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Abstract—This paper develops a fully data-driven, missing-
data tolerant method for post-fault short-term voltage stability
(STVS) assessment of power systems against the incomplete PMU
measurements. The super-resolution perception (SRP), based on a
deep residual learning convolutional neural network, is employed
to cope with the missing PMU measurements. The incremental
broad learning (BL) is used to rapidly update the model to
maintain and enhance the online application performance. Being
different from the state-of-the-art methods, the proposed method
is fully data-driven and can fill up missing data under any PMU
placement information loss and network topology change sce-
nario. Simulation results demonstrate that the proposed method
has the best performance in terms of STVS assessment accuracy
and missing-data tolerance among the existing methods on the
benchmark testing system.

Index Terms—Data-driven, deep residual convolutional
neural network, incremental broad learning, short-term voltage
stability, super-resolution perception.

I. INTRODUCTION

SHORT-TERM voltage stability (STVS) of a power system
refers to the ability of the system to rapidly recover

its bus voltages to an acceptable level following a large
disturbance [1].

STVS is becoming a critical threat for power system secu-
rity especially because of the increasing penetration of wind
power resources. E.g., the 2016 South Australia blackout was

Manuscript received November 8, 2020; revised February 8, 2021; accepted
February 26, 2021. Date of online publication April 30, 2021; date of current
version July 2, 2021. The work was supported in part by National Natural
Science Foundation of China (51807009, 71931003, 72061147004).

C. Ren is with the Interdisciplinary Graduate School, Nanyang Technolog-
ical University, Singapore.

Y. Xu is with the School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore.

J. H. Zhao is with the School of Science and Engineering, The Chinese
University of Hong Kong (Shenzhen), China.

R. Zhang (corresponding author, email: rachelzhang.au@gmail.com; OR-
CID: https://orcid.org/0000-0003-1516-9653) is with Changsha University of
Science and Technology, Changsha 410114, China.

T. Wan is with School of Electrical and Information Engineering, University
of Sydney, Sydney, Australia.

DOI: 10.17775/CSEEJPES.2020.05930

caused by successive voltage disturbances which triggered a
wind farm outage [2]. A data-driven scheme has been iden-
tified as a promising approach to achieve real-time post-fault
STVS assessment based on phasor measurement unit (PMU)
measurements. The principle is to train the machine learning
(ML) model from a STVS database at the offline stage. For an
application, a well-trained ML-based STVS model can work
real-time with online PMU measurements, providing merits
with less data requirements, much faster assessment speed,
and better generalization capability [3].

The traditional model-based STVS assessment method is the
time-domain simulation (TDS), which aims to solve the high-
dimensional differential-algebraic equations with the complete
and accurate information of system models, contingencies, and
operating conditions. Due to the high computational burden
of TDS, it is not feasible for post-fault STVS assessment,
since short-term stability will be lost within a short period of
time before the TDS can be completed. Thus, the TDS can
neither make the decisions for real-time STVS assessment nor
make the accurate decisions with the incomplete PMU data.
To achieve the real-time assessment, several data-driven STVS
methods are designed. In practice, the data-driven stability
assessment can be divided into pre-fault assessment and post-
fault assessment [4]. The former is to evaluate the power
system stability status under a potential (but not yet occurred)
disturbance, so the data inputs into the ML model are steady-
state operational variables, such as power generation, load
demand, bus voltage, and line flows, etc. The latter aims to
timely predict the stability status after the fault occurrence.
Therefore, the data inputs to the model are the post-fault dy-
namic trajectories, such as voltage and rotor angle trajectories.

In the literature, a variety of data-driven models have been
reported with promising performance. In [5], a hierarchical
method is proposed for pre-fault STVS assessment, which
first classifies the voltage collapse status and then quantifies
the voltage stability degree. In [6], a time series shapelet
classification method is proposed for post-fault STVS assess-
ment. A support vector machine (SVM) is used for transient
stability [7] and voltage stability assessment [8]. A decision
tree (DT) is used to predict the voltage stability state [9]. To
address the imbalance problem in the training dataset, Refe-
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rence [10] proposed an imbalance learning method. In [11], a
time-adaptive scheme is proposed for faster post-fault STVS
assessment without compromising the STVS accuracy. In [12],
a hybrid ensemble learning approach is developed to further
balance the accuracy and the speed for STVS assessment. In
addition, recurrent neural networks (RNNs) are also utilized,
since they have a better ability to consider spatial and tem-
poral correlations, such as long short-term memory (LSTM)
units [13], [14] and gated recurrent units (GRUs) [15].

