
8-bit ALU:
This 8-bit ALU takes two 8-bit inputs A and B, and performs an operation on them that is 

selected by the 3-bit selector ALU_SEL.  The selection is done using a 3to8 decoder and 8 tri-state 
buffers.  The output of the decoder enables the tri-state and allows the result of the selected to pass 
to M.  The result of the operation is placed in the 8-bit output M.  There is a single bit Cin that is used 
in function 2,3,6, and 7.  There is an enable that must be set to 1 for the circuit to run.

In addition to the M output, there is also 3 single bit outputs Carryout, Overflow, and m7.  
Carryout is the carryout of the 4 functions that produce a carryout.  The overflow tells us if we use the 
carryout or not.  If overflow is 1 then carryout is the most significant bit.  If overflow is 0 then the most 
significant bit is the 2^7 bit of M.

m7 is the sign bit of the resulting function.  The sign bit is the most significant bit and tells us if 
the value is positive or negative in 2’s compliment.  0 indicates a positive and 1 indicates a negative.  
If overflow is 1 then m7 is equal to the carryout.  If overflow is 0 then m7 is equal to the most 
significant bit of M.  After making a truth table and k-map, the function for m7 is Not(Overflow)
*M7+Overflow*Cout.
The following functions are performed based on ALU_SEL:
ALU_SEL        Function
000                     A or B
001                     Not A
010                     A+Not(B)+Cin
011                      A+B+Cin  
100                     A xor B
101                     A and B
110                     A-1+Cin
111                      A+Cin

Testing:
For testing I did 2 sets of tests.  For the first set I checked to make sure that each of the functions 
produced the proper result into M.  When enable is 0, nothing should pass to M. When enable is 1, 
the function selected by ALU_SEL should pass to M.  In total there were 9 tests for this set, 1 for the 



enable and 1 for each function.  The waveform matches the truth table. 
 
 
A                              B                               Cin         ALU_SEL                        M                           enable
x                               x                                 x                  x                                 UUU                           0
00000101       00000110                         0                 000                         00000111                     1
00000101       00000110                         0                001                          11111010                     1
00000101       00000110                         1                 010                         11111111                      1  
00000101       00000110                         1                 011                         00001100                     1  
00000101       00000110                         1                 100                         00000011                     1
00000101       00000110                         1                 101                          00000100                    1
00000101       00000110                         1                 110                         00000101                     1
00000101       00000110                         1                 111                         00000110                     1

For the second set of tests I tested to make sure that the Carryout, Overflow, and m7 outputs were 
working properly.  I used function 3 A+B+Cin to test with various inputs of A and B.  The waveform 
matches the truth table.
A        B   Cout Overflow m7
100   100   0          1           0
-100  -100  1          1           1



7         -5     1          0           0     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3 to 8 Decoder:

The 3 to 8 Decoder takes 3 single bit inputs and selects one of 8 outputs based on the input 
combinations.  With 3 inputs there will be 2^3 possible input combinations.  This circuit is used in the 
ALU to decode the ALU_SEL.  Each input of ALU_SEL will activate one output.  That output is 



connected to the enable of a tri-state buffer.  In this way the 3 to 8 decoder is used to select the 
functions.
 
 
 
 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
Testing:
This is a simple circuit so I tested every possible input combination.  The waveform matches the truth 
table and therefore the circuit works.
 
 
 
 
S2  S1  S0  D0  D1  D2  D3  D4  D5  D6  D7
0      0     0    1     0    0      0     0     0     0     0
0      0     1    0     1    0      0     0     0     0     0
0      1     0    0     0    1      0     0     0     0     0
0      1     1    0     0    0      1     0     0     0     0
1      0     0    0     0    0      0     1     0     0     0
1      0     1    0     0    0      0     0     1     0     0
1      1     0    0     0    0      0     0     0     1     0
1      1     1    0     0    0      0     0     0     0     1

 
 
 
 



 
 
 
 
 
A or B:
Description: The A OR B function takes two 8-bit binary numbers as inputs, and outputs the logical 
disjunction of the two inputs which displays a 1 whenever the corresponding bits of A or B are 1. The 
design uses two 8 bit busses that connect to designated expanders. These expanders have 8 outputs 
where each output connects to a 2-input OR-gate. The resulting OR-gates then connect to a 8-bit 
Merger which connects to the final 8-bit output resulting in an A OR B function.
 

 

 
 
 
 
 



 
 
 
Testing:
There were 3 tests.  The waveform matches the truth table and shows the test work and therefore the 
circuit works.
A                                      B                                   Out
00000000                 00000000                   00000000
00000001                 00000010                   00000011
00000100                 00000011                   00000111

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
Not A:
Description: The Not A function takes an 8-bit binary number as an input, and outputs the 
implemented 8-bit binary number which take the inverse of each bit from the input. The circuit design 
uses one 8-bit bus which is connected to an 8-bit expander. The expander has 8 outputs. Each of the 
outputs connect to 8 inverters. The outputs of the inverters then connect to an 8-bit Merger that finally 
connects to the output resulting in the Not A function. 

