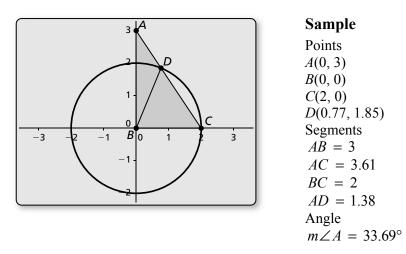
8.6

Proving Triangle Congruence by ASA and AAS For use with Exploration 8.6


Essential Question What information is sufficient to determine whether two triangles are congruent?

Go to BigIdeasMath.com for an interactive tool to investigate this exploration.

Work with a partner.

- **a.** Use dynamic geometry software to construct $\triangle ABC$. Construct the triangle so that vertex *B* is at the origin, \overline{AB} has a length of 3 units, and \overline{BC} has a length of 2 units.
- **b.** Construct a circle with a radius of 2 units centered at the origin. Locate point D where the circle intersects \overline{AC} . Draw \overline{BD} .

- **c.** $\triangle ABC$ and $\triangle ABD$ have two congruent sides and a nonincluded congruent angle. Name them.
- **d.** Is $\triangle ABC \cong \triangle ABD$? Explain your reasoning.
- **e.** Is SSA sufficient to determine whether two triangles are congruent? Explain your reasoning.

8.6 Proving Triangle Congruence by ASA and AAS (continued)

2 **EXPLORATION:** Determining Valid Congruence Theorems

Go to *BigIdeasMath.com* for an interactive tool to investigate this exploration.

Work with a partner. Use dynamic geometry software to determine which of the following are valid triangle congruence theorems. For those that are not valid, write a counterexample. Explain your reasoning.

Possible Congruence Theorem	Valid or not valid?
SSS	
SSA	
SAS	
AAS	
ASA	
ААА	

Communicate Your Answer

- 3. What information is sufficient to determine whether two triangles are congruent?
- **4.** Is it possible to show that two triangles are congruent using more than one congruence theorem? If so, give an example.

Theorems

Angle-Side-Angle (ASA) Congruence Theorem

If two angles and the included side of one triangle are congruent to two angles and the included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D$, $\overline{AC} \cong \overline{DF}$, and $\angle C \cong \angle F$, then $\triangle ABC \cong \triangle DEF$.

Notes:

Angle-Angle-Side (AAS) Congruence Theorem

If two angles and a non-included side of one triangle are congruent to two angles and the corresponding non-included side of a second triangle, then the two triangles are congruent.

If $\angle A \cong \angle D, \angle C \cong \angle F$, and $\overline{BC} \cong \overline{EF}$, then $\triangle ABC \cong \triangle DEF$.

Notes:

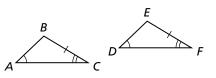
Worked-Out Examples

Example #1

State the third congruence statement that is needed to prove that \triangle FGH $\cong \triangle$ LMN using the given theorem.

Given $\overline{FG} \cong \overline{LM}, \angle G \cong \angle M, __ \cong __$

Use the ASA Congruence Theorem.

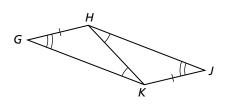

Given $\overline{FG} \cong \overline{LM}, \angle G \cong \angle M, \angle F \cong \angle L$

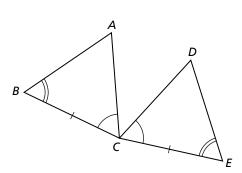
Example #2

Decide whether you can use the given information to prove that $\triangle ABC \cong \triangle DEF$. Explain your reasoning.

$$\angle C \cong \angle F, \overline{AB} \cong \overline{DE}, \overline{BC} \cong \overline{EF}$$

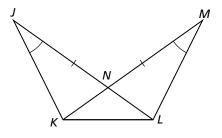
no; The congruence statements follow the pattern SSA, which is not sufficient to conclude that the triangles are congruent.

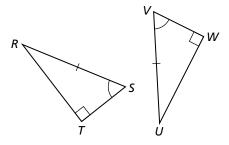

8.6 **Practice** (continued)


Practice A

In Exercises 1–4, decide whether enough information is given to prove that the triangles are congruent. If so, state the theorem you would use.

1. $\triangle GHK, \triangle JKH$

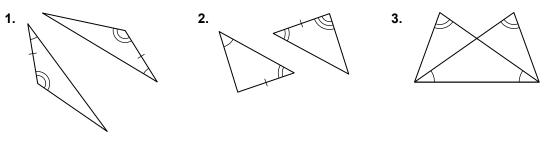

2. $\triangle ABC, \triangle DEC$



3. $\triangle JKL, \triangle MLK$

4. $\triangle RST, \triangle UVW$

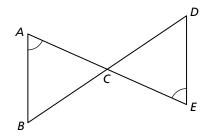
In Exercises 5 and 6, decide whether you can use the given information to prove that $\triangle LMN \cong \triangle PQR$. Explain your reasoning.

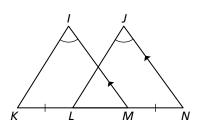

5.
$$\angle M \cong \angle Q, \angle N \cong \angle R, \overline{NL} \cong \overline{RP}$$

6.
$$\angle L \cong \angle R, \angle M \cong \angle Q, \overline{LM} \cong \overline{PQ}$$

8.6 Practice (continued) Α 7. Prove that the triangles are congruent using the ASA Congruence Theorem. \overline{AC} bisects $\angle DAB$ and $\angle DCB$. Given Prove $\triangle ABC \cong \triangle ADC$ D R REASONS **STATEMENTS** 8. Prove that the triangles are congruent using the AAS Q Ν Congruence Theorem. 0 *O* is the center of the circle and $\angle N \cong \angle P$. Given $\Delta MNO \cong \Delta PQO$ Prove Р М **STATEMENTS** REASONS

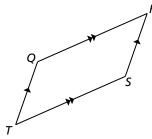
Practice B


In Exercises 1–3, decide whether enough information is given to prove that the triangles are congruent. If so, state the theorem you would use.


In Exercises 4 and 5, prove that the triangles are congruent using the ASA Congruence Theorem or the AAS Congruence Theorem.

4. Given \overline{BD} bisects \overline{AE} , $\angle A \cong \angle E$

Prove $\triangle ABC \cong \triangle EDC$


5. Given $\angle I \cong \angle J$, $\overline{IM} \parallel \overline{JN}$ and $\overline{KL} \cong \overline{MN}$ Prove $\triangle IKM \cong \triangle JLN$

6. Write a paragraph proof to show that opposite sides of a parallelogram are congruent.

Given QRST is a parallelogram.

Prove $\overline{QR} \cong \overline{TS}$ and $\overline{RS} \cong \overline{QT}$ (*Hint*: Draw \overline{RT} .)

