8.1 Find Angle Measures in Polygons

Obj.: To find angle measures in polygons.

Key Vocabulary

- Diagonal - A diagonal of a polygon is a segment that joins two nonconsecutive vertices. Polygon ABCDE has two diagonals from vertex B, BD and BE.

- Interior angles - The original angles are the interior angles.
- Exterior angles - When the sides of a polygon are extended, other angles are formed. The angles that form linear pairs with the interior angles are the exterior angles.

Polygon Interior Angles Theorem Poly. Int. LThm. The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^{\circ}$. $m \angle 1+m \angle 2 \ldots+m \angle n=(n-2) \cdot 180^{\circ}$.

$\underline{n}=6$

Interior Angles of a Quadrilateral

The sum of the measures of the interior angles of a quadrilateral is 360°.

Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°. $m \angle 1+m \angle 2 \ldots+m \angle n=360^{\circ}$.

EXAMPLE 1 Find the sum of angle measures in a polygon
Find the sum of the measures of the interior angles of a convex hexagon.
Solution A hexagon has 6 sides. Use the Polygon Interior Angles
Theorem.
$\begin{aligned} &(n-\underline{2}) \cdot \underline{180^{\circ}}=(6-\underline{2}) \cdot \underline{180^{\circ}} \quad \begin{array}{l}\begin{array}{l}\text { Substitute } \\ 6 \text { for } n .\end{array} \\ \\ \\ \\ \end{array}=42 \cdot 180^{\circ} \\ & \begin{array}{ll}\text { Subtract. } \\ \text { Multiply. }\end{array}\end{aligned}$
The sum of the measures of the interior angles of a hexagon is 720°.

EXAMPLE 2 Find the number of sides of a polygon

The sum of the measures of the interior angles of a convex polygon is 1260°. Classify the
polygon by the number of sides. Solution

Use the Polygon Interior Angles Theorem to write an equation involving the number of sides n. Then solve the equation to find the number of sides.

The polygon has 9 sides. It is a nonagon .

EXAMPLE 3 Find an unknown interior angle measure
Find the value of x in the diagram shown.
Solution The polygon is a quadrilateral. Use the Corollary to the Polygon Interior Angles Theorem to write an equation involving x. Then solve the equation.
(8.1 cont.)

$$
\begin{aligned}
& x^{\circ}+135^{\circ}+112^{\circ}+\underline{1^{\circ}}=\underline{360^{\circ}} \quad \begin{array}{l}
\text { Corollary to } \\
\text { Theorem 8.1 }
\end{array} \\
& x+\underline{318}=\underline{360} \begin{array}{l}
\text { Combine like } \\
\text { terms. }
\end{array} \\
& x=\underline{42} \quad \begin{array}{l}
\text { Subtract } 318 \\
\text { from each side. }
\end{array}
\end{aligned}
$$

EXAMPLE 4 Find unknown exterior angle measures

Find the value of x in the diagram shown.
Solution Use the Polygon Exterior Angles Theorem to write and solve an equation.

$$
\begin{aligned}
x^{\circ}+\underline{2 x^{\circ}}+\underline{85^{\circ}}+\underline{89^{\circ}} & =\underline{360^{\circ}} \\
\underline{3 x}+\underline{174} & =\underline{360} \\
x & =\underline{62}
\end{aligned}
$$

Polygon Exterior Angles Theorem.
Combine like terms.

Solve for x.

EXAMPLE 5 Find angle measures in regular polygons

Lamps The base of a lamp is in the shape of a regular 15 -gon. Find (a) the measure of each interior angle and (b) the measure of each exterior angle.

Solution

a. a. Use the Polygon Interior Angles Theorem to find the sum of the measures of the interior angles.

$$
\begin{aligned}
(n-\underline{2}) \cdot \underline{180^{\circ}} & =(15-2) \cdot 180^{\circ} \\
& =2340^{\circ}
\end{aligned}
$$

Then find the measure of one interior angle. A regular 15-gon has 15 congruent interior angles.
Divide 2340° by $15: 2340^{\circ} \div 15=156^{\circ}$.
The measure of each interior angle in the
15 -gon is \qquad 156° .
b.

The measure of each exterior angle in the 15-gon is 24°.

8.1 Cont. (Write these on your paper)

(Checkpoint Complete the following exercise.

1. Find the sum of the measures of the interior angles of the convex decagon.
1440°

2. The sum of the measures of the interior angles of a convex polygon is 1620°. Classify the polygon by the number of sides.

