Sine and Cosine Ratios

What You'll Learn

- To use sine and cosine to determine side lengths in triangles

To use the sine ratio to estimate astronomical distances indirectly, as in Example 2

Check Skills You'll Need

For each triangle, find (a) the length of the leg opposite $\angle B$ and
(b) the length of the leg adjacent to $\angle B$.

2.

3.

10; 3 $\sqrt{ } 29$

8-4

1. Plan

Objectives

1 To use sine and cosine to determine side lengths in triangles

Examples

1 Writing Sine and Cosine Ratios
2 Real-World Connection
3 Using the Inverse of Cosine and Sine

Math Background

A unit circle has radius 1 and center $(0,0)$ in the coordinate plane. For all real values of θ, the point that is reached by traveling θ radians from point $(1,0)$ in a counterclockwise direction has coordinates $(\cos \theta, \sin \theta)$.

More Math Background: p. 414D

Lesson Planning and Resources

See p. 414E for a list of the resources that support this lesson.

Check Skills You'll Need
For intervention, direct students to:

Writing Tangent Ratios

Lesson 8-3: Example 1
Extra Skills, Word Problems, Proof Practice, Ch. 8

The tangent ratio, as you have seen, involves both legs of a right triangle. The sine and cosine ratios involve one leg and the hypotenuse.

$$
\begin{aligned}
\text { sine of } \angle A & =\frac{\text { leg opposite } \angle A}{\text { hypotenuse }} \\
\text { cosine of } \angle A & =\frac{\text { leg adjacent to } \angle A}{\text { hypotenuse }}
\end{aligned}
$$

These equations can be abbreviated:

$$
\sin A=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos A=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

Real-World Connection

For an angle of a given size, the sine and cosine ratios are constant, no matter where the angle is located.

Use the triangle to write each ratio.
a. $\sin T \quad \sin T=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{8}{17}$
b. $\cos T \quad \cos T=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{15}{17}$
c. $\sin G \quad \sin G=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{15}{17}$
d. $\cos G \quad \cos G=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{8}{17}$
a. Write the sine and cosine ratios for $\angle X$ and $\angle Y$. See right.
b. Critical Thinking When does $\sin X=\cos Y$? Explain.
$\sin X=\cos Y$ when $\angle X$ and $\angle Y$ are complementary.

1a. $\sin X=\frac{64}{80} ; \cos X=\frac{48}{80}$; $\sin Y=\frac{48}{80} ; \cos Y=\frac{64}{80}$

Lesson 8-4 Sine and Cosine Ratios

Differentiated Instruction Solutions for All Learners

Special Needs

Present the mnemonic device SOHCAHTOA for the definition of the three trigonometric ratios: Sine is Opposite over Hypotenuse; Cosine is Adjacent over Hypotenuse; Tangent is Opposite over Adjacent.

Below Level L2

Have students draw and measure right triangles to make a table of sine and cosine values for the angles in the set $\left\{10^{\circ}, 20^{\circ}, \ldots, 80^{\circ}\right\}$.

2. Teach

Guided Instruction

Visual Learners

Have students display a poster listing the trigonometric ratios.

Additional Examples

(1) Use the triangle to find $\sin T$, $\cos T, \sin G$, and $\cos G$.

$\sin T=\frac{12}{20}, \cos T=\frac{16}{20}$, $\sin G=\frac{16}{20}, \cos G=\frac{12}{20}$
(2) A 20-ft wire supporting a flagpole forms a 35° angle with the flagpole. To the nearest foot, how high is the flagpole?

16 ft

(3) A right triangle has a leg 1.5 units long and a hypotenuse 4.0 units long. Find the measures of its acute angles to the nearest degree. 22, 68

Resources

- Daily Notetaking Guide 8-4 L3
- Daily Notetaking Guide 8-4Adapted Instruction

Closure

A right triangle whose hypotenuse is 18 cm long contains a 65° angle. Find the lengths of its legs to one decimal place. $16.3 \mathrm{~cm}, 7.6 \mathrm{~cm}$

For: Sine and Cosine Activity Use: Interactive Textbook, 8-4

One way to describe the relationship of sine and cosine is to say that $\sin x^{\circ}=\cos (90-x)^{\circ}$ for values of x between 0 and 90 . This type of equation is called an identity because it is true for all the allowed values of the variable. You will discover other identities in the exercises.