All the above data-driven studies assumed that the model
inputs are complete and available online. However, due to
many practical issues, the data inputs may be missing, such
as PMU failure, PDC failure, communication latency, or even
cyber-attacks, etc. According to the wide-area measurements
(WAMS) reliability analysis in [16], the WAMS reliability of
a 14-bus system is assessed as 97.35%, that is, the occurrence
probability of data missing is 2.65%. For the large-scale
systems, the data missing probability may increase due to more
extreme scenarios. With such missing real-time measurements,
the existing methods will become ineffective due to the lack
of model inputs.

In the literature, some methods have been proposed to
alleviate the detrimental impact of missing data. For traditional
stability assessment methods with incomplete input, Refe-
rences [17], [18] aim to fill up the missing data by using
the available data, which suffers from heavy computational
complexity and is improper for real-time post-fault assessment.
In [19], a degenerate decision tree (DDT) uses a large number
of single DTs, but its performance is limited by its tree
structure. Through combining basic DTs trained via location-
separated random subspace, DDT can achieve a higher accu-
racy performance compared with single DT methods. In [20],
a decision tree with surrogate splits (DTSS) employs the
surrogate splitting rule to substitute all the missing inputs, but
suffers from imperfect accuracy performances because of the
incomplete information. A random forest with surrogate splits
(RFSS) [21] can be regarded as an ensemble model of DTSS in
order to increase its diversity. All of the above studies focus
on missing data imputation and always suffer from serious
performance degradation once the number of missing data is
increased. In [22], a mean imputation (MI) can substitute the
missing features via the direct mean value of those features.
In [23] and [24], robust feature ensemble learning (RFEL) is
proposed to strategically collect observation-constrained PMU
clusters as the training data, but a large number of well-trained
classifiers are needed to use against all types of PMU missing
scenarios, which would suffer from dimensional explosion.

However, it can be seen that most of the existing meth-
ods [19]–[23], and the generative adversarial network-based
method [25] are for pre-fault stability assessment; only [24]
considers the STVS with missing data conditions, and it cannot
maintain a satisfactory performance if the amount of missing
data increases. In addition, most of missing data recovering
methods are fully dependent on the network topologies and
PMU observability; once they are changed or the location
of the missing PMU measurements are unknown, the model
may become ineffective. All of the above data-driven stability
methods do not consider real-time updating for trained stability

models; once they need to use real-time updating or the IS
cannot achieve the practical standards in advance, the existing
trained data-driven stability models may become ineffective
and have to be updated via re-training the whole model with
the new parameter settings or a larger database, which will
consume much more computation time.

In this paper, aiming to maintain the satisfactory perfor-
mance with missing PMU measurements for post-fault STVS
assessment, a novel data-driven missing-data tolerant method
is proposed. The proposed method is composed of two models,
including a missing data recovering model and a STVS
prediction model with faster updating capability. The main
contributions and values of this paper are as follows:

1) The missing data recovering model is developed based
on the super-resolution perception (SRP) algorithm. Such a
SRP model works for all types of data missing conditions
with the same number of missed PMUs and is independent
on PMU observability and network topologies. Also, such a
SRP model can still accurately recover the missing data when
a large amount of data is lost.

2) The STVS prediction model can be updated online for
a real-time STVS application based on broad learning (BL)
with an increment of feature nodes. The main value of the BL
based model is its flexible structure, which allows much faster
(online) model updating for performance enhancement and
maintenance without retraining the whole model. Therefore,
the proposed data-driven method is more generalized and
extensible than the existing methods.