11-gon
3. Use the diagram at the right.

Find $m \angle K$ and $m \angle L$.
$m \angle K \quad m \angle L \quad 129^{\circ}$

4. A convex pentagon has exterior angles with measures $66^{\circ}, 77^{\circ}, 82^{\circ}$, and 62°. What is the measure of an exterior angle at the fifth vertex?
5. Find the measure of (a) each interior angle and
(b) each exterior angle of a regular nonagon.
a. 140°
b. 40°

8.2 Use Properties of Parallelograms

Obj.: To find angle and side measures in parallelograms.
Key Vocabulary

- Parallelogram - A parallelogram is a quadrilateral with both pairs of opposite sides parallel. The term "parallelogram PQRS" can be written as \square PQRS.

$\square \rightarrow$ opp. sides \cong
If a quadrilateral is a parallelogram, then its opposite sides are congruent.
If $P \overline{Q R S}$ is a parallelogram, then $\mathrm{PQ} / / \mathrm{RS}$ and
 QR // PS .

If a quadrilateral is a parallelogram, then its opposite angles are congruent.
If $P Q R S$ is a parallelogram, then $\angle P \cong \angle R$ and $\angle Q \cong \angle S$.
$\square \rightarrow$ cons. L's supp
If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.
If $P Q R S$ is a parallelogram, then $\underline{x}^{0}+y^{0}=180^{0}$.
$\square \rightarrow$ diag bis each other
If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$
\overline{Q M} \cong \overline{S M} \text { and } \overline{\mathrm{PM}} \cong \overline{\mathrm{QM}}
$$

EXAMPLE 1 Use properties of parallelograms

Find the values of x and y.
Solution
FGHJ is a parallelogram by the definition of a parallelogram. Use Theorem 8.3 to find the value of x.

$$
F G=\underline{H J} \quad \text { Opposite sides of a } \square \text { are } \cong .
$$

$x+6=13$ Substitute $x+6$ for $F G$ and 13 for HJ .

$$
x=7 \quad \text { Subtract } 6 \text { from each side. }
$$

By Theorem 8.4, $\angle F \cong \angle H$, or $m \angle F=m \angle H$. So, $y^{\circ}=68^{\circ}$. In $\square F G H J, x=\underline{7}$ and $y=\underline{68}$.

EXAMPLE 2 Use properties of a parallelogram
Gates As shown, a gate contains several parallelograms.
Find the $\mathrm{m} \angle A D C$ when $\mathrm{m} \angle \mathrm{DAB}=65^{\circ}$.

Solution

By Theorem 8.5, the consecutive angle pairs in $\square A B C D$ are supplementary. So, $m \angle A D C+m \angle D A B=180^{\circ}$. Because $m \angle D A B=65^{\circ}$,
$m \angle A D C=180^{\circ}-\underline{65^{\circ}}=115^{\circ}$.

EXAMPLE 3

The diagonals of \square STUV intersect at point W. Find the coordinates of W .
Solution
By Theorem 8.6, the diagonals of a parallelogram bisect each other.
So, W is the midpoint of the diagonals $T V$ and $S U$. Use the Midpoint Formula .

`Coordinates of midpoint W of

$$
\mathbf{S U}=\left(\begin{array}{cc}
6+0 & 5+0 \\
2, & 2
\end{array}\right)=\binom{3,5}{2}
$$

In Example 3, you can use either diagonal to find the coordinates of W. Using SU simplifies calculations because one endpoint is $(0,0)$.

8.2 Cont.

checkpoint Find the indicated measure in $\square K L M N$ shown at the right.

1. x	2. y
$x=20$	$y=123$

3. z

$$
z=57
$$

4. The diagonals of $\square V W X Y$ intersect at point Z. Find the coordinates of Z.
$Z\binom{7}{2,3}$

5. Given that $\square F G H J$ is a parallelogram, find MH and FH.

$$
M H=5, F H=10
$$

8.3 Show that a Quadrilateral is a Parallelogram

Obj.: Use properties to identify parallelograms.

