474)t =2 (K(B374)t A K(_\PQA)t A K(—\P373)t)
Vo (K(B3)' N K(=Py2)' AN K(=Ps3)") .

While the circuits for determining the presence or absence of pits are somewhat hairy, they
have only a constant number of gates for each square. This property is essential if we are
to build circuit-based agents that scale up in a reasonable way. It is really a property of
the wumpus world itself; we say that an environment exhibits locality if the truth of each
proposition of interest can be determined looking only at a constant number of other propo-
sitions. Locality is very sensitive to the precise “physics” of the environment. For example,
the minesweeper domain (Exercise 7.11) is nonlocal because determining that a mine is in
a given square can involve looking at squares arbitrarily far away. For nonlocal domains,
circuit-based agents are not always practical.

There is one issue around which we have tiptoed carefully: the question of acyclicity.
A circuit is acyclic if every path that connects the output of a register back to its input has
an intervening delay element. We require that all circuits be acyclic because cyclic circuits,
as physical devices, do not work! They can go into unstable oscillations resulting in un-
defined values. As an example of a cyclic circuit, consider the following augmentation of
Equation (7.6):

K(Bya)' & K(Bya)'™'V (Liy A Breeze') vV K(Ps)V K(Py3) . (7.9)

The extra disjuncts, K (Ps4)" and K(Py3), allow the agent to determine breeziness from
the known presence of adjacent pits, which seems entirely reasonable. Now, unfortunately,

(7.8)

Section 7.7.

Agents Based on Propositional Logic 231

breeziness depends on adjacent pits, and pits depend on adjacent breeziness through equations
such as Equation (7.8). Therefore, the complete circuit would contain cycles.

The difficulty is not that the augmented Equation (7.9) is incorrect. Rather, the prob-
lem is that the interlocking dependencies represented by these equations cannot be resolved
by the simple mechanism of propagating truth values in the corresponding Boolean circuit.
The acyclic version using Equation (7.6), which determines breeziness only from direct ob-
servation, is incomplete in the sense that at some points the circuit-based agent might know
less than an inference-based agent using a complete inference procedure. For example, if
there is a breeze in [1,1], the inference-based agent can conclude that there is also a breeze in
[2,2], whereas the acyclic circuit-based agent using Equation (7.6) cannot. A complete circuit
can be built—after all, sequential circuits can emulate any digital computer—but it would be
significantly more complex.

A comparison

The inference-based agent and the circuit-based agent represent the declarative and procedu-
ral extremes in agent design. They can be compared along several dimensions:

e Conciseness: The circuit-based agent, unlike the inference-based agent, need not have
separate copies of its “knowledge” for every time step. Instead, it refers only to the
current and previous time steps. Both agents need copies of the “physics” (expressed
as sentences or circuits) for every square and therefore do not scale well to larger en-
vironments. In environments with many objects related in complex ways, the number
of propositions will swamp any propositional agent. Such environments require the ex-
pressive power of first-order logic. (See Chapter 8.) Propositional agents of both kinds
are also poorly suited for expressing or solving the problem of finding a path to a nearby
safe square. (For this reason, PL-WuMPUS-AGENT falls back on a search algorithm.)

e Computational efficiency: In the worst case, inference can take time exponential in the
number of symbols, whereas evaluating a circuit takes time linear in the size of the
circuit (or linear in the depth of the circuit if realized as a physical device). In practice,
however, we saw that DPLL completed the required inferences very quickly.'

e Completeness: We suggested earlier that the circuit-based agent might be incomplete
because of the acyclicity restriction. The reasons for incompleteness are actually more
fundamental. First, remember that a circuit executes in time linear in the circuit size.
This means that, for some environments, a circuit that is complete (i.e., one that com-
putes the truth value of every determinable proposition) must be exponentially larger
than the inference-based agent’s KB. Otherwise, we would have a way to solve the
propositional entailment problem in less than exponential time, which is very unlikely.
A second reason is the nature of the internal state of the agent. The inference-based
agent remembers every percept and knows, either implicitly or explicitly, every sen-
tence that follows from the percepts and initial KB. For example, given By i, it knows
the disjunction P, o vV P» 1, from which B, > follows. The circuit-based agent, on the

14 n fact, all the inferences done by a circuit can be done in linear time by DPLL! This is because evaluating a
circuit, like forward chaining, can be emulated by DPLL using the unit propagation rule.