The proposed data-driven method is tested on the New
England 10-machine 39-bus system, showing a higher STVS
accuracy performance than existing methods. Through provid-
ing greater flexibility for system operators to manipulate the
STVS assessment performance, the proposed method can be
employed to substitute different incomplete PMU measure-
ment scenarios.

II. PROPOSED METHODOLOGY

The implementation of the proposed IS requires two stages,
an offline training process and an online application process.
The proposed novel data-driven model based on SRP and
incremental BL is displayed as Fig. 1.

A. Offline Training Process

In the offline training process, a historical STVS database
is utilized to train a SRP model for recovering missing PMU
data and a STVS model with faster updating capability based
on incremental BL.

The SRP technique takes the incomplete data as the input
and directly outputs the estimated complete data via feature
extraction, feature supplement, and reconstruction. Therefore,
the SRP model can accurately recover real-time complete
PMU measurements from missing data (e.g., caused by PMU
failures, PDC failure, communication latency, etc.) without
adding any new data while ensuring the data quality is as high
as possible. For the SRP model, the input is the incomplete
voltage trajectories and the output is the recovered complete
voltage trajectories.
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Fig. 1. The framework of the proposed method.

The STVS model can be a predictor/classifier trained via
any effective ML algorithm. The post-fault STVS assessment
can be regarded as a time series classification issue. In order
to achieve online updating, the STVS model is trained as a
classifier based on the incremental BL algorithm, which is
suitable for time series classification. For the STVS model,
the input is complete voltage trajectory measurements and the
output is the stability status (i.e., stable or unstable).

B. Online Application Process

For the online application process, the real-time PMU
measurements can be used as model inputs. The proposed
method first estimates whether the real-time measurements
are complete. If the real-time measurements are complete,
they will be directly sent to the STVS model; otherwise,
the incomplete data will be imported into the SRP model to
recover the missing PMU measurements. Then, the complete
PMU data can be sent to the trained STVS model. With such
complete measurement data, the STVS model is able to make
an accurate and timely decision on the system’s stability status.
If the accuracy monitoring judges that it does not meet the
actual STVS assessment accuracy requirements, the STVS
model needs to update online, then the current STVS model
can be continuously updated by the increments of the features
for performance maintenance or improvement. Finally, when
the system is estimated to be unstable, then emergency control
actions should be activated, such as load shedding.

III. METHODOLOGIES

The proposed data-driven method is based on SRP and BL
with increments of feature nodes. This section first introduces
the principle of SRP, then describes the fundamentals of BL
and its incremental scenario.

A. Super-Resolution Perception (SRP)

The SRP technique is designed to generate high-resolution
data Dcomplete from low-resolution missing data Dmissing [26].

Both Dcomplete and Dmissing represent the value of the same
physical quantity in the common time period, and are related
by a degradation model as shown in (1):

Dmissing =↓ Dcomplete + noise (1)

where ↓ represents the degradation function and noise repre-
sents the noise. SRP can be regarded as the inference Dcomplete

with Dmissing by the SRP mapping function Rθ(·) as shown
in (2):

D′
complete = Rθ (Dmissing) (2)

where the mapping function Rθ(·) can recover the information
missed by degradation function ↓ as much as possible. In order
to to find the best possible solution of SRP, an additional
constraint called Maximum a Posteriori estimation (MAP) is
considered, where the final generated D′

complete is the solution
with maximum posterior probability p(Dcomplete | Dmissing).
Based on the Bayesian formula, the corresponding Dcomplete

given the specific Dmissing can be calculated via solving the
MAP estimation as shown in (3):

D′
complete = arg max

Dcomplete
p (Dcomplete | Dmissing)

= arg max
Dcomplete

p (Dmissing | Dcomplete) p (Dcomplete) (3)

where p (Dmissing | Dcomplete) is the likelihood and can be
obtained by the degradation model; p (Dcomplete) can be solved
by the prior model as the regularization term to constrain
the solution of the estimation D′

complete satisfying the prior
distribution of Dcomplete. Equation (3) is equal to (4) as follows:

D′
complete = arg max

Dcomplete
log p (Dmissing | Dcomplete)+

log p (Dcomplete) (4)