Key Vocabulary

- Parallelogram - A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
both pair opp. sides $\cong \rightarrow$ \square
If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. If $\underline{\overline{A B}} \cong \overline{C D}$ and $\overline{\overline{B C}} \cong \overline{\mathrm{AD}}$, then $A B C D$ is a parallelogram.

both pair opp \angle 's $\cong \rightarrow \square$
If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. If $\angle A \cong \angle C$ and $\angle B \cong \angle D$, then $A B C D$ is a parallelogram.

one pair opp sides $\cong \& / / \rightarrow \square$
If one pair of opposite sides of a quadrilateral are congruent and parallel, then the quadrilateral is a parallelogram. If $\overline{\mathrm{BC}} \cong \overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}} / / \overline{\mathrm{AD}}$, then $\underline{\mathrm{ABCD}}$ is a parallelogram.

diag bis each other $\rightarrow \square$

If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. If $\overline{\bar{B} D}$ and $\overline{\overline{A C}}$ bisect each other, then $A B C D$ is a parallelogram.

EXAMPLE 1 Solve a real-world problem
Basketball In the diagram at the right, $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ represent adjustable supports of a basketball hoop. Explain why $\overline{\mathrm{AD}}$ is always parallel to $\overline{\mathrm{BC}}$. Solution

The shape of quadrilateral $A B C D$ changes as the adjustable supports move, but its side lengths do not change. Both pairs
of opposite sides are congruent, so $A B C D$ is a parallelogram by Theorem 8.7 .
By the definition of a parallelogram, $\overline{A D} \| \underline{\overline{B C}}$.

EXAMPLE 2 Identify a parallelogram

Lights The headlights of a car have the shape shown at the right. Explain how you know that $\angle \mathrm{B} \cong \angle \mathrm{D}$.
Solution
In the diagram, $\overline{B C} \| \overline{A D}$ and $\overline{B C} \cong \overline{A D}$. By

Theorem 8.9 , quadrilateral $A B C D$ is a parallelogram.
By Theorem 8.4 , you know that opposite angles of a parallelogram are congruent. So, $\angle B \cong \angle D$.

EXAMPLE 3 Use algebra with parallelograms

ALGEBRA For what value of x is quadrilateral PQRS a parallelogram? Solution

By Theorem 8.10, if the diagonals of PQRS bisect each other, then it is a parallelogram. You are given that $\overline{Q T} \cong \overline{S T}$. Find x so that $\overline{P T} \cong \overline{R T}$.

\qquad

$$
\begin{array}{ll}
P T=R T & \text { Set the segment lengths equal. } \\
5 x=2 x+9 & \text { Substitute } 5 x \text { for } P T \text { and } 2 x+9
\end{array}
$$ for $R T$.

$$
\begin{array}{rlrl}
3 x & =\frac{9}{3} & & \text { Subtract } 2 x \text { from each side. } \\
x & =\underline{\text { Divide each side by } 3 .}
\end{array}
$$

When $x=3, P T=5(3)=15$ and $R T=2(3)+9=15$.
Quadrilateral $P Q R S$ is a parallelogram when $x=3$.

EXAMPLE 4 Use coordinate geometry

Show the quadrilateral KLMN is a parallelogram.

Solution

One way is to show that a pair of sides are congruent and parallel.

Then apply Theorem 8.9.
First use the Distance Formula to show that $\overline{K L}$ and $\overline{M N}$
are congruent.
$K L=\sqrt{(4-2)^{2}+(4-2)^{2}}=\sqrt{8}$
$M N=\sqrt{(6-4)^{2}+[0-(-2)]^{2}}=\sqrt{8}$
Because $K L=M N=\sqrt{8}, \overline{K L} \cong \overline{M N}$.

e of $\overline{K L}=\frac{4-2}{4-2}=1$
Slope of $\overline{M N}=\frac{0-(-2)}{6-4}=1$
$\overline{K L}$ and $\overline{M N}$ have the same slope, so they are parallel.
$\overline{K L}$ and $\overline{M N}$ are congruent and parallel. So, KLMN is a parallelogram by Theorem 8.9 .

CONCEPT SUMMARY
Ways to Prove a Quadrilateral is a Parallelogram

1. Show both pairs of opposite sides are parallel.
 (Def. of \square)
2. Show both pairs of opposite sides are congruent. (both pair opp. sides $\cong \rightarrow \square$)

3. Show both pairs of opposite angles are congruent. (both pair opp \angle 's $\cong \rightarrow$)

4. Show one pair of opposite sides are congruent and parallel. (one pair opp sides $\cong \& / / \rightarrow \square$)

5. Show the diagonals bisect each other.
(diag bis each other $\rightarrow \square$)

8.3 Cont. (Write these on your paper)

Checkpoint Complete the following exercises.