232

Chapter 7. Logical Agents

COMPILATION

other hand, forgets all previous percepts and remembers just the individual proposi-
tions stored in registers. Thus, P; 2 and P 1 remain individually unknown after the first
percept, so no conclusion will be drawn about B .

e Ease of construction: This is a very important issue about which it is hard to be precise.
Certainly, this author found it much easier to state the “physics” declaratively, whereas
devising small, acyclic, not-too-incomplete circuits for direct detection of pits seemed
quite difficult.

In sum, it seems there are tradeoffs among computational efficiency, conciseness, complete-
ness, and ease of construction. When the connection between percepts and actions is simple—
as in the connection between Glitter and Grab—a circuit seems optimal. For more complex
connections, the declarative approach may be better. In a domain such as chess, for example,
the declarative rules are concise and easily encoded (at least in first-order logic), but a circuit
for computing moves directly from board states would be unimaginably vast.

We see different points on these tradeoffs in the animal kingdom. The lower animals
with very simple nervous systems are probably circuit-based, whereas higher animals, in-
cluding humans, seem to perform inference on explicit representations. This enables them
to compute much more complex agent functions. Humans also have circuits to implement
reflexes, and perhaps also compile declarative representations into circuits when certain in-
ferences become routine. In this way, a hybrid agent design (see Chapter 2) can have the
best of both worlds.

7.8 SUMMARY

We have introduced knowledge-based agents and have shown how to define a logic with
which such agents can reason about the world. The main points are as follows:

e Intelligent agents need knowledge about the world in order to reach good decisions.

e Knowledge is contained in agents in the form of sentences in a knowledge represen-
tation language that are stored in a knowledge base.

e A knowledge-based agent is composed of a knowledge base and an inference mecha-
nism. It operates by storing sentences about the world in its knowledge base, using the
inference mechanism to infer new sentences, and using these sentences to decide what
action to take.

e A representation language is defined by its syntax, which specifies the structure of
sentences, and its semantics, which defines the truth of each sentence in each possible
world or model.

e The relationship of entailment between sentences is crucial to our understanding of
reasoning. A sentence « entails another sentence g if 3 is true in all worlds where «
is true. Equivalent definitions include the validity of the sentence «« = (3 and the
unsatisfiability of the sentence a A (3.

Section 7.8. Summary 233

e Inference is the process of deriving new sentences from old ones. Sound inference algo-
rithms derive only sentences that are entailed; complete algorithms derive all sentences
that are entailed.

e Propositional logic is a very simple language consisting of proposition symbols and
logical connectives. It can handle propositions that are known true, known false, or
completely unknown.

e The set of possible models, given a fixed propositional vocabulary, is finite, so en-
tailment can be checked by enumerating models. Efficient model-checking inference
algorithms for propositional logic include backtracking and local-search methods and
can often solve large problems very quickly.

e Inference rules are patterns of sound inference that can be used to find proofs. The
resolution rule yields a complete inference algorithm for knowledge bases that are
expressed in conjunctive normal form. Forward chaining and backward chaining
are very natural reasoning algorithms for knowledge bases in Horn form.

e Two kinds of agents can be built on the basis of propositional logic: inference-based
agents use inference algorithms to keep track of the world and deduce hidden proper-
ties, whereas circuit-based agents represent propositions as bits in registers and update
them using signal propagation in logical circuits.