The modeling of the prior Dcomplete has an important impact
on the SRP problem. Through effectively modeling the prior
of high-resolution data Dcomplete and degradation process,
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Dcomplete can be well estimated. Then, the high-resolution data
Dcomplete is estimated through the deep neural networks given
the low-resolution missing data Dmissing. The purpose of the
network is to minimize the mean squared error loss function
as shown in (5):

L
(
Dcomplete, D

′
complete

)
=

∥∥Dcomplete −D′
complete

∥∥2
2

= ∥Dcomplete −Rθ (Dmissing)∥22 (5)

Then, the optimal model parameters θ can be calculated
via minimizing the loss function (5) with the gradient descent
algorithm as shown in (6):

θ′ = argmin
θ

∥Dcomplete −Rθ (Dmissing)∥22 (6)

The SRP mapping function Rθ(·) is implemented via the
convolutional neural network. The network applies the incom-
plete data Dmissing as the input features with the length of Df

and directly outputs the approximated complete data D′
missing

with the length of Dc, Df < Dc. The structure of SRP is
shown in Fig. 2, and SRP is composed of three parts, including
feature extraction, feature supplement, and reconstruction.
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Fig. 2. The structure of SRP.

The beginning of the convolution layers is applied for a
global feature extractor, which can extract abstract feature
information from the Dmissing and handle the features as
many of the same dimension feature vectors. Given inputs
X ∈ Rp×df with q instances and df features, the feature

extraction portion extracts features from input X and all the
samples are represented as the v feature vectors with the length
of df . These features F ∈ Rq×v×df represent the abstract
feature information of input X . With such extracted features,
an information supplemental sub-network based on a deep
residual learning convolutional neural network (ResNet) [27]
is utilized to supplement the missing information, which
adds the local connection in each residual block to ensure
the gradient flow directly through the bottom layers. Under
such a structure, the global connection can force learning
on the missed information. A deep ResNet is composed of
a number of residual blocks. The structure of the residual
block is composed of several convolutional blocks Convs with
the number of filter b, including convolutional layer, batch
normalization layer and the Rectified Linear Units (ReLU)
activation function. Both the local residual connections and
the global residual connections are applied to improve the
accuracy performance via residual functions. After that, the
reconstruction part can integrate the feature vectors of samples
into α sub-vectors with the length of df . Then, the sub-vectors
F ∈ Rq×α×df are rearranged as the estimated complete data
Y ∈ Rq×dc . It should be noted that the sub-vectors can be
generated in parallel via applying the convolution operation
in parallel, since the proposed SRP method has a heavy
computational efficiency.

As mentioned above, the output of the SRP model is
the estimated complete data which is reconstructed from the
original data. Thus, the estimated complete data can accurately
represent the characteristics of the original data based on the
effective feature learning ability of the ResNet.

B. Broad Learning (BL) Algorithm

The BL algorithm shown in Fig. 3 is derived from a random
vector functional link network [28]. It can obtain high accuracy
performance without deep neural network structures, while the
deep multi-layer structures suffer from huge computational
burden and need much more time to train a large number
of parameters. Its structure consists of input X , features Zn,
enhancement hidden nodes Hm and output Y . First, the input
X is transformed into feature nodes Zn via feature mappings,
and then the feature mapping is connected via the nonlinear
activation function to form the enhancement hidden nodes
Hm. Finally, features Zn and the corresponding enhancement
hidden nodes Hm are connected to the output Y , and then the
output weights W can be calculated via the regression way.

Y = Rm
n Wm

n = [Zn(X) | Hm(X)]Wm
n (7)

where

Rm
n = [Zn(X) | Hm(X)]

Zi = [µ (XWei + βei)] , i = 1, 2, . . . , n

Zn = [Z1, . . . ,Zn]

Hj =
[
φ
(
ZnWhj

+ βhj

)]
, j = 1, 2, . . . ,m

Hm = [H1, . . . ,Hm] (8)

where state matrix is Rm
n = [Zn(X) | Hm(X)]; n and m

denote the quantity of features and enhancement hidden nodes.
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Fig. 3. The structure of the basic BL algorithm.