1. In quadrilateral $G H J K, m \angle G=55^{\circ}, m \angle H=125^{\circ}$, and $m \angle J=55^{\circ}$. Find $m \angle K$. What theorem can you use to show that GHJK is a parallelogram?
$m \angle K=125^{\circ}$; Theorem 8.8
2. What theorem can you use to show that the quadrilateral is a parallelogram?

Theorem 8.10

(V) Checkpoint Complete the following exercises.

3. For what value of x is quadrilateral DFGH a parallelogram?
$x=3.5$

4. Explain another method that can be used to show that quadrilateral KLMN in Example 4 is a parallelogram.
Sample Answer: Draw the diagonals and find the point of intersection. Show the diagonals bisect each other and apply Theorem 8.10.

8.4 Properties of Rhombuses, Rectangles, and Squares

Obj.: Use properties of rhombuses, rectangles, and squares.

Key Vocabulary

- Rhombus - A rhombus is a parallelogram with four congruent sides.
- Rectangle - A rectangle is a parallelogram with four right angles.
- Square - A square is a parallelogram with four congruent sides and four right angles.
RHOMBUS COROLLARY rhom coro
A quadrilateral is a rhombus if and only if it has four congruent sides.
$A B C D$ is a rhombus if and only if $\overline{\overline{A B}} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$
RECTANGLE COROLLARY
rect coro
A quadriateral is a rectangle if and only if it has four right angles.
$A B C D$ is a rectangle if and only if $\angle A, \angle B, \angle C$. and $\angle D$ are right angles.

SQUARE COROLLARY

rhomb. coro
A quadriateral is a square if and only if it is a rhombus and a rectangle.
$A B C D$ is a square if and only if $\overline{A B} \cong \overline{B C} \cong \overline{C D} \cong \overline{A D}$ and $\angle A, \angle B, \angle C$, and $\angle D$ are right angles.

For any rhombus RSTV, decide whether the statement is always or sometimes true. Draw a sketch and explain your reasoning.
a. $\angle S \cong \angle V$
a. By definition, a rhombus is a parallelogram with four congruent sides. By Theorem 8.4, opposite angles of a parallelogram are congruent . So, $\angle S \cong \angle V$. The statement is always true.
b. $\angle \mathrm{T} \cong \angle \mathrm{V}$

b. If rhombus RSTV is a \qquad , then all four angles are congruent right angles. So $\angle T \cong \angle V$ if RSTV is a square. Because not all rhombuses
 are also squares, the statement is sometimes true.

EXAMPLE 2 Classify special quadrilaterals

Classify the special quadrilateral. Explain your reasoning.

Solution

The quadrilateral has four congruent sides.

One of the angles is not a right angle, so the rhombus
is not also a square. By the Rhombus Corollary, the quadrilateral is a rhombus.

EXAMPLE 3 List properties of special parallelograms

Sketch rhombus FGHJ. List everything that you know about it.

Solution

By definition, you need to draw a figure with the following properties:

- The figure is a parallelogram .
- The figure has four congruent sides .

Because FGHJ is a parallelogram, it has these properties:

- Opposite sides are parallel and congruent.

- Opposite angles are congruent. Consecutive angles are supplementary.
- Diagonals bisect each other.

By Theorem 8.11, the diagonals of FGHJ are perpendicular. By Theorem 8.12, each diagonal bisects a pair of opposite angles .

EXAMPLE 4 Solve a real-world problem

Framing You are building a frame for a painting. The measurements of the frame are shown at the right.
a. The frame must be a rectangle. Given the measurements in the diagram, can you assume that it is? Explain.

b. You measure the diagonals of the frame. The diagonals are 25.6 inches.

What can you conclude about the shape of the opening?

Solution

a. No, you cannot. The boards on opposite sides are the same length, so they form a parallelogram. But you do not know whether the angles are right angles.
b. By Theorem 8.13, the diagonals of a rectangle are congruent. The diagonals of the frame are \qquad congruent , so the frame forms a \qquad rectangle.

8.4 Cont

1. For any square $C D E F$, is it always or sometimes true that $\overline{C D} \cong \overline{D E}$? Explain your reasoning.

Always; a square has four congruent sides.
2. A quadrilateral has four congruent sides and four congruent angles. Classify the quadrilateral.
square
3. Sketch rectangle $W X Y Z$. List everything that you know about it.