e Propositional logic is reasonably effective for certain tasks within an agent, but does not
scale to environments of unbounded size because it lacks the expressive power to deal
concisely with time, space, and universal patterns of relationships among objects.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

John McCarthy’s paper “Programs with Common Sense” (McCarthy, 1958, 1968) promul-
gated the notion of agents that use logical reasoning to mediate between percepts and actions.
It also raised the flag of declarativism, pointing out that telling an agent what it needs to
know is a very elegant way to build software. Allen Newell’s (1982) article “The Knowledge
Level” makes the case that rational agents can be described and analyzed at an abstract level
defined by the knowledge they possess rather than the programs they run. The declarative
and procedural approaches to Al are compared in Boden (1977). The debate was revived by,
among others, Brooks (1991) and Nilsson (1991).

Logic itself had its origins in ancient Greek philosophy and mathematics. Various log-
ical principles—principles connecting the syntactic structure of sentences with their truth
and falsity, with their meaning, or with the validity of arguments in which they figure—are
scattered in the works of Plato. The first known systematic study of logic was carried out
by Aristotle, whose work was assembled by his students after his death in 322 B.C. as a

SYLLOGISMS treatise called the Organon. Aristotle’s syllogisms were what we would now call inference
rules. Although the syllogisms included elements of both propositional and first-order logic,
the system as a whole was very weak by modern standards. It did not allow for patterns of
inference that apply to sentences of arbitrary complexity, as in modern propositional logic.

234

Chapter 7. Logical Agents

The closely related Megarian and Stoic schools (originating in the fifth century B.C.
and continuing for several centuries thereafter) introduced the systematic study of implication
and other basic constructs still used in modern propositional logic. The use of truth tables for
defining logical connectives is due to Philo of Megara. The Stoics took five basic inference
rules as valid without proof, including the rule we now call Modus Ponens. They derived a
number of other rules from these five, using among other principles the deduction theorem
(page 210) and were much clearer about the notion of proof than Aristotle was. The Stoics
claimed that their logic was complete in the sense of capturing all valid inferences, but what
remains is too fragmentary to tell. A good account of the history of Megarian and Stoic logic,
as far as it is known, is given by Benson Mates (1953).

The idea of reducing logical inference to a purely mechanical process applied to a for-
mal language is due to Wilhelm Leibniz (1646-1716). Leibniz’s own mathematical logic,
however, was severely defective, and he is better remembered simply for introducing these
ideas as goals to be attained than for his attempts at realizing them.

George Boole (1847) introduced the first comprehensive and workable system of for-
mal logic in his book The Mathematical Analysis of Logic. Boole’s logic was closely mod-
eled on the ordinary algebra of real numbers and used substitution of logically equivalent
expressions as its primary inference method. Although Boole’s system still fell short of full
propositional logic, it was close enough that other mathematicians could quickly fill in the
gaps. Schroder (1877) described conjunctive normal form, while Horn form was introduced
much later by Alfred Horn (1951). The first comprehensive exposition of modern proposi-
tional logic (and first-order logic) is found in Gottlob Frege’s (1879) Begriffschrift (“Concept
Writing” or “Conceptual Notation™).

The first mechanical device to carry out logical inferences was constructed by the third
Earl of Stanhope (1753-1816). The Stanhope Demonstrator could handle syllogisms and
certain inferences in the theory of probability. William Stanley Jevons, one of those who
improved upon and extended Boole’s work, constructed his “logical piano” in 1869 to per-
form inferences in Boolean logic. An entertaining and instructive history of these and other
early mechanical devices for reasoning is given by Martin Gardner (1968). The first pub-
lished computer program for logical inference was the Logic Theorist of Newell, Shaw,
and Simon (1957). This program was intended to model human thought processes. Mar-
tin Davis (1957) had actually designed a program that came up with a proof in 1954, but the
Logic Theorist’s results were published slightly earlier. Both Davis’s 1954 program and the
Logic Theorist were based on somewhat ad hoc methods that did not strongly influence later
automated deduction.