C. Increment of Feature Nodes

For the practical real-time application, the initially chosen
significant features might not be sufficient to represent the
real-time power systems stability status in a timely manner.
In order to solve such a problem, the traditional method is to
utilize more features to retrain the model and regain the model
parameters for the larger and deeper neural networks, which
would need more time and more computational resources.

For BL, the whole model is efficiently constructed and does
not need to retrain the whole network. The BL networks can
be expanded via adding additional features to obtain the latest
state matrix Rm

n+1 as follows:

Rm
n+1 = [Rm

n |Zn+1|Hexm
] (9)

where Hexm
represents additional output of the enhancement

hidden node which corresponds to the (n + 1)-th group
of features Zn+1. With the increment of features and the
enhancement hidden nodes, the latest output weights Wm

n+1

can be updated by Eq. (10):

Wm
n+1 =

(
Rm

n+1

)+
Y =

[
Wm

n − V KTY
KTY

]
(10)

where the pseudoinverse of Rm
n+1 is as shown in (11).(

Rm
n+1

)+
=

[
Rm

n − V KT

KT

]
(11)

where

V = (Rm
n )

+
[Zn+1 | Hexm

]

P = [Zn+1 | Hexm ]−Rm
n V

KT =

{
P+ P ̸= 0(
1+ V TV

)−1
V T (Rm

n )
+

P = 0
(12)

It can be seen that the BL with the increment of features
only needs to compute the output weights related to the (n+1)-
th group of features, thus leading to a highly computational
burden. The structure of BL with the increment of features
scenario is shown in Fig. 4, and Algorithm 1 provides the
complete pseudo-code of this learning procedure.

Algorithm 1: Incremental BL
Input : Input samples X , the quantity of features n,

the quantity of enhancement hidden nodes
group m.

Output: Output Weight W .
begin

for i = 1 to n do
Randomly set W ei , βei .
Calculate Zi = [µ(XW ei + βei)].

end
Get the features group Zn = [Z1, . . . ,Zn].
for j = 1 to m do

Randomly set W hj
, βhj

.
Calculate Hj = [φ(ZnW hj

+ βhj
)].

end
Get the enhancement hidden nodes group
Hm = [H1, . . . ,Hm].

Set Rm
n and calculate (Rm

n )+ by Eq. (7), (8).
repeat

# Increment of features
Randomly set W en+1

, βen+1
.

Calculate Zn+1 = [µ(XW en+1
+ βen+1

)].
Randomly set W exi , βexi

, i=1, . . . , m.
Calculate Hexm

=

[φ(Zn+1W exi
+βexi

), . . . , φ(Zn+1W exm
+βexm

)].

Update Rm
n+1 by Eq. (7).

Compute (Rm
n+1)

+ and Wm
n+1 by Eq. (9),

(10), (11), (12).
n = n+ 1

until Satisfy the error threshold
end

IV. SIMULATION RESULTS

The proposed approach is tested on a modified New England
10-machine 39-bus system as shown in Fig. 5 [23], and
the corresponding PMU placement locations are listed in
Table I. With the increasing integration of active demand-side
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TABLE I
PMU PLACEMENT LOCATION

Placement PMU installation buses Number of PMUs
3, 8, 10, 16, 20, 23, 25, 29 8

Wind Farm 3GG

30 37

25 26 28 29

38

G

2116

17183

1

2

G

39

4 14

15

24 36

23

19

2011

12

13
6

5

7

8

9

22

353334

10

3231

G

Wind Farm 1 Wind Farm 2

GG G G

G

27

Fig. 5. The modified New England 39-bus system.

response and renewable energy sources, more uncertainties
are introduced into the power systems. Considering the effect
of renewable energy resources on power systems, three wind
farms replace the synchronous generators on buses 32, 35,
and 37. The capacities of other generators are increased by
1.5 times to accommodate the wind power, and the wind power
penetration of the modified system is 36.58%. The simulation
is conducted on a computer with an Intel Core i7 CPU @ 3.3-
GHz processor, 16-GB RAM and GPU with Nvidia GeForce
GTX 1060. Time-domain simulations are performed via the
commercial software PSS/E [29]. The proposed method is
implemented based on Python 3.6 with the Pytorch framework.

