Tests for Parallelograms

What You'll Learn

You'll learn to identify and use tests to show that a quadrilateral is a parallelogram.

Why It's Important

Crafts Quilters often use parallelograms when designing their quilts. See Exercise 17. Theorem 8-3 states that the opposite sides of a parallelogram are congruent. Is the converse of this theorem true? In the figure below, \overline{AB} is congruent to \overline{DC} and \overline{AD} is congruent to \overline{BC} .

You know that a parallelogram is a quadrilateral in which both pairs of opposite sides are parallel. If the opposite sides of a quadrilateral are congruent, then is it a parallelogram?

In the following activity, you will discover other ways to show that a quadrilateral is a parallelogram.

This activity leads to Theorem 8–7, which is related to Theorem 8–3.

You can use the properties of congruent triangles and Theorem 8–7 to find other ways to show that a quadrilateral is a parallelogram.

These examples lead to Theorems 8-8 and 8-9.

CONTENT

	Theorem	Words	Models and Symbols	
	8-8	If one pair of opposite sides of a quadrilateral is parallel and congruent, then the quadrilateral is a parallelogram.	$A \longrightarrow B$ $D \longrightarrow C$ $\overline{AB} \cong \overline{DC}, \overline{AB} \parallel \overline{DC}$	
	8-9	If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.	$ \begin{array}{c} A \\ B \\ C \\ \overline{AE} \cong \overline{EC}, \overline{BE} \cong \overline{ED} \end{array} $	
Examples	Determine whether each quadrilateral is a parallelogram. If the figure is a parallelogram, give a reason for your answer. The figure has two pairs of opposite sides that are congruent.			
	The figure is a parallelogram by Theorem 8–7.		are <i>not</i> opposite sides. The figure is <i>not</i> a parallelogram.	

f.

Check for Understanding

Communicating Mathematics

- **1. Draw** a quadrilateral that meets each set of conditions and is *not* a parallelogram.
 - **a.** one pair of parallel sides
 - **b.** one pair of congruent sides
 - c. one pair of congruent sides and one pair of parallel sides
- 2. Writing Math List four methods you can use to determine whether a quadrilateral is a parallelogram.

Guided Practice	Determine whether each quadrilateral is a parallelogram. Write yes or no. If yes, give a reason for your answer.
Examples 2 & 3	3 4
Example 1	 5. In quadrilateral ABCD, BA CD and ∠DBC ≅ ∠BDA. Show that quadrilateral ABCD is a parallelogram by providing a reason for each step. a. BC AD b. ABCD is a parallelogram.
Examples 2 & 3	6. In the figure, $\overline{AD} \cong \overline{BC}$ and $\overline{AB} \cong \overline{DC}$. Which theorem shows that quadrilateral <i>ABCD</i> is a parallelogram?

Exercises

Practice

Determine whether each quadrilateral is a parallelogram. Write yes or *no*. If yes, give a reason for your answer.

Homework Help				
For Exercises	See Examples			
7-12, 14-16	2, 3			
13	1			
17	2			
Extra Practice				
See page 740.				

9. 7. 8. 117 <63° 60° 120° 117° 10. 11. 12. 23° 39 118° 30° 30°

- **13.** In quadrilateral *EFGH*, $\overline{HK} \cong \overline{KF}$ and $\angle KHE \cong \angle KFG$. Show that quadrilateral *EFGH* is a parallelogram by providing a reason for each step.
 - **a.** $\angle EKH \cong \angle FKG$
 - **b.** $\triangle EKH \cong \triangle GKF$
 - **c.** $\overline{EH} \cong \overline{GF}$
 - **d.** $\overline{EH} \parallel \overline{GF}$
 - **e.** *EFGH* is a parallelogram.

CONTENTS

- **14.** Explain why quadrilateral *LMNT* is a parallelogram. Support your explanation with reasons as shown in Exercise 13.
- **15.** Determine whether quadrilateral *XYZW* is a parallelogram. Give reasons for your answer.

Applications and Problem Solving

16. Algebra Find the value for *x* that will make quadrilateral *RSTU* a parallelogram.

- **17. Quilting** Faith Ringgold is an African-American fabric artist. She used parallelograms in the design of the quilt at the left. What characteristics of parallelograms make it easy to use them in quilts?
- **18. Critical Thinking** Quadrilateral *LMNO* is a parallelogram. Points *A*, *B*, *C*, and *D* are midpoints of the sides. Is *ABCD* a parallelogram? Explain your reasoning.

Faith Ringgold, #4 The Sunflowers Quilting Bee at Arles

Mixed Review

Standardized Test Practice

- In $\Box ABCD, m \angle D = 62$ and CD = 45. Find each measure. (Lesson 8-2)19. $m \angle B$ 20. $m \angle C$ 21. AB
 - **22. Drawing** Use a straightedge and protractor to draw a quadrilateral with exactly two obtuse angles. (*Lesson 8–1*)
 - **23.** Find the length of the hypotenuse of a right triangle whose legs are 7 inches and 24 inches. (Lesson 6-6)
 - **24. Grid In** In order to "curve" a set of test scores, a teacher uses the equation g = 2.5p + 10, where *g* is the curved test score and *p* is the number of problems answered correctly. How many points is each problem worth? (*Lesson* 4–6)

CONTENTS

25. Short Response Name two different pairs of angles that, if congruent, can be used to prove $a \parallel b$. Explain your reasoning. (*Lesson* 4-4)

www.geomconcepts.com/self_check_quiz