Truth tables as a method of testing the validity or unsatisfiability of sentences in the lan-
guage of propositional logic were introduced independently by Ludwig Wittgenstein (1922)
and Emil Post (1921). In the 1930s, a great deal of progress was made on inference meth-
ods for first-order logic. In particular, Godel (1930) showed that a complete procedure for
inference in first-order logic could be obtained via a reduction to propositional logic, us-
ing Herbrand’s theorem (Herbrand, 1930). We will take up this history again in Chapter 9;
the important point here is that the development of efficient propositional algorithms in the
1960s was motivated largely by the interest of mathematicians in an effective theorem prover

Section 7.8.

Summary 235

for first-order logic. The Davis—Putnam algorithm (Davis and Putnam, 1960) was the first
effective algorithm for propositional resolution but was in most cases much less efficient than
the DPLL backtracking algorithm introduced two years later (1962). The full resolution rule
and a proof of its completeness appeared in a seminal paper by J. A. Robinson (1965), which
also showed how to do first-order reasoning without resort to propositional techniques.

Stephen Cook (1971) showed that deciding satisfiability of a sentence in propositional
logic is NP-complete. Since deciding entailment is equivalent to deciding unsatisfiability, it
is co-NP-complete. Many subsets of propositional logic are known for which the satisfia-
bility problem is polynomially solvable; Horn clauses are one such subset. The linear-time
forward-chaining algorithm for Horn clauses is due to Dowling and Gallier (1984), who de-
scribe their algorithm as a dataflow process similar to the propagation of signals in a circuit.
Satisfiability has become one of the canonical examples for NP reductions; for example Kaye
(2000) showed that the Minesweeper game (see Exercise 7.11) is NP-complete.

Local search algorithms for satisfiability were tried by various authors throughout the
1980s; all of the algorithms were based on the idea of minimizing the number of unsatisfied
clauses (Hansen and Jaumard, 1990). A particularly effective algorithm was developed by
Gu (1989) and independently by Selman et al. (1992), who called it GSAT and showed that
it was capable of solving a wide range of very hard problems very quickly. The WALKSAT
algorithm described in the chapter is due to Selman et al. (1996).

The “phase transition” in satisfiability of random k-SAT problems was first observed
by Simon and Dubois (1989). Empirical results due to Crawford and Auton (1993) suggest
that it lies at a clause/variable ratio of around 4.24 for large random 3-SAT problems; this
paper also describes a very efficient implementation of DPLL. (Bayardo and Schrag, 1997)
describe another efficient DPLL implementation using techniques from constraint satisfac-
tion, and (Moskewicz et al., 2001) describe CHAFF, which solves million-variable hardware
verification problems and was the winner of the SAT 2002 Competition. Li and Anbulagan
(1997) discuss heuristics based on unit propagation that allow for fast solvers. Cheeseman
et al. (1991) provide data on a number of related problems and conjecture that all NP hard
problems have a phase transition. Kirkpatrick and Selman (1994) describe ways in which
techniques from statistical physics might provide insight into the precise “shape” of the phase
transition. Theoretical analysis of its location is still rather weak: all that can be proved is
that it lies in the range [3.003,4.598] for random 3-SAT. Cook and Mitchell (1997) give an
excellent survey of results on this and several other satisfiability-related topics.

Early theoretical investigations showed that DPLL has polynomial average-case com-
plexity for certain natural distributions of problems. This potentially exciting fact became
less exciting when Franco and Paull (1983) showed that the same problems could be solved
in constant time simply by guessing random assignments. The random-generation method
described in the chapter produces much harder problems. Motivated by the empirical success
of local search on these problems, Koutsoupias and Papadimitriou (1992) showed that a sim-
ple hill-climbing algorithm can solve almost all satisfiability problem instances very quickly,
suggesting that hard problems are rare. Moreover, Schoning (1999) exhibited a randomized
variant of GSAT whose worst-case expected runtime on 3-SAT problems is 1.333™—still ex-
ponential, but substantially faster than previous worst-case bounds. Satisfiability algorithms

236

Chapter 7. Logical Agents

are still a very active area of research; the collection of articles in Du et al. (1999) provides a
good starting point.