 



 
Testing:
There were 3 test cases.  The waveform matches the truth table and therefore the circuit works.
A                         Out
00000000     11111111
00011001     11100110
01100010     10011101
 

 
 
 
 
 
 
 
 
 
 



 
 
A + Not(B)+Cin:
Description: The A+Not(B)+Cin function takes in two 8 bit values A and B as inputs, and a single 1-bit 
input Cin. The B input is sent through a not function which implements the inverse of B as the output. 
The output from the not function is connected as one of the inputs of an 8 bit Adder. The A and Cin 
are also connected to the 8bit Adder which adds the values of A and Not B taking into account Cin. 
The outputs of 8-bit Adder connect to a single 8-bit bus, a 1-bit Cout, and an overflow output.

 
Testing:
There were 3 tests.  The waveform matches the truth table and shows the test work and therefore the 
circuit works.
A                                      B                   Cin                      M                      Cout      Overflow
00000000                 00000000            0                  11111111                      0              0          
00000001                 00000000             1                  00000001                   1              0         
01100100                 10011100             0                  11000111                     0              1          
 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
A + B + Cin:
Description: The A + B + Cin function adds two 8-bit values together taking into account  a 1-bit carry 
in. The function uses two 8-bit busses A and B as inputs which connect to an 8 bit Adder. The 1-
bit Cin also connects to the 8bit Adder. The function of the 8bit Adder adds the values of its inputs 
together, and results in an 8-bit bus output M, and two single bit outputs, Cout and Overflow. 

 
Testing:
There were 4 tests.  The waveform matches the truth table and shows the test work and therefore the 
circuit works.
A                                      B                   Cin                      M                      Cout      Overflow
00000000                 00000000            0                  00000000                     0              0          
00000001                 00000010             1                   00000100                  0              0         
11111010                 11111011              0                     11110101                    1              0 
01100100                 01100100            0                     11001000                    0              1 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
A xor B:
Description: The A xor B function shown below takes two 8-bit binary numbers as inputs and sends 
each bit through an xor gate which results in the corresponding 8-bit binary number. Each bit results 
in a true output (1) if one, and only if one or the other, of the inputs to the gate is true. The circuit 
design uses two 8-bit busses that each connect to an 8-bit expander. The expanders then connect 



to 8 XOR gates which connect to the an 8-bit Merger. The Merger connects to an 8-bit output bus 
that displays the result of the A xor B function. The waveform shows a test case that  verifies that the 
circuit functions correctly. When input A is 00000001 and input B is 00000010, then the output of the 
A xor B function is 00000011. This is the A xor B function. 

 

 
 
 
 
 
Testing:
A                                      B                                   M
00000000                 00000000                   00000000
00000001                 00000010                   00000011
00000001                 00000011                   00000010



 
 
 
 
 
 
 
A and B:
Description: This circuit is a basic A and B function that takes two 8-bit binary numbers, and 
implements a logical conjunction between the two. This means that an output 1 results only if 
both the inputs to the AND gate are 1. The design uses two 8-bit busses that each connect to its 
corresponding 8-bit expander. The outputs of Expanders of A and B each connect to 8 AND gates. 
The output of each AND gate then connects to the 8-bit Merger which connects to the final 8-bit 
binary bus output of the A and B function. The waveform makes this circuit valid by showing that 
when input A is 00000011 and input B is 00000101 the resulting output is 00000001 because both 
the of least significant bits of A and B are the same. This is the A and B function.
 
 
 
 
 



 
 
 

 
 
Testing:
A                                      B                                   M
00000000                 00000101                   00000000
00000001                 00000101                   00000001
00000011                 00000101                   00000001
00000101                 00000101                   00000101
 



 
 
 
 
 
 
A - 1 + Cin:
Description: This circuit takes an 8 bit input A and subtracts 1 from it and then adds Cin.  Basically if 
Cin is 0 it does A-1.  if Cin is 1 the result is just A.  This circuit is build using an 8 bit adder with one 
of the inputs fixed to -1.  The ouput is the 8 bit result M.  While this circuit uses the 8 bit adder, it will 
never overflow.





 
Testing:
There were 3 test cases.  The waveform matches the truth table and therefore the circuit works.
A                     Cin            M
00000000         0     11111111
00000011         0     00000010
00000011         1     00000011
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
A + Cin:
Description: This circuit performs the function A+Cin.  Basically if Cin is 0 the result is A.  If Cin is 1 
the result is A+1.  This circuit is built using an 8 bit adder with one of the inputs fixed to 0.  The output 
is the 8bit result M.  This circuit will never overflow.

