

NEW JERSEY CENTER
7th Grade MEACHING \& LEARNING
3D Geometry
2015-11-20
www.njctl.org

Slide 2 / 159
\qquad

Table of Contents
Click on the topic to go to that section
3-Dimensional Solids
Cross Sections of 3-Dimensional Figures
Volume
Prisms and Cylinders
Pyramids, Cones \& Spheres
Surface Area
Prisms
Pyramids
Cylinders
Spheres
More Practice/ Review
Glossary \& Standards
Slide 3 / 159

3-Dimensional Solids
\qquad

Slide 4 / 159

Return to
Table of
Contents

The following link will take you to a site with interactive 3-D figures and nets.

3-Dimensional Solids

Categories \& Characteristics of 3-D Solids:

Prisms

click to reveal

Pyramids

click to reveal

3-Dimensional Solids

Categories \& Characteristics of 3-D Solids:

Cylinders
click to reveal

Cones

click to reveal

	3-Dimensional Solids Vocabulary Words for 3-D Solids:
Polyhedron	A 3-D figure whose faces are all polygons (Prisms \& Pyramids)
Face	Flat surface of a Polyhedron
Edge	Line segment formed where 2 faces meet Point where 3 or more faces/edges meet (pl. Vertices)

\qquad

1 Name the figure.
OA Rectangular Prism

OB Triangular Pyramid
OC Hexagonal Prism
OD Rectangular Pyramid
OE Cylinder
OF Cone

2 Name the figure.	
OA	Rectangular Pyramid
OB	Triangular Prism
OC	Octagonal Prism
OD	Circular Pyramid
OE	Cylinder
OF	Cone

2 Name the figure.

Slide 11 (Answer) / 159

3 Name the figure.

```
OA Rectangular Pyramid
OB Triangular Pyramid
OC Triangular Prism
OD Hexagonal Pyramid
OE Cylinder
OF Cone
```

OA	
OA	Rectangular Pyramic
OB	Triangular Pyramid
OC	Triangular Prism
OD	Hexagonal Pyrami
OE	Cylinder
OF	Cone

4 Name the figure.		
	Rectangular Prism	
$\bigcirc \mathrm{B}$	Triangular Prism	
$\bigcirc \mathrm{C}$	Square Prism	
OD	Rectangular Pyramid	
OE	Cylinder	
OF	Cone	

Slide 13 / 159
4 Name the figure.

Slide 13 (Answer) / 159

Euler's Formula

Euler's Formula:

click to reveal

6 How many faces does a pentagonal prism have?
6 How many faces does a pentonanal nriam houn) Slide 17 (Answer) / 159

7 How many edges does a rectangular pyramid have?

7 How many edges does a rectangular pyramid have?

8 How many vertices does a triangular prism have?
Slide 18 (Answer) / 159
\qquad
\qquad
\qquad

Slide 19 / 159
\qquad

Cross Sections of Three-Dimensional

 Figures
Cross Sections

3-Dimensional figures can be cut by planes. When you cut a 3-D figure by a plane, the result is a 2-D figure, called a cross section.

These cross sections of 3-D figures are 2 dimensional figures you are familiar with.

Look at the example on the next page to help your understanding.

Cross Sections

A horizontal cross-section of a cone is a circle.

Can you describe a vertical cross-section of a cone?

Cross Sections

A vertical cross-section of a cone is a triangle.

Cross Sections

A water tower is built in the shape of a cylinder.
How does the horizontal cross-section compare to the vertical cross-section?

Slide 23 / 159

Slide 24 / 159
Cross Sections
The horizontal cross-section is a circle.
The vertical cross-section is a rectangle

9 Which figure has the same horizontal and vertical cross-sections?
OA

OC

OB

OD

9 Which figure has the same horizontal and vertical cross-sections?

10 Which figure does not have a triangle as one of its cross-sections?
OC

OB

OD

OC

10 Which figure does not have a triangle as one of its

Slide 27 (Answer) / 159

11 Which is the vertical cross-section of the figure shown?

OA Triangle
OB Circle
OC Rectangle
OD Trapezoid
11 Which is the vertical cross-section of the fiaure
shown?
OA Triangle
OB Circle
OC Rectangle
OD Trapezoid

Which is the vertical cross-section of the fiaure shown?

