8-bit ALU:

This 8-bit ALU takes two 8-bit inputs A and B, and performs an operation on them that is selected by the 3-bit selector ALU_SEL. The selection is done using a 3 to8 decoder and 8 tri-state buffers. The output of the decoder enables the tri-state and allows the result of the selected to pass to M . The result of the operation is placed in the 8 -bit output M . There is a single bit Cin that is used in function $2,3,6$, and 7 . There is an enable that must be set to 1 for the circuit to run.

In addition to the M output, there is also 3 single bit outputs Carryout, Overflow, and m7.
Carryout is the carryout of the 4 functions that produce a carryout. The overflow tells us if we use the carryout or not. If overflow is 1 then carryout is the most significant bit. If overflow is 0 then the most significant bit is the $2^{\wedge} 7$ bit of M .
m 7 is the sign bit of the resulting function. The sign bit is the most significant bit and tells us if the value is positive or negative in 2 's compliment. 0 indicates a positive and 1 indicates a negative. If overflow is 1 then m 7 is equal to the carryout. If overflow is 0 then m 7 is equal to the most significant bit of M. After making a truth table and k-map, the function for m 7 is Not(Overflow) *M7+Overflow*Cout.
The following functions are performed based on ALU_SEL:
ALU SEL Function

A or B
Not A
A $+\operatorname{Not}(\mathrm{B})+\mathrm{Cin}$
$A+B+C i n$
A xor B
A and B
$A-1+C$ in
A+Cin

Testing:

For testing I did 2 sets of tests. For the first set I checked to make sure that each of the functions produced the proper result into M. When enable is 0 , nothing should pass to M. When enable is 1 , the function selected by ALU_SEL should pass to M. In total there were 9 tests for this set, 1 for the
enable and 1 for each function. The waveform matches the truth table.

For the second set of tests I tested to make sure that the Carryout, Overflow, and m7 outputs were working properly. I used function $3 A+B+C$ in to test with various inputs of A and B. The waveform matches the truth table.
A B Cout Overflow m7
$\begin{array}{lllll}100 & 100 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}-100 & -100 & 1 & 1 & 1\end{array}$

3 to 8 Decoder:

The 3 to 8 Decoder takes 3 single bit inputs and selects one of 8 outputs based on the input combinations. With 3 inputs there will be $2^{\wedge} 3$ possible input combinations. This circuit is used in the ALU to decode the ALU_SEL. Each input of ALU_SEL will activate one output. That output is
connected to the enable of a tri-state buffer. In this way the 3 to 8 decoder is used to select the functions.

Testing:

This is a simple circuit so I tested every possible input combination. The waveform matches the truth table and therefore the circuit works.

S2 S1 S0 D0 D1 D2 D3 D4 D5 D6 D7

0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

S0

A or B:

Description: The A OR B function takes two 8-bit binary numbers as inputs, and outputs the logical disjunction of the two inputs which displays a 1 whenever the corresponding bits of A or B are 1 . The design uses two 8 bit busses that connect to designated expanders. These expanders have 8 outputs where each output connects to a 2 -input OR-gate. The resulting OR-gates then connect to a 8-bit Merger which connects to the final 8-bit output resulting in an A OR B function.

```
HADES Editor 0.98f (08.02.06) AorB
```

HADES Editor 0.98f (08.02.06) AorB

Testing:

There were 3 tests. The waveform matches the truth table and shows the test work and therefore the circuit works.

Not A:

Description: The Not A function takes an 8-bit binary number as an input, and outputs the implemented 8-bit binary number which take the inverse of each bit from the input. The circuit design uses one 8-bit bus which is connected to an 8-bit expander. The expander has 8 outputs. Each of the outputs connect to 8 inverters. The outputs of the inverters then connect to an 8-bit Merger that finally connects to the output resulting in the Not A function.

Testing:

There were 3 test cases. The waveform matches the truth table and therefore the circuit works.
Out
0000000011111111
0001100111100110
0110001010011101

A + Not(B)+Cin:

Description: The $A+N o t(B)+C i n$ function takes in two 8 bit values A and B as inputs, and a single 1-bit input $C i n$. The B input is sent through a not function which implements the inverse of B as the output. The output from the not function is connected as one of the inputs of an 8 bit Adder. The A and Cin are also connected to the 8bit Adder which adds the values of A and Not B taking into account Cin. The outputs of 8-bit Adder connect to a single 8-bit bus, a 1-bit Cout, and an overflow output.

\% HADES Editor 0.98f (08.02.06) A+notB+Cin

Testing:
There were 3 tests. The waveform matches the truth table and shows the test work and therefore the circuit works.

A	B	Cin	M	Cout	Overflow
00000000	00000000	0	11111111	0	0
00000001	00000000	1	00000001	1	0
01100100	10011100	0	11000111	0	1

A + B + Cin:

Description: The $\mathrm{A}+\mathrm{B}+\mathrm{Cin}$ function adds two 8-bit values together taking into account a 1-bit carry in. The function uses two 8 -bit busses A and B as inputs which connect to an 8 bit Adder. The 1bit Cin also connects to the 8bit Adder. The function of the 8bit Adder adds the values of its inputs together, and results in an 8-bit bus output M, and two single bit outputs, Cout and Overflow.