A. Database Generation Process

A comprehensive STVS database is generated to consider a
wide range of system operating scenarios and post-disturbance
voltage trajectories. In this paper, the uncertainties of factors

need to be carefully considered, including pre-fault operating
points, dynamic load models and fault scenarios, etc., which
are respectively determined as follows.

• Pre-fault Operating Points: Through randomly varying
the load demand between 0.8 and 1.2 times that of
the base values, and the wind power output between 0
and its capacity, 6,536 operating points are generated.
In addition, optimal power flow is run to determine the
synchronous generators’ output.

• Fault Scenarios: The three-phase short-circuit faults are
considered in the simulation with a random fault duration
between 0.1 s and 0.3 s. Then, a randomly chosen fault
location is employed for each operating point. According
to the practical scenarios, the fault should be cleared
either with a single transmission line tripping or without
loss of the power grid component to simulate the different
fault-induced topology changes.

• Load Modeling: “CLOD” [29] applied in PSS/E is
utilized for the testing, which is an industry-standard
composite load model. The “CLOD” model is composed
of 6 typical load components in practical substations,
including transformer saturation, discharge lighting, small
motors, large motors, and voltage-dependent loads. The
portion of motor loads for all the operating points
is randomly sampled between 0% and 80%. Through
measurement-based load modeling methods [30], the dif-
ferent load components share can be obtained.

The distribution of the transient voltage severity index
(TVSI) value and load level are displayed in Fig. 6. The load
level represents the range of the operating systems, and the
TVSI proposed in [5] is utilized to evaluate the severity of the
post-fault voltage deviation. The small TVSI value means fast
voltage recovery, while a large TVSI value represents unstable
voltage propagation. For the generated database, the quantity
of the stable samples and unstable samples are 4,023 and
2,513, respectively. 80% of the samples are randomly chosen
for the training process, and the remaining 20% samples for
testing.

B. Observation Windows

In general, the longer the observation windows, the more
measurements can be obtained, so the STVS assessment results
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TABLE II
SNAPSHOT PERFORMANCES OF STVS ACCURACY AND COMPUTATIONAL EFFICIENCY BY INCREMENT OF FEATURES FOR STVS DATABASE

No. of training
samples

Time period
length as

feature nodes

No. of
enhancement

nodes

Testing
accuracy

Each
additional

training times

Accumulative
training times

Each
additional

testing times

Accumulative
testing times

5228 (base case) 0.8 s 100 96.19% 0.1387 s 0.1387 s 0.0215 s 0.0215 s
5228 0.8 s 0.9 s 100 150 96.98% 0.0571 s 0.1958 s 0.0058 s 0.0273 s
5228 0.9 s 1.0 s 150 200 97.53% 0.0576 s 0.2534 s 0.0051 s 0.0324 s
5228 1.0 s 1.1 s 200 250 98.09% 0.0643 s 0.3177 s 0.0052 s 0.0376 s
5228 1.1 s 1.2 s 250 300 98.37% 0.0678 s 0.3855 s 0.0049 s 0.0425 s
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Fig. 6. The distribution of the load level and TVSI value for generated STVS
database. (a) load level. (b) TVSI.

tend to be more accurate. However, if the observation windows
are too long, the system will lose the stability and cannot
activate emergency control timely, and instability cannot be
avoided [31]. Thus, it is necessary to predict the voltage sta-
bility status as early as possible in order to leave enough time
for activating the emergency controls. As the New England
10-machine 39-bus system has a nominal frequency of 60 Hz,
the time interval of PMU data reporting is set to 1/60 s, 1/30 s,
etc. To be more practical, the numerical tests have been re-
performed with a 1/60 s assessment time interval.

Since this paper primarily aims at the tolerance of missing
data, only fixed observation windows need to be considered.
For the testing, three different and reasonable observation
windows are chosen for STVS assessment, which are 0.8 s
(48 sampling points), 1.0 s (60 sampling points) and 1.2 s (72
sampling points) after the fault clearance.