OA Triangle
OB Circle
OC Rectangle
OD Trapezoid

12 Which is the horizontal cross-section of the figure shown?

OA Triangle
OB Circle
OC Rectangle
OD Trapezoid

12 Which is the horizontal cross-section of the figure shown?

OA Triangle
OB Circle
OC Rectangle

OD Trapezoid
Slide 29 (Answer) / 159

13 Which is the vertical cross-section of the figure shown?

OA Triangle
OB Circle
OC Square
OD Trapezoid
13 Which is the vertical cross-section of the figure
shown?
OA Triangle
OB Circle
OD Square

Slide 30 (Answer) / 159

14 Misha has a cube and a right-square pyramid that are made of clay. She placed both clay figures on a flat surface.
Select each choice that identifies the two-dimensional plane sections that could result from a vertical or horizontal slice through each clay figure.

Cube cross section is a TriangleCube cross section is a SquareCube cross section is a Rectangle (not a square)Right-Square Pyramid cross section is a TriangleRight-Square Pyramid cross section is a SquareRight-Square Pyramid cross section is a Rectangle (not a square)

[^0]14 Misha has a cube and a right-square pyramid that are made of clay. She placed both clay figures on a flat surface.

\square Rig sections are possible, but you willa Square still get the same 2-D shapes
\square Right-Square Pypamplleroes section is a Rectangle (not a square)

From PARCC EOY sample test calculator \#11

		Slide 32 / 159
Volume		
	Return to Table of	
	Contents	

Volume	Volume
click to reveal	
click to reveal	

Volume Activity
Click the link below for the activity

Volume Activity
This lab addresses
MP7: Look for and make use of
structure

Slide 34 (Answer) / 159

Volume of Prisms \& Cylinders

Return to
Table of Contents
Find the Volume.
\qquad
\qquad \square
\qquad
\square
\qquad
\qquad

Volume

Find the Volume. Use 3.14 as your value of π.

Slide 38 / 159
\qquad
\qquad \square \square \square
\qquad

15 Find the volume.

Slide 39 (Answer) / 159
15 Find the volume.

16 Find the volume of a rectangular prism with length 2 cm , width 3.3 cm and height 5.1 cm .

Slide 40 / 159

16 Find the volume of a rectangular prism with length 2 cm , width 3.3 cm and height 5.1 cm .

17 Which is a possible length, width and height for a rectangular prism whose volume $=18 \mathrm{~cm}^{3}$?

OA $\quad 1 \times 2 \times 18$
B $\quad 6 \times 3 \times 3$
OC $2 \times 3 \times 3$
OD $3 \times 3 \times 3$
Slide 41 / 159
\qquad (1) \square \rightarrow
\qquad
\qquad
\qquad

Slide 41 (Answer) / 159
17 Which is a possible length, width and height for a rectangular prism whose vo

A $1 \times 2 \times 18$
OB $6 \times 3 \times 3$
OC $2 \times 3 \times 3$
OD $3 \times 3 \times 3$
C

18 Find the volume.

Slide 42 (Answer) / 159
18 Find the volume.

19 Find the volume. Use 3.14 as your value of π.

Slide 43 / 159

19 Find the volume. Use 3.14 as your value of π.

\qquad
\qquad
\qquad
(
\qquad
\qquad

Teachers:
Use this Mathematical Practice Pull Tab for the next 3 SMART Response slides.

20 A box-shaped refrigerator measures 12 by 10 by 7
on the outside. All six sides of the refrigerator are 1 unit thick. What is the inside volume of the refrigerator in cubic units?

HINT: You may want to draw a picture!
mi Youmay want to draw a picture!
\qquad
\qquad
\qquad —
\qquad
\qquad
\qquad
\qquad

20 A box-shaped refrigerator measures 12 by 10 by 7
on the outside. All six sides of the refrigerator are 1 unit thick. What is the insid
refrigerator in cubic units?
HINT: You may want to d $\quad V=B h$
$V=(10)(8)(5)$
$V=(80)(5)$
$V=400 u^{3}$

21 What is the volume of the largest cylinder that can be placed into a cube that measures 10 feet on an edge? Use 3.14 as your value ofm.