(2) EXADPLE Real-World Connection

Astronomy The trigonometric ratios have been known for centuries by peoples in many cultures. The Polish astronomer Nicolaus Copernicus (1473-1543) developed a method for determining the sizes of orbits of planets closer to the sun than Earth. The key to his method was determining when the planets were in the position shown in the diagram, and then measuring the angle to find a.

If $a=22.3$ for Mercury, how far is Mercury from the sun in astronomical units (AU)? One astronomical
 unit is defined as the average distance from Earth to the center of the sun, about 93 million miles.

$$
\begin{aligned}
\sin 22.3^{\circ} & =\frac{x}{1} & & \text { Use the sine ratio. } \\
x & =\sin 22.3^{\circ} & & \text { Solve for } x .
\end{aligned}
$$

SIN 22.3 ENTER . 37945515 Use a calculator.

Mercury is about 0.38 AU from the sun.
2. If $a=46$ for Venus, how far is Venus from the sun in AU? about 0.72 AU
b. About how many miles from the sun is Venus? Mercury?

66,960,000 mi; 35,340,000 mi
When you know the leg and hypotenuse lengths of a right triangle, you can use inverse of sine and inverse of cosine to find the measures of the acute angles.

(3) ExADiPLE Using the Inverse of Cosine and Sine

Find $m \angle L$ to the nearest degree.

Problem Solving Hint

Think of $\cos ^{-1}\left(\frac{2.4}{4.0}\right)$ as "the angle whose cosine is $\frac{2.4}{4.0}$ " and $\sin ^{-1}\left(\frac{3.2}{4.0}\right)$ as "the angle whose sine is the quotient $\frac{3.2}{4.0}$."

Differentiated Instruction solutions for All Learners

Advanced Learners L4

Encourage students to make conjectures about the values of $\sin 0^{\circ}, \cos 0^{\circ}, \sin 90^{\circ}$, and $\cos 90^{\circ}$, defend their conjectures, and then check the values on a calculator.

English Language Learners ELL

Help students distinguish between sine and inverse sine. The sine of an angle is a ratio, or number. The inverse sine of a number, or ratio, is an angle measure. So, inverses are used to find angle measures.

Method 2

Method 1

$\cos L=\frac{2.4}{4.0} \quad \longleftarrow$ Find the trigonometric ratio. \rightarrow
$m \angle L=\cos ^{-1}\left(\frac{2.4}{4.0}\right) \quad \longleftarrow$ Use the inverse. \rightarrow
$\operatorname{COS}^{-1} 2.4\lceil 4.0$ ENTER \because Use a calculator. \rightarrow
53.130102
$m \angle L \approx 53$
$\sin L=\frac{3.2}{4.0}$
$m \angle L=\sin ^{-1}\left(\frac{3.2}{4.0}\right)$
SIN $^{-1} 3.2$ 园 4.0 ENTER
53.130102
$m \angle L \approx 53$

Find the value of x. Round your answer to the nearest degree.
a.

b. 68

Practice by Example

Example 2 (page 440)

Example 3 (page 440)

Apply Your Skills

Real-World Connection
Corn that fills the bin in Exercise 17 would make 28,500 gallons of ethanol.

Write the ratios for $\sin M$ and $\cos M$.

1.

3. ${ }_{2}^{K}$,

Find the value of \boldsymbol{x}. Round answers to the nearest tenth.

5. 8.3

8.

10. Escalators An escalator in the subway system of St. Petersburg, Russia, has a vertical rise of 195 ft 9.5 in ., and rises at an angle of 10.4°. How long is the escalator? Round your answer to the nearest foot. 1085 ft

Find the value of x. Round answers to the nearest degree.
11.

