Lesson Context

\(\left.$$
\begin{array}{|l|l|l|l|}\hline \text { BIG PICTURE of this } & \begin{array}{l}\text { - mastery with algebraic skills to be used in our work with co-ordinate } \\
\text { UNIT: }\end{array} & \begin{array}{l}\text { geometry (midpoint, length, slope) }\end{array}
$$

\hline understanding various geometric properties of quadrilaterals \&

triangles\end{array}\right]\)	how do you really prove that something is "true"?

Lesson Objectives:

a. Review the properties of quadrilaterals through GeoGebra
b. Use algebraic methods to classify triangles

Warm-up:

Distance/Length: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \quad$ Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Midpoint: $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Given the two points $\mathbf{S}(\mathbf{1 0},-\mathbf{3})$ and $\mathbf{T}(-\mathbf{7},-\mathbf{5})$. Find the:
a. distance
b. slope
c. midpoint

A: Exploring Quadrilaterals - through dynamic geometry software: GeoGebra

Quadrilateral Type:	Use these points to construct each shape on GeoGebra:	Properties:	DESCRIBE how you would confirm each property ALGEBRAICALLY:
Square	$\begin{aligned} & \mathrm{A}(-1,-2) \\ & \mathrm{B}(5,2) \\ & \mathrm{C}(1,8) \\ & \mathrm{D}(-5,4) \end{aligned}$		
Rhombus	$\begin{aligned} & \mathrm{A}(-4,4) \\ & \mathrm{B}(1,6) \\ & \mathrm{C}(-1,1) \\ & \mathrm{D}(-6,-1) \end{aligned}$		
Rectangle	$\begin{aligned} & \mathrm{A}(-6,1) \\ & \mathrm{B}(-3,-2) \\ & \mathrm{C}(2,3) \\ & \mathrm{D}(-1,6) \end{aligned}$		
Parallelogram	$\begin{aligned} & A(-3,2) \\ & B(4,4) \\ & C(2,-1) \\ & D(-5,-3) \end{aligned}$		
Trapezoid	$\begin{aligned} & \mathrm{A}(-3,4) \\ & \mathrm{B}(3,2) \\ & \mathrm{C}(2,-1) \\ & \mathrm{D}(-5,-2) \end{aligned}$		
Quadrilateral	$\begin{aligned} & \mathrm{A}(-3,5) \\ & \mathrm{B}(2,2) \\ & \mathrm{C}(4,-3) \\ & \mathrm{D}(-5,-1) \end{aligned}$		

Properties of Quadrilaterals

B: Quadrilateral Flow Chart:

C: Classifying Quadrilaterals given slopes and lengths of each side:

1. Classify quadrilateral BEAR, where:

Slope of $\overline{B E}=\frac{1}{3} \quad$| Length of $\overline{B E}=\sqrt{10}$ |
| :--- |

Slope of $\overline{E A}=-3 \quad$ Length of $\overline{A R}=\sqrt{10}$
Slope of $\overline{A R}=\frac{1}{3} \quad$ Length of $\overline{B R}=\sqrt{10}$
Slope of $\overline{B R}=-3$
2. Classify quadrilateral $\mathbf{O H M Y}$, where:

Slope of $\overline{O H}=-\frac{1}{3} \quad$ Length of $\overline{O H}=\sqrt{10}$
$\overline{H M}$ Length of $\overline{H M}=2 \sqrt{10}$
Slope of $\overline{H M}=-3 \quad$ Length of $\overline{M Y}=\sqrt{10}$
Slope of $\overline{M Y}=-\frac{1}{3} \quad$ Length of $\overline{O Y}=2 \sqrt{10}$
Slope of $\overline{O Y}=-3$
3. Classify quadrilateral WZRD, where:

Slope of $\overline{W Z}=0 \quad$ Length of $\overline{W Z}=5$
Slope of $\overline{Z R}=-\frac{4}{3} \quad$ Length of $\overline{Z R}=5$
Slope of $\overline{R D}=0 \quad$ Length of $R D=5$
Slope of $\overline{W D}=-\frac{4}{3}$
4. Classify quadriateral AHSZ, where:
$\begin{array}{ll}\text { Slope of } \overline{A H}=\frac{1}{4} & \begin{array}{l}\text { Length of } \overline{A H}=\sqrt{17} \\ \text { Slope of } \overline{S Z}=\frac{6}{7}\end{array} \\ \begin{array}{l}\text { Length of } \overline{S Z}=\sqrt{85} \\ \text { Length of } \overline{H S}=\sqrt{17} \\ \text { Length of } \overline{Z A}=\sqrt{85}\end{array}\end{array}$
Slope of $\overline{H S}=-4 \quad$ Length of $\overline{Z A}=\sqrt{85}$
Slope of $\overline{Z A}=\frac{9}{2}$

D: Classifying Quadrilaterals in the coordinate plane:

Classify quadrilateral ABCD with vertices at $\mathrm{A}(4,7), \mathrm{B}(9,7), \mathrm{C}(6,3), \mathrm{D}(1,3)$.

Step 1: Plot the points in the coordinate plane.

Step 3: Check for parallel lines and right angles by checking the slopes of each side. The slope of $\overline{A B}=$

Step 2: Use the distance formula to find the length of each side:
$A B=$
$B C=$
$C D=$
$D A=$

Step 4: Classify ABCD.
Therefore $A B C D$ is a \qquad .

The slope of $\overline{B C}=$

The slope of $\overline{C D}=$

The slope of $\overline{D A}=$

E: Classifying Quadrilaterals in the coordinate plane:

Classify quadrilateral ABCD with vertices at $\mathrm{A}(-2,5), \mathrm{B}(1,8), \mathrm{C}(4,5), \mathrm{D}(1,2)$.

Step 1: Plot the points in the coordinate plane.

Step 3: Check for parallel lines and right angles by checking the slopes of each side. The slope of $\overline{A B}=$

Step 2: Use the distance formula to find the length of each side:
$A B=$
$B C=$
$C D=$
$D A=$

Step 4: Classify $A B C D$.
Therefore ABCD is a \qquad .

The slope of $\overline{B C}=$

The slope of $\overline{C D}=$

The slope of $\overline{D A}=$

F: Classifying Quadrilaterals in the coordinate plane:

Classify quadrilateral ABCD with vertices at $\mathrm{A}(3,6), \mathrm{B}(9,-2), \mathrm{C}(5,-8), \mathrm{D}(-5,-6)$.

Step 1: Plot the points in the coordinate plane.

Step 3: Check for parallel lines and right angles by checking the slopes of each side. The slope of $\overline{A B}=$

Step 2: Use the distance formula to find the length of each side:
$A B=$
$B C=$
$C D=$
$D A=$

Step 4: Classify ABCD.
Therefore $A B C D$ is a \qquad .

The slope of $\overline{B C}=$

The slope of $\overline{C D}=$

The slope of $\overline{D A}=$

G: Classifying Quadrilaterals in the coordinate plane:

Classify quadrilateral ABCD with vertices at $\mathrm{A}(-5,4), \mathrm{B}(5,4), \mathrm{C}(5,-5), \mathrm{D}(-5,-5)$.

Step 1: Plot the points in the coordinate plane.

Step 3: Check for parallel lines and right angles by checking the slopes of each side. The slope of $\overline{A B}=$

Step 2: Use the distance formula to find the length of each side:
$A B=$
$B C=$
$C D=$
$D A=$

Step 4: Classify $A B C D$.
Therefore $A B C D$ is a \qquad .

The slope of $\overline{B C}=$

The slope of $\overline{C D}=$

The slope of $\overline{D A}=$

H: Classifying Quadrilaterals in the coordinate plane:

Graph quadrilateral ABCD
which has coordinates:
A(-2,-3)
$B(0,4)$
C(6,4)
$\mathrm{D}(4,-3)$

Classify quadrilateral $A B C D$.

I: Classifying Quadrilaterals in the coordinate plane:
Graph quadrilateral ABCD
which has coordinates
A(-5,3)
B(-1,5)
C(1,-4)
D (-3,-5)

Classify quadrilateral $A B C D$.