21 What is the volume of the largest cylinder that can be placed into a cube that measures 10 feet on an edge? Use 3.14 as your value ofm.
$V=B h$
$V=\pi\left(\frac{10}{2}\right)^{2}(10)$
$V=\pi(5)^{2}(10)$
$V=\pi(25)(10)$
$V=785 f t^{3}$

22 A circular garden has a diameter of 20 feet and is surrounded by a concrete border that has a width of three feet and a depth of 6 inches. What is the volume of concrete in the path? Use 3.14 as your value of π.

22 A circular garden has a diameter of 20 feet and is surrounded by a concrete border that has a width of three feet and a depth of 6 inches What is the volume of concrete in the path? Ur

$$
V=B h
$$

Slide 47 (Answer) / 159
\square

Teachers:

Use this Mathematical Practice Pull Tab for the next SMART Response slide.

23 Which circular glass holds more water? Use 3.14 as your value of π. Before revealing your answer, make sure that you can prove that your answer is correct.

OA
Glass A having a 7.5 cm diameter and standing 12 cm high

OB
Glass B having a 4 cm radius and a height of 11.5 cm

Slide 48 (Answer) / 159

Slide 49 / 159

Volume of Pyramids, Cones \& Spheres

Demonstration Comparing Volume of Cones \& Spheres with Volume of Cylinders

click to go to web site

Volume of a Cone

The Volume of a
Cone is $1 / 3$ the
Volume of a Sphere

The Volume of a
Sphere is $2 / 3$ the
volume of a
cylinder with the
same base area
(B) and height (h).

The Volume of a
Sphere is $2 / 3$ the
volume of a
same base area
(B) and height (h).

Volume

How much ice cream can a Friendly's Waffle cone hold if it has a diameter of 6 in and its height is 10 in ?
(Just Ice Cream within Cone. Not on Top)

24 Find the volume.

Slide 56 (Answer) / 159

25 Find the volume.

25 Find the volume.

\qquad

Slide 58 / 159

Slide 59 / 159

26 What is the volume of a sphere with a radius of 8 ft ?

Slide 60 / 159

27 What is the volume of a sphere with a diameter of 4.25 in?

27 What is the volume of a sphere with a diameter of 4.25 in?

Volume of a Pyramid

The Volume of a Pyramid is $1 / 3$ the volume of a prism with the same base area (B) and height (h).

Note: Pyramids are named by the shape of their base.

Volume

Example: Find the volume of the pyramid shown below.

$$
V=\frac{1}{3} B h
$$

$$
\begin{aligned}
& V=\frac{1}{3} B h \\
& V=\frac{1}{3}(4 \times 4)(5) \\
& V=\frac{1}{3}(80) \\
& V=26 \frac{2}{3} m^{3}
\end{aligned}
$$

Slide 62 / 159
\qquad \square
\qquad
\qquad \square
\qquad

28 Find the Volume of a triangular pyramid with base edges of 8 in , base height of 6.9 in and a pyramid height of 10 in .

\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad

Slide 64 / 159

29 Find the volume.

Slide 64 (Answer) / 159
29 Find the volume.

$V=\frac{1}{3} B h$
$V=\frac{1}{3}(8)(7)(15.3)$
$V=\frac{1}{3}(56)(15.3)$
$V=285.6 \mathrm{~cm}^{3}$
\square

Surface Area

Return to
Table of
Contents

Surface Area

Surface Area is the sum of the areas of all outside surfaces of a 3-D figure.
To find surface area, you must find the area of each surface of the figure then add them together.

What type of figure is pictured?
How many surfaces are there?
How do you find the area of each surface?

Teachers:
Use this Mathematical Practice Pull Tab for the next 4
SMART Response slides.