12. 51

13.

14.

15.
24

16. 66

17. Construction Carlos is planning to build a grain bin with a radius of 15 ft . He reads that the recommended slant of the roof is 25°. He wants the roof to overhang the edge of the bin by 1 ft . What should the length x be? Give your answer in feet and inches. about 17 ft 8 in .

Use what you know about trigonometric
 ratios (and other identities) to show that each equation is an identity. 18-20. See margin.
18. $\tan X=\frac{\sin X}{\cos X}$
19. $\sin X=\cos X \cdot \tan X \quad$ 20. $\cos X=\frac{\sin X}{\tan X}$
21. Error Analysis A student states that $\sin A>\sin X$ because the lengths of the sides of $\triangle A B C$ are greater than the lengths of the sides of $\triangle X Y Z$. Is the student correct? Explain.
 No; the \triangle are \sim and the sine ratio for 35° is constant.

Lesson 8-4 Sine and Cosine Ratios

3. Practice

Assignment Guide

A B $1-30$	
C Challenge	$31-36$
Test Prep	$37-40$
Mixed Review	$41-47$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 2, 14, 17, 22, 27.

Error Prevention!

Exercises 6, 7 Some students may need help solving equations with the variable in the denominator. Review techniques such as crossmultiplication and taking the reciprocal of each side.

Exercise 25 Tell students that there is also a cotangent ratio. Ask: What do you think is the cotangent ratio? $\frac{\text { adjacent }}{\text { opposite }}$

Differentiated Instruction Resources

4. Assess \& Reteach

Use this figure for Exercises 1 and 2.

1. Write the ratios for $\sin A$ and $\sin B . \sin A=\frac{16}{34}, \sin B=\frac{30}{34}$
2. Write the ratios for $\cos A$ and $\cos B . \cos A=\frac{30}{34}, \cos B=\frac{16}{34}$

Use this figure for Exercises

 3 and 4.
3. Find x to the nearest tenth. 21.0
4. Find y to the nearest tenth. 13.6

Use this figure for Exercises

5 and 6.

5. Find x to the nearest degree. 44
6. Find y to the nearest degree. 46

Alternative Assessment

Have students write two measurement problems involving distances in your school. Students also should show how to solve one problem using the sine ratio and the other problem using the cosine ratio. Homework Help

Find the values of w and then x. Round lengths to the nearest tenth and angle measures to the nearest degree.
22.
23.

25. a. In $\triangle A B C$, how does $\sin A$ compare to cos B ?
Is this true for the acute angles of other right triangles?
b. Reading Math The word cosine is derived See left. from the words complement's sine (see page 694). Which angle in $\triangle A B C$ is the complement of $\angle A$?
24.

Visit: PHSchool.com Web Code: aue-0804

25a. They are equal; yes; The sine and cosine of complementary $\stackrel{s}{ }$ are $=$.

25c. Sample: cosine of $\angle A$ $=$ sine of the compl. of $\angle A$.
27. Yes; use any trig. function and the known measures to find one other side. Use the Pythagorean Thm. to find the 3rd side. Subtract the acute \angle measure from 90 to get the other \angle measure.

28e. $\cos 30^{\circ}=\sqrt{3} \sin 30^{\circ}$
28f. $\sin 60^{\circ}=\sqrt{3} \cos 60^{\circ}$
Of $\angle B$? $\angle B ; \angle A$
c. Explain why the derivation of the word cosine makes sense. See left.
26. Find each ratio.
a. $\sin P$ a. $\frac{\sqrt{2}}{2}$ c. $\frac{\sqrt{2}}{2}$
b. $\cos P$
b. $\frac{\sqrt{2}}{2}$ d. $\frac{\sqrt{2}}{2}$
e. Make a conjecture about how the sine and cosine of a 45° angle are related. They are equal.
27. Writing Leona said that if she had a diagram
 that showed the measure of one acute angle and the length of one side of a right triangle, she could find the measure of the other acute angle and the lengths of the other sides. Is she correct? Explain. See left.
28. Find each ratio.
a. $\sin S$
b. $\cos S^{\frac{1}{2}}$
c. $\sin T \quad$ a. $\frac{\sqrt{3}}{2} \quad$ c. $\frac{1}{2}$
d. $\cos T \frac{\sqrt{3}}{2}$
e. Make a conjecture about how the sine and cosine of a 30° angle are related. See left.
f. Make a conjecture about how the sine and
 cosine of a 60° angle are related. See left.
Proof 29. For right $\triangle A B C$ with right $\angle C$, prove each of the following.
a. $\sin A<1$, no matter how large $\angle A$ is. a-b. See margin.
b. $\cos A<1$, no matter how small $\angle A$ is.