Circuit-based agents can be traced back to the seminal paper of McCulloch and Pitts
(1943), which initiated the field of neural networks. Contrary to popular supposition, the
paper was concerned with the implementation of a Boolean circuit-based agent design in the
brain. Circuit-based agents have received little attention in Al, however. The most notable
exception is the work of Stan Rosenschein (Rosenschein, 1985; Kaelbling and Rosenschein,
1990), who developed ways to compile circuit-based agents from declarative descriptions of
the task environment. The circuits for updating propositions stored in registers are closely
related to the successor-state axiom developed for first-order logic by Reiter (1991). The
work of Rod Brooks (1986, 1989) demonstrates the effectiveness of circuit-based designs for
controlling robots—a topic we take up in Chapter 25. Brooks (1991) argues that circuit-based
designs are all that is needed for Al—that representation and reasoning are cumbersome,
expensive, and unnecessary. In our view, neither approach is sufficient by itself.

The wumpus world was invented by Gregory Yob (1975). lronically, Yob developed
it because he was bored with games played on a grid: the topology of his original wumpus
world was a dodecahedron; we put it back in the boring old grid. Michael Genesereth was
the first to suggest that the wumpus world be used as an agent testbed.

EXERCISES

7.1 Describe the wumpus world according to the properties of task environments listed in
Chapter 2.

7.2 Suppose the agent has progressed to the point shown in Figure 7.4(a), having perceived
nothing in [1,1], a breeze in [2,1], and a stench in [1,2]. and is now concerned with the
contents of [1,3], [2,2], and [3,1]. Each of these can contain a pit and at most one can contain
a wumpus. Following the example of Figure 7.5, construct the set of possible worlds. (You
should find 32 of them.) Mark the worlds in which the KB is true and those in which each of
the following sentences is true:

ag = “There is no pitin [2,2].”
as = “There isa wumpus in [1,3].”

Hence show that KB = a3 and KB = as.

7.3 Consider the problem of deciding whether a propositional logic sentence is true in a
given model.

a. Write a recursive algorithm PL-TRUE?(s, m) that returns true if and only if the sen-
tence s is true in the model m (where m assigns a truth value for every symbol in s).
The algorithm should run in time linear in the size of the sentence. (Alternatively, use a
version of this function from the online code repository.)

Section 7.8.

Summary 237

b. Give three examples of sentences that can be determined to be true or false in a partial
model that does not specify a truth value for some of the symbols.

c. Show that the truth value (if any) of a sentence in a partial model cannot be determined
efficiently in general.

d. Modify your PL-TRUE? algorithm so that it can sometimes judge truth from partial
models, while retaining its recursive structure and linear runtime. Give three examples
of sentences whose truth in a partial model is not detected by your algorithm.

e. Investigate whether the modified algorithm makes TT-ENTAILS? more efficient.

7.4 Prove each of the following assertions:

acis valid if and only if True = «.

For any «, False |= .

a = g if and only if the sentence (v = [3) is valid.

a = g ifand only if the sentence (o < [3) is valid.

a = @ if and only if the sentence (a A —(3) is unsatisfiable.

® 2 0o T o

7.5 Consider a vocabulary with only four propositions, A, B, C, and D. How many models
are there for the following sentences?

a. (ANB)V(BACQ)

b. AvB

c. A BseC

7.6 We have defined four different binary logical connectives.

a. Are there any others that might be useful?
b. How many binary connectives can there be?
c. Why are some of them not very useful?