 
 
 
 
 
 
 
 
 
Testing:
There were 2 test cases.  The waveform matches the truth table and therefore the circuit works.
 
A                     Cin             M
00000001         0     00000001
00000100         1     00000101
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
8 bit adder:

An 8 bit adder is a device that can add two 8 bit binary values. The output is 8 bits along with a 
carry out. The carry out is needed because its possible that the sum of two 8 bit numbers could be 9 
bits. The carry out is the most significant bit, in this case the 2^8 bit.  The carryout is ignored when 
overflow is 0.  When overflow is 1, the carryout is used and the result is 9 bits. The adder is 
constructed using 8 full adders.  



 
Inputs:
X1, X2- the two single bit inputs to be added
CarryIn- the single bit carry from the previous adder
 
Output:
S- least significant bit
Cout- the carry out, most significant bit

 
 
 

 
Testing:
For testing I tested 1+1, 100+100, -100+-100, and 5+-7.  These test were done to show that the 
adder works and the carryout and overflow activate properly.  The waveform shows the circuit works.
 
 
 
 
A       B           M        Cout     Overflow
1       1            2          0               0
100  100       200        0              1                           



-100 -100       56        1              1                                     
 
 

    

 
 
 
 
 
Full Adder:

A full adder is a device capable of adding 2 single bits plus a carry from the previous bit. 
It basically can add 1+1+1. The carry out from one full adder can be connected to the carry in to 
another full adder and produce a multipul bit adder.

 
Inputs:
X1, X2- the two single bit inputs to be added
CarryIn- the single bit carry from the previous adder
 
Output:
S- least significant bit
Cout- the carry out, most significant bit

 
 



 
 
Testing:

This is a simple circuit so I was able to test all possible inputs.  The waveform matches the 
truth table.
 
 

X1 X2 Cin S Cout
0    0     0    0    0
0    0     1    1    0
0    1     0    1    0
0    1     1    0    1
1    0     0    1    0
1    0     1    0    1
1    1     0    0    1
1    1    1     1    1

 
 
 



 
 
 

Part 1a: 8-bit 4 to 1 Multiplexer:
Part 1a – 4 to 1 multiplexer with 8-bit bus
 

A 4 to 1 multiplexer selects one of 4 inputs based on the input of a 2 bit selector. For 
each of the 4 possible bit combinations of the selector it passes the appropriate input to the 
output. For this particular multiplexer, the inputs and output will be 8-bit busses. In order to 
simplify the passing of the value from input to output, 8 bit tri-state buffers are used. The tri-
states are enables by the selector bits.
 
 
Inputs:
S0, S1- selector bits
I0, I1, I2, I3- 8 bit busses
 
Outputs:
Output- 8 bit bus
 
Gates:
AND- 4
NOT- 2
TRI STATE- 4

 
 



 

 
 
Testing:

I tested to show that each of the 4 bit combinations of the selector S0 and S1 passed 
the appropriate input bus to the output. S0S1= 00 should pass I0 to the output, 01 
should pass I1, 10 should pass I2, and 11 should pass I3. For this test I made I0, I1, I2, 
I3 = 1,2,3,4 and checked that the value was passed to the output.

 
 
 
Truth Table:
S1 S0 I0 I1 I2 I3 Output
0    0    1  x  x  x    1
0    1    x  2  x  x    2
1    0    x  x  3  x    3
1    1    x  x  x  4    4
 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
4 to 1 Multiplexer:
The 4-to-1 multiplexer takes 2 selector inputs, S0 and S1, and 4 single-bit inputs, I0, I1, I2, and I3. 
Each input combination of the selectors allows one of I0, I1, I2, or I3 to pass to the output Y.

For testing, there are 64 possible input combinations but I think it is only necessary to test 8 in 
order to determine that the circuit works. For each bit combination of S0 and S1 I will test to make 
sure that it can pass a 1 and a 0 from the proper input. Since there are 4 selector bit combinations 
and both a 1 and 0 is tested at each one, it equals a total of 8 tests. These test will show that the 



circuit can properly implement the function.
 
Truth Table:
S1 S0 I0 I1 I2 I3 Y
0    0   0  x  x   x 0
0    0   1  x  x   x 1
0    1   x  0  x   x 0
0    1   x  1  x   x 1
1    0   x  x  0   x 0
1    0   x  x  1   x 1
1    1   x  x  x   0 0
1    1   x  x  x   1 1
 

 

 
 



 
 
References:

Mano, M. Morris, and Charles R. Kime. Logic and Computer Design Fundamentals. 4th 
ed. Upper Saddle River, NJ: Prentice Hall, 2007. Print

 
 