OA $\quad 1 \times 1 \times 27$
OB $3 \times 3 \times 3$
OC $9 \times 3 \times 1$
30 Which arrangement of 27 cuhanhenthn Inantainfore
area?
OA $1 \times 1 \times 27$
OB $3 \times 3 \times 3$
O $9 \times 3 \times 1$

Slide 73 (Answer) / 159

31 Which arrangement of 12 cubes has the least surface area?

OA $2 \times 2 \times 3$
OB $4 \times 3 \times 1$
OC $2 \times 6 \times 1$
OD $1 \times 1 \times 12$

32 Which arrangement of 25 cubes has the greatest surface area?

OA $1 \times 1 \times 25$
-B $1 \times 5 \times 5$

Slide 75 (Answer) / 159

33 Which arrangement of 48 cubes has the least surface area?
OA $4 \times 12 \times 1$
OB $2 \times 2 \times 12$
OC $1 \times 1 \times 48$
OD $3 \times 8 \times 2$
OE $4 \times 2 \times 6$
OF $4 \times 3 \times 4$

33 Which arrangement of 48 cubes has the least surface area?

$$
\begin{array}{ll}
\text { OA } & 4 \times 12 \times 1 \\
\text { OB } & 2 \times 2 \times 12 \\
\text { OC } & 1 \times 1 \times 48 \\
\text { OD } & 3 \times 8 \times 2 \\
\text { OE } & 4 \times 2 \times 6 \\
\text { OF } & 4 \times 3 \times 4
\end{array}
$$

\square

34 How many faces does the figure have?

34 How many faces does the figure have?

5 How many area problems must you complete when finding the surface area?

\qquad
\qquad
\qquad
\qquad

35 How many area problems must you complete when finding the surface area?

Slide 80 (Answer) / 159

36 What is the area of the top or bottom face?

\qquad

36 What is the area of the top or hottom face?

Slide 81 (Answer) / 159

37 What is the area of the left or right face?

Slide 82 / 159

37 What is the area of the left or right face?

38 What is the area of the front or back face?

Slide 83 (Answer) / 159

Find the Surface Area

1. Draw and label ALL faces; use the net, if it's helpful
2. Find the correct dimensions for each face
3. Calculate the AREA of EACH face
4. Find the SUM of ALL faces

CLICK TO REVEAL
CLICK TO REVEAL

Find the Surface Area Using the Net

CLICK TO REVEAL
CLICK TO REVEAL

CLICK TO REVEAL
CLICK TO REVEAL

Find the Surface Area

1. Draw and label ALL faces; use the net if it's helpful
2. Find the correct dimensions for each face
3. Calculate the AREA of EACH face
4. Find the SUM of ALL faces

Slide 87 / 159
\qquad \square
\qquad \square
\qquad (
\qquad

Slide 89 (Answer) / 159

Surface Area

click to reveal
click to reveal

40 Find the surface area of the shape below.

1. Draw and label ALL faces; use the net if it's helpful
2. Find the correct dimensions for each face
3. Calculate the AREA of EACH face
4. Find the SUM of ALL faces
5. Label Answer

40 Find the surface area of the shane helow

1. Draw and label ALL faces helpful
2. Find the correct dimensids
3. Calculate the AREA of E
4. Find the SUM of ALL face
5. Label Answer

\qquad

Slide 91 / 159

\qquad
\qquad \square \square \square 2
\qquad

Slide 91 (Answer) / 159

Slide 93 / 159

Slide 93 (Answer) / 159

41 Find the surface area of the shape below.

Slide 94 (Answer) / 159
41 Find the surface area of the shape below.

42 Find the surface area of the shape below.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Surface Area of Pyramids

Return to
Table of
Contents

\qquadSurface Area of Pyramids What is a pyramid? How do you find Surface Area? to reveal click to reveal

Find the Surface Area.

Find the Surface Area.

Surface Area

Find the surface area of a square pyramid with base edge of 4 inches and triangle height of 3 inches.

Surface Area

Find the surface area. Be sure to look at the base to see if it is an equilateral or isosceles triangle (making all or two of the side triangles equivalent!).

Remaining

Base $\quad \frac{\text { Remaining }}{\text { Triangles }}$
click to reveal click to reveal

Surface Area
Slide 101 / 159

Surface Area

43 Which has a greater Surface Area, a square pyramid with a base edge of 8 in and a height of 4 in or a cube with an edge of 5 in?