C. Increment of BL Testing Results

The snapshot results of the increment with feature nodes
are shown in Table II. The columns of Table II, from left
to right, list the data-driven STVS method, the quantity of
training samples, the length of time period as features (each
time point includes 39 bus voltage values), the quantity of en-
hancement hidden nodes, testing STVS assessment accuracy,
each additional training time, the accumulative training time,
each additional testing time, and the accumulative testing time
respectively. As an example, the accumulative training time
and each additional training time denote the whole training
time and the training time at the current step, respectively;
the accumulative testing time and each additional testing time
denote the whole testing time and the testing time at the current
increment step, respectively.

As the basic case, 5228 samples with 48 time points (0.8 s)

are employed to train the STVS model, and the quantity of
enhancement hidden nodes is set as 100, resulting in the
96.19% testing STVS assessment accuracy. With the incre-
mental BL, the STVS model can effectively achieve the high
STVS assessment accuracy after four times incremental steps.
With the increment of feature scenarios, the testing accuracy
can continuously increase, up to 98.37%. Moreover, it can
be seen that for each incremental step, the computation time
is very short, which can be further verify that the proposed
method is very suitable for STVS online updating without
retraining a larger data-driven STVS model.

TABLE III
AVERAGE STVS PERFORMANCE OF DIFFERENT DATA-DRIVEN METHODS

UNDER THREE DIFFERENT OBSERVATION WINDOWS

Data-driven
STVS methods

Average STVS performance under three observation
windows (0.8 s, 1.0 s, 1.2 s)

Average accuracy Average computation time
LSTM 98.41% 5.327 s
FCNN 97.83% 12.532 s
BPNN 97.21% 0.843 s

Proposed BL 98.38% 0.459 s

In order to demonstrate the high efficiency of BL, the
proposed BL-based STVS model is compared with state-of-
the-art data-driven models under three observation windows
as shown in Table III, including LSTM, fully convolutional
neural network (FCNN), and back-propagation neural network
(BPNN). Note that all of the data-driven STVS models under
comparison have been well trained and tuned for their best per-
formances. As shown in Table III, it can be seen that the pro-
posed BL-based STVS model can achieve the 98.38% STVS
accuracy with the fastest computation time, only 0.459 s,
which can achieve ∼ 10X speedup compared with the LSTM-
based STVS model. Thus, the proposed method can achieve
online updating without sacrificing STVS accuracy.

D. SRP Testing Performance

The proposed SRP method shows the better performance
in terms of the following five indicators, compared with
four existing data-driven methods to cope with missing PMU
measurements, including MI [22], DTSS [20], RFSS [21], and
RFEL [24]. Note that all the testing results are the average
performance values for each of the missing PMU placement
data conditions.
1) Performance of Filled Missing Data

First, the performance of the filled missing data by the
SRP model is tested. The error is evaluated via dynamic
time warping (DTW) [32] and mean average percentage error
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TABLE IV
SRP PERFORMANCES

Error index Average computation efficiency Filled missing data performance (under different missing PMU numbers)
1 2 3 4 5 6 7

MAPE 2.79 ms 2.58% 2.73% 2.93% 3.36% 3.77% 3.92% 4.12%
DTW 0.0158 0.0193 0.0246 0.0291 0.0375 0.0459 0.0565

(MAPE) [33]. DTW is one of the time series analysis algo-
rithms used to measure the similarity between two different
time series. A smaller DTW value means a higher similarity
of STVS between generated PMU data with real PMU data.

Table IV lists DTW and MAPE of SRP for all types of
missing PMU conditions. It is clear that the estimated missing
data is very close to the ground truth value, which validates
that the generated estimated data via the SRP model can
accurately recover the incomplete PMU measurements. In
addition, the average computation time is 2.79 ms of one
instance, which can meet the requirement of IEEE Standard
C37.118.2-2011 [34] and is negligible for real-time STVS
applications.
2) STVS Assessment Accuracy Comparison

The testing results corresponding to three different obser-
vation windows are demonstrated in Fig. 7(a–c), where the
STVS assessment accuracy represents the percentage of the
correctly classified testing instances, and each plotted point
denotes the accuracy under each identical number of random
missing PMU placement measurements.