$W X Y Z$ is a parallelogram with four right angles. Opposite sides are parallel and congruent.
Opposite angles are congruent and consecutive angles are supplementary. The diagonals are congruent and bisect each other.
4. Suppose the diagonals of the frame in Example 4 are not congruent.

Could the frame still be a rectangle? Explain.
No; by Theorem 8.13, a rectangle must have congruent diagonals.

8.5 Use Properties of Trapezoids and Kites

Obj.: Use properties of trapezoids and kites.

Key Vocabulary

Trapezoid, bases - A trapezoid is a quadrilateral with exactly one pair of parallel sides. The parallel sides are the bases.

- Base angles - A trapezoid has two pairs of base angles. For example, in trapezoid $A B C D, \angle A$ and $\angle D$ are one pair of base angles, and $\angle B$ and $\angle C$ are the second pair.
- Legs - The nonparallel sides are the legs of the trapezoid.
- Isosceles trapezoid - If the legs of a trapezoid are congruent, then the trapezoid is an isosceles trapezoid.
- Midsegment of a trapezoid - The midsegment of a
trapezoid is the segment that connects the midpoints of its legs.
- Kite - A kite is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

Trap isosc \rightarrow base $\angle s \cong$
If a trapezoid is isosceles, then each pair of base angles is congruent. If trapezoid $A B C D$ is isosceles, then
$\angle A \cong \angle D$ and $\angle B \cong \angle C$.

base $\angle s \cong \rightarrow$ Trap isosc
If a trapezoid has a pair of congruent base angles, then it is an isosceles trapezoid. If $\angle A \cong \angle D$ (or if $\angle B \cong \angle C$), then trapezoid $A B C D$ is isosceles.

Trap isosc \rightarrow diags \cong
A trapezoid is isosceles if and only if its diagonals are congruent. Trapezoid $A B C D$ is isosceles if and only if $\underline{\overline{\mathbf{A C}} \cong \overline{\mathrm{BD}}}$.

Midsegment Theorem for Trapezoids

Trap midseg Thm.
The midsegment of a trapezoid is parallel to each base and its length is one half the sum of the lengths of the bases. If $\overline{\mathbf{M N}}$ is the midsegment of trapezoid $A B C D$, then $\overline{\overline{\mathrm{AB}} / / \overline{\mathrm{MN}} / / \overline{\mathrm{DC}} \text {, }}$
 and $M N=1 / 2(A B+C D)$.

kite $\rightarrow \perp$ diags

If a quadrilateral is a kite, then its diagonals are perpendicular. If quadrilateral $A B C D$ is a kite, then $\underline{\overline{\mathbf{A C}} \perp \overline{\mathbf{B D}}}$.

kite \rightarrow one pair opp $\angle \mathrm{s} \cong$

If a quadrilateral is a kite, then exactly one pair of opposite angles are congruent. If quadrilateral $A B C D$ is a kite and $\overline{\mathrm{BC}} \cong \overline{\mathrm{BA}}$, then $\angle A \cong \angle C$ and $\angle B \nsubseteq \angle D$

EXAMPLE 1 Use a coordinate plane
Show that CDEF is a trapezoid.

Solution

Compare the slopes of opposite sides.
Slope of $\overline{D E}=\underline{\frac{4-3}{4-1}}=\underline{\frac{1}{3}}$

Slope of $\overline{C F}=\underline{\frac{2-0}{6-0}}=\underline{\frac{2}{6}}=\underline{\frac{1}{3}}$
The slopes of $\overline{D E}$ and $\overline{C F}$ are the same, so $\overline{D E} \Perp \overline{C F}$.
(8.5 cont.)

Slope of $\overline{E F}=\underline{\frac{2-4}{6-4}}=\underline{\frac{-2}{2}}=\underline{-1}$
Slope of $\overline{C D}=\underline{\frac{3-0}{1-0}}=\underline{\frac{3}{1}}=3$
The slopes of $\overline{E F}$ and $\overline{C D}$ are not the same, so $\overline{E F}$ is not parallel to $\overline{C D}$.
Because quadrilateral CDEF has exactly one pair of parallel sides, it is a trapezoid.

EXAMPLE 2 Use properties of isosceles trapezoids

Kitchen A shelf fitting into a cupboard in the corner of a kitchen is an isosceles trapezoid. Find $\mathrm{m} \angle \mathrm{N}, \mathrm{m} \angle \mathrm{L}$, and $\mathrm{m} \angle \mathrm{M}$.