30b-d. Answers may vary. Samples are given.
30c. $\sin X=1$ for $X=89.9$; no

Go nline

or: Graphing calculator procedures
Web Code: aue-2111

Challenge
30. Graphing Calculator Use the TABLE feature of your graphing calculator to study $\sin \mathrm{X}$ as X gets close $($ but $\neq)$ to 90 . In the $\mathrm{Y}=$ screen, enter $\mathrm{Y} 1=\sin \mathrm{X}$.
a. Use the TBLSET feature so that X starts at 80 and changes by 1. Access the TABLE. From the table, what is $\sin \mathrm{X}$ for $\mathrm{X}=89$? 0.99985
b. Perform a "numerical zoom in." Use the TBLSET feature, so that X starts with 89 and changes by 0.1 . What is $\sin \mathrm{X}$ for $\mathrm{X}=89.9$? 1
c. Continue to numerically zoom in on values close to 90 . What is the greatest value you can get for $\sin \mathrm{X}$ on your calculator? How close is X to 90 ? Does your result contradict what you are asked to prove in Exercise 29a? See left. d. Writing Use right triangles to explain the behavior of $\sin \mathrm{X}$ found above.

See margin.

Show that each equation is an identity by showing that each expression on the left simplifies to 1. 31-34. See margin.
31. $(\sin A)^{2}+(\cos A)^{2}=1$
32. $(\sin B)^{2}+(\cos B)^{2}=1$
33. $\frac{1}{(\cos A)^{2}}-(\tan A)^{2}=1$
34. $\frac{1}{(\sin A)^{2}}-\frac{1}{(\tan A)^{2}}=1$

35. Show that $(\tan A)^{2}-(\sin A)^{2}=(\tan A)^{2}(\sin A)^{2}$ is an identity. See margin.

Chapter 8 Right Triangles and Trigonometry
29. Answers may vary. Samples are given.
a. Since $\sin A=\frac{o p p .}{\text { hyp. }}$, if $\sin A \geq 1$, then opp. \geq hyp., which is impossible.
b. Since $\cos A=\frac{\text { adj. }}{\text { hyp. }}$, if $\cos A \geq 1$, then adj. \geq hyp., which is impossible.
30. d. For $\angle s$ that approach 90, the opp. side gets close to the hyp. in length, so $\frac{\text { opp. }}{\text { hyp. }}$ approaches 1 .

Poland honored Copernicus with this 1000-zloty note, last used in 1995.
36. Astronomy Copernicus devised a method different from the one in Example 2 in order to find the sizes of the orbits of planets farther from the sun than Earth. His method involved noting the number of days between the times that a planet was in the positions labeled A and B in the diagram. Using this time and the number of days in each planet's year, he calculated c and d.
a. For Mars, $c=55.2$ and $d=103.8$.

How far is Mars from the sun in astronomical units (AU)? about 1.5 AU

b. For Jupiter, $c=21.9$ and $d=100.8$.

How far is Jupiter from the sun in astronomical units? about 5.2 AU

Test Prep

Multiple Choice

Short Response
Short Response
37. What is the value of x to the nearest whole number?
A. 2
B. 3
C. 4
D. 6
38. What is the value of y to the nearest tenth? H
F. 5.4
G. 5.5
H. 5.6
J. 5.7
39. What is the value of x to the nearest whole number? A
A. 53
B. 47
C. 43
D. 37

40. Use the figure at the right.
a. Find $m \angle G$. Show your work. a-b. See margin.
b. Find $m \angle R$ by two different methods.