According to Fig. 7(a–c), with the increasing of the percent-
age of missing data, the existing methods show the different
degrees of decrease in STVS assessment accuracy. But the
proposed method has not been significantly affected, and
can still maintain a relatively satisfactory STVS assessment
accuracy, verifying its anti-missing ability.
3) Average Accuracy with Incomplete PMU
Measurement Comparisons

A new technical index, called average STVS assessment
accuracy (ASAA) shown in (13), is proposed to evaluate the
STVS assessment accuracy and robustness under all types of
PMU missing conditions:

ASAA =
1

W
· 1

M
·

W∑
w=1

M∑
m=1

Am × 100% (13)

where W is the quantity of different observation windows.
Am represents the STVS assessment accuracy with random
m PMU missing. ASAA represents the average STVS assess-
ment accuracy for incomplete PMU measurement situations.
A larger ASAA value indicates higher STVS assessment
accuracy and robustness against missing PMU measurements.
4) Slope of Accuracy Drop Comparison

The missing-data tolerance can be indicated by the average
slope of accuracy drop (ASAD) as shown in (14), where a
lower slope represents heavier missing-data tolerance.

ASAD =
1

W
· 1

M
·

W∑
w=1

M∑
m=1

A0 −Am

dm
× 100% (14)
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Fig. 7. STVS testing results among five different methods under three
observation windows. (a) 0.8 s. (b) 1.0 s. (c) 1.2 s.

where A0 represents the STVS assessment accuracy with com-
plete PMU measurements, and dm denotes the m-th missing
data percentage value.

Five different methods of ASAA and ASAD shown in
Fig. 7 are compared in Table V. It is clear that the proposed
SRP method shows the best performance in terms of STVS
assessment accuracy and missing-data tolerance among the

TABLE V
PERFORMANCE OF DIFFERENT METHODS AGAINST MISSING DATA FOR

STVS DATABASE

Method CEC ASAA ASAD
MI [22] 255 86.62% 0.2172

DTSS [20] 1 89.41% 0.1218
RFSS [21] 1 93.86% 0.0781
RFEL [24] 19 95.81% 0.0386

Proposed method 7 96.76% 0.0337
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five different methods, therefore, the proposed method is
demonstrated as having robustness against missing data.
5) Average Computational Efficiency Comparison

Less computational efficiency is also a significant merit
of the proposed method, which is the number of classifiers
needed for the whole operating system (CEC). The proposed
method can recover the flawed PMU data under any missing
condition through using less trained classifiers. However, in
order to obtain the satisfactory results, some of existing meth-
ods need to train numerous classifiers (e.g., for M different
PMUs, the total quantity of classifiers is 2M − 1 at most). In
Table V, it is obvious that the proposed data-driven method is
more efficient than some of the methods which need to train
more classifiers.

V. CONCLUSIONS, DISCUSSIONS, AND FUTURE WORKS

In this paper, a novel data-driven missing-data tolerant
approach based on SRP is proposed which can maintain the
STVS assessment accuracy under any PMU missing condi-
tions. In addition, in order to ensure online STVS appli-
cations, a novel BL algorithm with increments of feature
nodes is applied, which allows it to rapidly expand broadly
without retraining the whole ML-based STVS model due to
its flexible structure. Compared with existing methods, the
proposed method can accurately recover the missing PMU
measurements without concern for the detailed missing PMU
measurements placement to choose the model. Simulation
results have validated its higher STVS assessment accuracy
among the existing methods. Moreover, SRP can be signifi-
cantly enhanced toward similar practical safety-critical issues
in power engineering.

There are two main limitations of the proposed method.
For the SRP model, there are many model parameters that
need to be fine-tuned during the offline training stage, such as
the network structure and the choice of the gradient descent
algorithms, since it is based on the deep neural network with
CNN. For the STVS model, this paper only considers the broad
learning with the increments of features.

For future studies, first, a simpler model of network struc-
ture can be used, aiming to simplify the parameter adjustment
process; secondly, in order to further improve the STVS
assessment performance, the increment of instances scenario
by incremental learning can be considered.
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