OA Square Pyramid
OB Cube

Slide 102 (Answer) / 159

43 Which has a greater Sı with a base edge of ${ }^{5}$ Square Pyramid
 with an edge of 5 in' Base 4Triangles
 $\overline{\text { faces }}$
 $A=s^{2} \cdot 6$
 항
 $A=s^{2} \quad A=\frac{1}{2} b h \cdot 4$
 $A=5^{2} \cdot 6$
 OA

 $=64 i{ }^{2} \quad A=\frac{1}{2}(8)(4) \cdot 4$
 $A=150 \mathrm{in}^{2}$
 B

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Slide 103 / 159
44 Find the Surface Area of a triangular pyramid with base edges of 8 in , base height of 4 in and a slant height of 10 in .

45 Find the Surface Area.

45 Find the Surface Area.

Slide 104 / 159

Slide 104 (Answer) / 159

Surface Area of Cylinders

Return to
Table of
Contents

Surface Area

How would you find the surface area of a cylinder?

Slide 106 / 159

Surface Area

Notice the length of the rectangle is actually the circumference of the circular base.

Steps

1. Find the area of the 2 circular bases.
2. Find the area of the curved surface (actually, a rectangle).
3. Add the two areas.
4. Label answer.

\qquad \square
\qquad \square -

Area of Circles $=2 \quad\left(\pi r^{2}\right)$
Area of Curved Surface $=$ Circumference Height $=\pi \mathrm{d} h$
$2 \pi r^{2}+\pi d h$
-Or-
$2 \pi r^{2}+2 \pi r h$

Slide 109 / 159

\qquad
\qquad
\qquad
\qquad
\square \longrightarrow _
\qquad
$2 \pi r+2 \pi$

Surface Area

Find the surface area of a cylinder whose height is 14 inches and whose base has a diameter of 16 inches. Use 3.14 as your value of π.

46 Find the surface area of a cylinder whose height is 8 inches and whose base has a diameter of 6 inches. Use 3.14 as your value of π.

46 Find the surface area of a cvlindor whneo hoinht is 8 inches and whose base r
inches. Use 3.14 as you Circles
Side

$A=\pi r^{2} \cdot 2$	$A=\pi d h$
$A=\pi 3^{2} \cdot 2$	$A=\pi(6)(8)$
$A=56.52 \mathrm{in}^{2}$	$A=150.72 i^{2}$
$S A=56.52+150.72=207.24 i \mathrm{in}^{2}$	

47 Find the surface area of a cylinder whose height is 14 inches and whose base has a diameter of 20 inches. Use 3.14 as your value of π.

47 Find the surface area of a cylinder whose height is 14

Use 3.14 as you

[Circles	Side
	$\mathrm{A}=\mathrm{m}^{2}(2)$	A $=\pi \mathrm{dh}$
	$\mathrm{A}=\pi(10)^{2}(2)$	$\mathrm{A}=\pi(20)(14)$
	$\mathrm{A}=628 \mathrm{in}^{2}$	$\mathrm{A}=879.2 \mathrm{in}^{2}$
	SA $=628+879.2=1,507.2 \mathrm{in}^{2}$	

\qquad

48 How much material is needed to make a cylindrical orange juice can that is 15 cm high and has a diameter of 10 cm ? Use 3.14 as your value of π.

Slide 113 (Answer) / 159

49 Find the surface area of a cylinder with a height of 14 inches and a base radius of 8 inches. Use 3.14 as your value of π.

49 Find the surface area of a folindnn...ith - hninht of 14 inches and a base radiu
your value of π.

$\begin{aligned} & \frac{1}{0} \\ & 3 \\ & 9 \\ & \frac{1}{4} \end{aligned}$	Circles	Side
	$A=\pi r^{2} \cdot 2$	$A=\pi d h$
	$A=\pi 8^{2} \cdot 2$	$A=\pi(16)(14)$
	$A=401.92 \mathrm{in}^{2}$	$A=703.36 \mathrm{in}^{2}$
	$S A=401.92+$	$3.36=1105.28 \mathrm{in}^{2}$

50 A cylindrical feed tank on a farm needs to be painted. The tank has a diameter 7.5 feet and a height of 11 ft . One gallon of paint covers 325 square feet. Do you have enough paint? Explain. Note: Use 3.14 as your value of π.