7.7 Using a method of your choice, verify each of the equivalences in Figure 7.11.

7.8 Decide whether each of the following sentences is valid, unsatisfiable, or neither. \erify
your decisions using truth tables or the equivalence rules of Figure 7.11.
a. Smoke = Smoke
. Smoke = Fire
. (Smoke = Fire) = (—~Smoke = —Fire)
. Smoke V Fire \V - Fire
. ((Smoke N\ Heat) = Fire) < ((Smoke = Fire)V (Heat = Fire))
. (Smoke = Fire) = ((Smoke A\ Heat) = Fire)
. BigV Dumb V (Big = Dumb)
. (Big A Dumb) V =Dumb

O Q - ® QO o T

238

Chapter 7. Logical Agents

IMPLICATIVE
NORMAL FORM

7.9 (Adapted from Barwise and Etchemendy (1993).) Given the following, can you prove
that the unicorn is mythical? How about magical? Horned?

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a
mortal mammal. If the unicorn is either immortal or a mammal, then it is horned.
The unicorn is magical if it is horned.

7.10 Any propositional logic sentence is logically equivalent to the assertion that each pos-
sible world in which it would be false is not the case. From this observation, prove that any
sentence can be written in CNF.

7.11 Minesweeper, the well-known computer game, is closely related to the wumpus world.
A minesweeper world is a rectangular grid of NV squares with M invisible mines scattered
among them. Any square may be probed by the agent; instant death follows if a mine is
probed. Minesweeper indicates the presence of mines by revealing, in each probed square,
the number of mines that are directly or diagonally adjacent. The goal is to have probed every
unmined square.

a. Let X; ; be true iff square [4, j] contains a mine. Write down the assertion that there are
exactly two mines adjacent to [1,1] as a sentence involving some logical combination
of X; ; propositions.

b. Generalize your assertion from (a) by explaining how to construct a CNF sentence
asserting that & of n neighbors contain mines.

c. Explain precisely how an agent can use DPLL to prove that a given square does (or
does not) contain a mine, ignoring the global constraint that there are exactly M mines
in all.

d. Suppose that the global constraint is constructed via your method from part (b). How
does the number of clauses depend on M and N? Suggest a way to modify DPLL so
that the global constraint does not need to be represented explicitly.

e. Are any conclusions derived by the method in part (c) invalidated when the global
constraint is taken into account?

f. Give examples of configurations of probe values that induce long-range dependencies
such that the contents of a given unprobed square would give information about the
contents of a far-distant square. [Hint: consider an N x 1 board.]

7.12 This exercise looks into the relationship between clauses and implication sentences.

a. Show that the clause (=P, V --- V =P,,, V Q) is logically equivalent to the implication
sentence (P A--- A Pp) = Q.

b. Show that every clause (regardless of the number of positive literals) can be written in
the form (PL A - A Pp,) = (Q1V --- V @y), Where the Ps and Qs are proposition
symbols. A knowledge base consisting of such sentences is in implicative normal
form or Kowalski form.

c. Write down the full resolution rule for sentences in implicative normal form.

Section 7.8.

Summary 239

7.13 In this exercise, you will design more of the circuit-based wumpus agent.
a. Write an equation, similar to Equation (7.4), for the Arrow proposition, which should
be true when the agent still has an arrow. Draw the corresponding circuit.
b. Repeat part (a) for FacingRight, using Equation (7.5) as a model.
c. Create versions of Equations 7.7 and 7.8 for finding the wumpus, and draw the circuit.

7.14 Discuss what is meant by optimal behavior in the wumpus world. Show that our
definition of the PL-WuUMPUS-AGENT is not optimal, and suggest ways to improve it.

7.15 Extend PL-WuMPUS-AGENT so that it keeps keeps track of all relevant facts within
the knowledge base.

7.16 How long does it take to prove KB = « using DPLL when « is a literal already
contained in KB? Explain.

7.17 Trace the behavior of DPLL on the knowledge base in Figure 7.15 when trying to
prove @, and compare this behavior with that of the forward chaining algorithm.