Show your work.

Mixed Review

Find the value of \boldsymbol{x}. Round answers to the nearest tenth.

Lesson 8-3

Lesson 7-2

Lesson 6-2
41.

42. $3.3 \quad 7$
43.

44. The wall of a room is in the shape of a golden rectangle. If the height of the wall is 8 ft , what are the possible lengths of the wall to the nearest tenth? 12.9 ft or 4.9 ft

Find the value of \boldsymbol{x} for each parallelogram.
45. $\frac{3}{4}$

46. 4

Lesson 8-4 Sine and Cosine Ratios
nline lesson quiz, PHSchool.com, Web Code: aua-0804

31. $(\sin A)^{2}+(\cos A)^{2}=$
$\left(\frac{a}{c}\right)^{2}+\left(\frac{b}{c}\right)^{2}=\frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=$
$\frac{a^{2}+b^{2}}{c^{2}}=\frac{c^{2}}{c^{2}}=1$

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 465
- Test-Taking Strategies, p. 460
- Test-Taking Strategies with Transparencies

Exercise 36 Point out that Copernicus's method depends on the sun, Earth, and outer planets' being in a line at one point in time and forming a right angle at the other point in time.
32. $(\sin B)^{2}+(\cos B)^{2}=$
$\left(\frac{b}{c}\right)^{2}+\left(\frac{a}{c}\right)^{2}=\frac{b^{2}}{c^{2}}+\frac{a^{2}}{c^{2}}=$
$\frac{b^{2}+a^{2}}{c^{2}}=\frac{c^{2}}{c^{2}}=1$
33. $\frac{1}{(\cos A)^{2}}-(\tan A)^{2}$
$=\left(1 \div \frac{b^{2}}{c^{2}}\right)-\frac{a^{2}}{b^{2}}$
$=\frac{c^{2}}{b^{2}}-\frac{a^{2}}{b^{2}}=$
$\frac{c^{2}-a^{2}}{b^{2}}=\frac{b^{2}}{b^{2}}=1$
34. $\frac{1}{(\sin A)^{2}}-\frac{1}{(\tan A)^{2}}=$ $\frac{1}{\left(\frac{a}{c}\right)^{2}}-\frac{1}{\left(\frac{a}{b}\right)^{2}}=\frac{c^{2}}{a^{2}}-\frac{b^{2}}{a^{2}}=$
$\frac{c^{2}-b^{2}}{a^{2}}=\frac{a^{2}}{a^{2}}=1$
35. $(\tan A)^{2}-(\sin A)^{2}=$
$\left(\frac{a}{b}\right)^{2}-\left(\frac{a}{c}\right)^{2}=\frac{a^{2}}{b^{2}}-\frac{a^{2}}{c^{2}}=$
$\frac{a^{2} c^{2}}{b^{2} c^{2}}-\frac{a^{2} b^{2}}{b^{2} c^{2}}=$
$\frac{a^{2} c^{2}-a^{2} b^{2}}{b^{2} c^{2}}=$
$\frac{a^{2}\left(c^{2}-b^{2}\right)}{b^{2} c^{2}}=\frac{a^{2} \cdot a^{2}}{b^{2} c^{2}}=$
$\left(\frac{a}{b}\right)^{2}\left(\frac{a}{c}\right)^{2}=$
$(\tan A)^{2}(\sin A)^{2}$
40. [2] a. $\cos G=\frac{7}{10}$ $m \angle G=$ $\cos ^{-1}\left(\frac{7}{10}\right) \approx 46$
b. $m \angle R \approx 90-46=$ 44 OR $m \angle R=$ $\sin ^{-1}\left(\frac{7}{10}\right) \approx 44$
[1] one angle found correctly