Slide 114 (Answer) / 159

OYes
ONo

50 A cylindrical feed tank on a farm needs to be painted.
The tank has a diameter 7.5 feet and a heiaht of 11 ft . One gallon of paint covers
have enough paint? Expl Circles Side value of π.

OYes
ONo

\qquad
\qquad

Surface Area of Spheres

Return to
Table of
Contents

Surface Area

A sphere is the set of all points that are the same distance from the center point.

Like a circle, a sphere has a radius and a diameter.
You will see that like a circle, the formula for surface area of a sphere also includes π.

Surface Area of a Sphere

click to reveal

Slide 116 / 159
\qquad
\qquad \square
\qquad
 \square

Surface Area

If the diameter of the Earth is $12,742 \mathrm{~km}$, what is its surface area? Use 3.14 as your value of π. Round your answer to the nearest whole number.

$$
\begin{aligned}
& S A=4 \pi r^{2} \\
& S A=4 \pi\left(\frac{12742}{2}\right)^{2} \\
& S A=4 \pi(6371)^{2} \\
& S A=509,805,891 \mathrm{~km}^{2}
\end{aligned}
$$

Surface Area

Try This:
Find the surface area of a tennis ball whose diameter is 2.7 inches. Use 3.14 as your value of π.

$$
S A=4 \pi r^{2}
$$

click to reveal

51 Find the surface area of a softball with a diameter 3.8 inches. Use 3.14 as your value of π.

51 Find the surface area of a s
3.8 inches. Use 3.14 as y

$\begin{aligned} & \bar{\circ} \\ & \frac{0}{0} \\ & 0 \\ & \frac{0}{c} \end{aligned}$	$S A=4 \pi r^{2}$
	$S A=4 \pi\left(\frac{3.8}{2}\right)^{2}$
	$S A=4 \pi(1.9)^{2}$
	$S A=45.3416 \mathrm{in}^{2}$

52 How much leather is needed to make a basketball with a radius of 4.7 inches? Use 3.14 as your value of π.

52 How much leather is needed to make a basketball with a radius of 4.7 inches? Use 314 ac vour value of π.

Slide 121 (Answer) / 159

53 How much rubber is needed to make 6 racquet balls with a diameter of 5.7 inches?
Use 3.14 as your value of π.

53 How much rubber is needed to make 6 racquet balls with a diamf
Use 3.14 as your value

Slide 122 (Answer) / 159
\qquad
\qquad
\qquad

Slide 123 / 159

Return to
Table of Contents

54 Find the volume.

15 mm
54 Find the volume. Slide 124 (Answer) / 159

55 Find the volume of a rectangular pyramid with a base length of 2.7 meters and a base width of 1.3 meters, and the height of the pyramid is 2.4 meters.

HINT: Drawing a diagram will help!

55 Find the volume of a rectangular pyramid with a base length of 2.7 meters and a and the height of the pyr:

HINT: Drawing a diagraI

$$
2.808 \mathrm{~m}^{3}
$$

\qquad
\qquad
\qquad
\qquad

56 Find the volume of a square pyramid with base edge of 4 inches and pyramid height of 3 inches.
56 Find the volume of a square pvramid with base edqe
of 4 inches and pyramid.

57 Find the Volume.

57 Find the Volume.

Slide 127 (Answer) / 159

58 Find the Volume. Use 3.14 as your value of π.

58 Find the Volume. Use 3.14 as your value of π.

59 Find the Volume. Use 3.14 as your value of π.

59 Find the Volume. Use 3.14 as your value of π.

Slide 129 (Answer) / 159

60 Find the volume.

60 Find the volume.
Slide 130 (Answer) / 159

61 A cone 20 cm in diameter and 14 cm high was used to fill a cubical planter, 25 cm per edge, with soil. How many cones full of soil were needed to fill the planter? Use 3.14 as your value of π.

61 A cone 20 cm in diameter and 14 cm high was used to fill a cubical plantr soil. How many cones fi fill the planter? Use 3.1

\qquad

62 Find the surface area of the cylinder. Use 3.14 as your value of π.

Radius $=6 \mathrm{~cm}$ and Height $=7 \mathrm{~cm}$

Slide 132 (Answer) / 159

63 Find the Surface Area.

63 Find the Surface Area.

64 Find the Surface Area.

Slide 133 (Answer) / 159

Slide 134 / 159

Slide 135 / 159

66 A rectangular storage box is 12 in wide, 15 in long and 9 in high. How many square inches of colored paper are needed to cover the surface area of the box?