Solution

Step 1 Find $m \angle N . K L M N$ is an isosceles trapezoid, so
$\angle N$ and $\angle K$ are congruent base angles, and $m \angle N=m \angle K=50^{\circ}$.
Step 2 Find $m \angle L$. Because $\angle K$ and $\angle L$ are consecutive interior angles formed by $\overleftrightarrow{K L}$ intersecting two parallel lines, they are supplementary. So, $m \angle L=180^{\circ}-50^{\circ}=130^{\circ}$.

Step 3 Find $m \angle M$. Because $\angle M$ and $\angle L$ are a pair of base angles, they are congruent, and $m \angle M=m \angle L=130^{\circ}$.
So, $m \angle N=50^{\circ}, m \angle L=130^{\circ}$, and $m \angle M=130^{\circ}$.

8.5 Cont.

(V) Checkpoint Complete the following exercises.

1. In Example 1, suppose the coordinates of point E are $(7,5)$. What type of quadrilateral is CDEF? Explain.
Parallelogram; opposite pairs of sides are parallel.
2. Find $m \angle C, m \angle A$, and $m \angle D$ in the trapezoid shown.
$m \angle C=135^{\circ}, m \angle A=45^{\circ}$,
 $m \angle D=45^{\circ}$
3. Find $M N$ in the trapezoid at the right.
$M N=21 \mathrm{ft}$

4. Find $m \angle G$ in the kite shown at the right.
$m \angle G=100^{\circ}$

8.6 Identify Special Quadrilaterals

Obj.: Identify special quadrilaterals.

Key Vocabulary

- Parallelogram - A parallelogram is a quadrilateral with both pairs of opposite sides parallel.
- Rhombus - A rhombus is a parallelogram with four congruent sides.
- Rectangle - A rectangle is a parallelogram with four right angles.
- Square - A square is a parallelogram with four congruent sides and four right angles.
- Trapezoid - A trapezoid is a quadrilateral with exactly one pair of parallel sides.
- Kite - A kite is a quadrilateral that has two pairs of consecutive congruent sides, but opposite sides are not congruent.

Quadrilateral

Isosceles trapezoid

Square

EXAMPLE 1 Identify quadrilaterals

Quadrilateral ABCD has both pairs of opposite sides congruent.
What types of quadrilaterals meet this condition?
Solution There are many possibilities.

EXAMPLE 2 Identify a quadrilateral

What is the most specific name for quadrilateral ABCD?

Solution

The diagram shows that both pairs of opposite sides are congruent. By Theorem 8.7, ABCD is a parallelogram . All sides are congruent, so $A B C D$ is a rhombus by definition.

Squares are also rhombuses. However, there is no information given about the angle measures of $A B C D$. So, you cannot determine whether it is a \qquad square. .

EXAMPLE 3 Identify a quadrilateral

 Is enough information given in the diagram to show that quadrilateral FGHJ is an isosceles trapezoid? Explain.
Solution

Step 1 Show that $F G H J$ is a trapezoid. $\angle G$ and $\angle H$ are supplementary but $\angle F$ and $\angle G$ are not. So, $\overline{F G} \| \overline{H J}$, but $\overline{F J}$ is not parallel to $\overline{G H}$. By definition, $F G H J$ is a trapezoid.
Step 2 Show that trapezoid FGHJ is isosceles. $\angle F$ and $\angle G$ are a pair of congruent base angles. So, FGHJ is an isosceles trapezoid by Theorem 8.15.

Yes, the diagram is sufficient to show that FGHJ is an isosceles trapezoid.

8.6 Cont.

Checkpoint Complete the following exercise.

1. Quadrilateral JKLM has both pairs of opposite angles congruent. What types of quadrilaterals meet this condition?
parallelogram, rectangle, square, rhombus
2. What is the most specific name for quadrilateral QRST? Explain your reasoning.

Kite; there are two pairs of consecutive congruent sides.

3. Is enough information given in the diagram to show that quadrilateral $B C D E$ is a rectangle? Explain.

Yes; you know that $m \angle D=90^{\circ}$ by the Triangle Sum Theorem. Both pairs
 of opposite angles are congruent, so $B C D E$ is a parallelogram by Theorem 8.8. By definition, $B C D E$ is a rectangle.

