
CodeHub
Curran Kelleher

8/18/2012

Programming is Overly Complex

● Development environment setup
● Revision control management
● Dependency management
● Deployment

= time and effort learning tools,
 not writing code.

● The barrier to entry is higher than necessary
● This can be solved through automation

Simplification by Automation

Automation of what?
● Development environment setup

○ It's all on the server
○ Just open a Web page

● Revision control management
○ It's all on the server
○ Just click "save"

● Dependency management
○ It's all on the server
○ Just use "require(moduleName)'

● Deployment
○ Just click "run" and share that link

Prior Art in "Web-Based IDEs"

We consider a "Web-Based IDE" something that
● runs in a browser
● lets users edit, save, and run source code

The following are notable examples:
● JSBin
● JSFiddle
● CSSDesk
● Cloud9 IDE
● GitHub

Prior Art - JSBin

code, run, save, deploy - in the browser try it!

http://jsbin.com/welcome/13715/edit

Prior Art - JSFiddle

code, run, save, deploy - in the browser

Prior Art - CSSDesk

code, run, save, deploy (CSS) - in the browser

Prior Art - Cloud9 IDE

● Full featured IDE, runs Node.js code
● Integrates with GitHub and Heroku
● Integrated terminal for Git and Unix commands

Prior Art - GitHub

● An in-browser text file editor for Git repositories
● Can be coupled with "GitHub Pages", a service

that serves GitHub repositories as Web sites

Prior Art in Software Repositories
Developers can publish reusable packages
with support for dependency management
● The Maven Repository (for Java)
● RubyGems (for Ruby)
● The Node Package Manager (for Node.js)
● The CommonJS module specification
● Asynchronous Module Definition (AMD)
● The Require.js AMD module loader
● ...many more out there
● The point: packages and dependency

management empower the platforms

The CodeHub Vision

No existing tools have all of these features:
● Web-based source code editing
● Definition and use of reusable modules
● Web-based deployment, with
● Automated dependency management

Such a tool would support
● Computer science education
● a public Wikipedia-like software repository
● a research testbed for interactive graphics

The CodeHub Architecture

● Limited to JavaScript and HTML software
● Based on CommonJS modules
● All versions are published

○ So when an application is linked to or embedded,
its behavior does not change (or break) over time

● The server tracks
○ Script content, for all versions
○ The dependency graph, for all versions

● Scripts can be run
○ At runtime, dependencies are evaluated and

bundled together into a single page
○ Compilation strategy from a CommonJS Wiki Page

http://wiki.commonjs.org/wiki/Modules/CompiledModules

CodeHub Scripts

● Every piece of code stored is a "script"
● Each script has an id number
● Each script version has a revision number
● Saving a script creates a new revision
● All script revisions are published

○ For example
http://code-hub.org/edit/7.1
edits the script whose id is 7, revision number 1

● There are three types of scripts:
○ Modules
○ Templates
○ Applications

http://code-hub.org/edit/7.1
http://code-hub.org/edit/7.1

CodeHub Modules

● CodeHub supports CommonJS Modules
● Each module must have a unique name
● Modules can be required with the syntax

foo = require('foo')

● Modules can be defined with the syntax
@module foo

● Modules define their exported API by adding
properties to an exports object

http://wiki.commonjs.org/wiki/Modules/1.1

CodeHub Templates

● Templates are HTML pages with placeholders
of the form ${parameterName}

● Parameter values are passed in from
applications that use the template

● ${scripts}gets replaced by script tags
including application source code
○ dependencies are bundled together and included also

● Each template has a unique name
● Templates can be defined with the syntax

@template templateName

CodeHub Applications

● Applications are scripts that can be run
● Applications can depend on modules
● Applications are defined using the syntax

@app template templateName
● Applications can pass arbitrary parameters

to the template using the syntax
@app parameterName value

CodeHub Implementation

CodeHub was implemented using
● Node.js as a server platform
● The Express.js Web Framework

○ With Jade and Markdown templates
● MongoDB via the Mongoose API
● Git via the Node.js child process API
● Hosted on the Rackspace cloud

○ In a single Ubuntu server VM
● Live now at code-hub.org

http://code-hub.org

CodeHub Screenshots:
New Script and Script List

ddfds

CodeHub Screenshots:
Example Scripts

Try it!

http://code-hub.org/edit/5.2
http://code-hub.org/edit/5.2

CodeHub Implementation Modules

Case Study:
An Interactive Graphics Course

● Web-based IDEs were used in a course
○ "Computer Programming and Interactive Graphics"
○ a 50-hour summer course for high school students
○ of the MIT Junction program, July-August 2012

● The class blog contains
○ Links to the "edit" pages in CodeHub
○ Embedded programs from CodeHub using iFrames
○ Comment sections for students to post their work

● The class used
○ JSBin
○ CodeHub
○ Cloud9 IDE
○ GitHub and GitHub Pages

http://esp.mit.edu/learn/Junction/2012programming.html
http://esp.mit.edu/learn/Junction/index.html
http://curransoft.com/interactivegraphics/

Case Study:
An Interactive Graphics Course
● Students were first exposed to JSBin

○ Basic JavaScript and HTML5 Canvas features were
introduced in "code as I code" fashion using JSBin

○ JSBin's "auto-run" feature provided instant feedback
● Students were then exposed to CodeHub

○ ..but did not use the module functionality
■ as it was beyond their knowledge

○ ..but preferred JSBin because
■ The editor and output are on the same page
■ The code is re-run automatically when changed

● Some students liked
○ the simplicity of CodeHub
○ that CodeHub adds nothing extra when running

■ whereas JSBin adds an "edit in JSBin" button

Case Study:
An Interactive Graphics Course
● Students were then exposed to GitHub

○ Students created GitHub accounts and a repository
○ Students used the in-browser GitHub editor

■ just for learning basic Markdown
○ Students set up Web sites using GitHub Pages

● Students were then exposed to Cloud9 IDE
○ Students learned the basics of Git, and merging
○ Students used Cloud9 IDE to

■ construct an interactive graphical program
■ publish it to the Web using GitHub Pages

● The overall response was fear and dislike
○ Students perceived GitHub and Cloud9 IDE as

overly complex and cumbersome to use
○ JSBin was their most preferred tool overall

Case Study:
An Interactive Graphics Course Blog

Links to
source
code in
CodeHub

The running
program
embedded
directly
from
CodeHub
using an
iFrame

Case Study:
An Interactive Graphics Course Blog

Comments
allowed students
to showcase
their work
and collaborate

Case Study:
An Interactive Graphics Course Blog

A starting point for graphics programming was provided.

Shortcomings

● Apps do not have names
○ So the list of scripts includes things like "12.4"
○ Perhaps apps should have names

● Modules are in a single global namespace
○ So modules for specific applications might use

"appName.moduleName" for the module name
● Modules are editable by anyone

○ Therefore breakable by anyone
○ No built-in concept of ownership or authorship

● Trumped by JSBin in terms of usability
○ CodeHub needs the "Auto-run JS" feature

Future Work
● A "showcase" feature

○ Apps can be showcased on their own page
○ Including a comments section
○ This would enable discussion-based collaboration

● The "Auto-run JS" feature from JSBin
● Visualization of dependencies and apps

○ The content of CodeHub is difficult to navigate
○ A node-link visualization of the dependency graph

would be useful for navigation
● A documentation editor

○ Each module could have documentation
○ This would make CodeHub more usable

● Implementation of Information Visualization
software within CodeHub

The End