66 A rectangular storage box is 12 in wide, 15 in long and 9 in high. How many square:....................................... are needed to cover the s

67 Find the surface area of a square pyramid with a base length of 4 inches and slant height of 5 inches.

67 Find the surface area of a sauaro nuramid with a base length of 4 inches inches.

56 in 2
Slide 137 (Answer) / 159

68 Find the volume.

68 Find the volume.

Slide 138 / 159
\qquad
\qquad
\qquad
\qquad
\qquad

Slide 138 (Answer) / 159

69 A teacher made 2 foam dice to use in math games. Each cube measured 10 in on each side. How many square inches of fabric were needed to cover the 2 cubes?

69 A teacher made 2 foam dice to use in math games. Each cube measy
How many square inches cover the 2 cubes?

Slide 139 (Answer) / 159

Glossary \& Standards

Return to
Table of
Contents

Cone

A 3-D solid that has 1 circular base with a vertex opposite it.
The sides are curved.

Back to

Instruction

Cross Section

The shape formed when cutting straight through an object.

Slide 142 / 159

Cylinder

A solid that has 2 congruent, circular bases which are parallel to one another.
The side joining the 2 circular bases is a curved rectangle.

Face

Flat surface of a Polyhedron.

Slide 144 / 159

Edge

Line segment formed where 2 faces meet.

Slide 145 / 159

Euler's Formula

The sum of the edges and 2 is equal to the sum of the faces and vertices.

$$
E+2=F+V
$$

Slide 147 / 159

A 2-D pattern of a 3-D solid that can be folded to form the figure. An unfolded geometric solid.

Polyhedron

A 3-D figure whose faces are all polygons.
A Polyhedron has NO curved surfaces.
Plural: Polyhedra

Prism

A polyhedron that has 2 congruent, polygon bases which are parallel to one another.

Remaining sides are rectangular
(parallelograms). Named by the shape of the base.

Pyramid

Slide 150 / 159

A polyhedron that has 1 polygon base with a vertex opposite it. Remaining sides are triangular. Named by the shape of their base

Surface Area

Vertex

Point where 3 or more faces/edges meet Plural: Vertices

Volume

The amount of space occupied by a 3-D
Figure. The number of cubic units needed
to FILL a 3-D Figure (layering).

Volume of a Cone

A cone is $1 / 3$ the volume of a cylinder with the same base area ($B=\pi r^{2}$) and height (h).

$\begin{gathered} V=\left(\pi r^{2} h\right) \div 3 \\ \text { or } \\ V=\frac{1}{3} \pi r^{2 h} \end{gathered}$		

Volume of a Cylinder

Found by multiplying the Area of the base (B) and the height (h).

Since your base is always a circle, your volume formula for a cylinder is $V=B h$ $\mathrm{V}=\pi r^{2} \mathrm{~h}$		

Volume of a Prism

Found by multiplying the Area of the base (B) and the height (h).

$$
V=B h
$$

The shape of your base matches the name of the prism	Rectangular $V=B h$ $V=(\mathrm{lw}) \mathrm{h}$	$\begin{gathered} \frac{\text { Triangular }}{\text { Prism }} \\ V=B h \\ V=\left(1 / 2 b_{h} h_{\Delta} h_{\text {prism }}\right. \end{gathered}$

Slide 156 / 159

Volume of a Pyramid

A pyramid is $1 / 3$ the volume of a prism with
the same base area (B) and height (h).

$$
V=(B h) \div 3 \quad \text { or } \quad V=\frac{1}{3}(B h)
$$

\qquad

Standards for Mathematical Practices

MP1 Make sense of problems and persevere in solving them.
MP2 Reason abstractly and quantitatively.
MP3 Construct viable arguments and critique the reasoning of others
MP4 Model with mathematics.
MP5 Use appropriate tools strategically.
MP6 Attend to precision.
MP7 Look for and make use of structure.
MP8 Look for and express regularity in repeated reasoning.

[^0]: From PARCC EOY sample test calculator \#11