Testing:

There were 4 tests. The waveform matches the truth table and shows the test work and therefore the circuit works.

| A | B | Cin | M | Cout | Overflow |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 00000000 | 00000000 | 0 | 00000000 | 0 | 0 |
| 00000001 | 00000010 | 1 | 00000100 | 0 | 0 |
| 11111010 | 11111011 | 0 | 11110101 | 1 | 0 |
| 01100100 | 01100100 | 0 | 11001000 | 0 | 1 |

	1.0		${ }_{2}^{2.0}$	${ }_{1}^{3.0}$	4.0
A		00000000 B	00000001 B	*11111010 B	001100100 B
B		00000000 B	* 00000010 B	* 11111011 B	01100100 B
Cin					
M	00000000 B		*00000100 B	*11110101 B	* 11001000 B
Cout					
Overflow					

A xor B:

Description: The A xor B function shown below takes two 8-bit binary numbers as inputs and sends each bit through an xor gate which results in the corresponding 8-bit binary number. Each bit results in a true output (1) if one, and only if one or the other, of the inputs to the gate is true. The circuit design uses two 8-bit busses that each connect to an 8-bit expander. The expanders then connect
to 8 XOR gates which connect to the an 8-bit Merger. The Merger connects to an 8-bit output bus that displays the result of the A xor B function. The waveform shows a test case that verifies that the circuit functions correctly. When input A is 00000001 and input B is 00000010 , then the output of the A xor B function is 00000011 . This is the A xor B function.

Testing:

B
00000000
00000010
00000011

M
00000000
00000011
00000010

A and B :

Description: This circuit is a basic A and B function that takes two 8 -bit binary numbers, and implements a logical conjunction between the two. This means that an output 1 results only if both the inputs to the AND gate are 1. The design uses two 8-bit busses that each connect to its corresponding 8-bit expander. The outputs of Expanders of A and B each connect to 8 AND gates. The output of each AND gate then connects to the 8 -bit Merger which connects to the final 8 -bit binary bus output of the A and B function. The waveform makes this circuit valid by showing that when input A is 00000011 and input B is 00000101 the resulting output is 00000001 because both the of least significant bits of A and B are the same. This is the A and B function.

Testing:

B	M
00000101	00000000
00000101	00000001
00000101	00000001
00000101	00000101

	3.0		$\stackrel{2.0}{1},$	$\stackrel{3.0}{1},$
A		00000000 B	W00000011 B	*00000101 B
B			00000101 B	
M	00000000 B	\%00000001 B		人00000101 B

A - $1+$ Cin:
Description: This circuit takes an 8 bit input A and subtracts 1 from it and then adds Cin. Basically if Cin is 0 it does $\mathrm{A}-1$. if Cin is 1 the result is just A . This circuit is build using an 8 bit adder with one of the inputs fixed to -1 . The ouput is the 8 bit result M . While this circuit uses the 8 bit adder, it will never overflow.

Testing:

There were 3 test cases. The waveform matches the truth table and therefore the circuit works.

000000010

	1.0	1.0	2.0	3.0
A		00000000 B * 00000011 B		
Cin				00000011 B
M	UB	*11111111 B	*00000010 B	
Carryout				
Overflow				

A + Cin:

Description: This circuit performs the function $A+C i n$. Basically if C in is 0 the result is A. If C in is 1 the result is $A+1$. This circuit is built using an 8 bit adder with one of the inputs fixed to 0 . The output is the 8 bit result M. This circuit will never overflow.

Testing:

There were 2 test cases. The waveform matches the truth table and therefore the circuit works.

A
00000001
00000100

8 bit adder:

An 8 bit adder is a device that can add two 8 bit binary values. The output is 8 bits along with a carry out. The carry out is needed because its possible that the sum of two 8 bit numbers could be 9 bits. The carry out is the most significant bit, in this case the $2^{\wedge} 8$ bit. The carryout is ignored when overflow is 0 . When overflow is 1 , the carryout is used and the result is 9 bits. The adder is constructed using 8 full adders.

Inputs:

X1, X2- the two single bit inputs to be added
Carryln- the single bit carry from the previous adder

Output:

S- least significant bit
Cout- the carry out, most significant bit

Testing:

For testing I tested $1+1,100+100,-100+-100$, and $5+-7$. These test were done to show that the adder works and the carryout and overflow activate properly. The waveform shows the circuit works.

A	B	M	Cout	Overflow
1	1	2	0	0
100	100	200	0	1

	1.0	2.0	3.0	4.0	E
A	1	100	$\sqrt{156}$	5	
B	1	$\bigcirc 100$	$\bigcirc 156$	249	
F	k^{2}	200	56	*254	f
n0					
Overflow					

Full Adder:

A full adder is a device capable of adding 2 single bits plus a carry from the previous bit. It basically can add $1+1+1$. The carry out from one full adder can be connected to the carry in to another full adder and produce a multipul bit adder.

Inputs:
X1, X2- the two single bit inputs to be added
Carryln- the single bit carry from the previous adder

Output:

S- least significant bit
Cout- the carry out, most significant bit

Testing:
This is a simple circuit so I was able to test all possible inputs. The waveform matches the truth table.

```
X1 X2 Cin S Cout
```

$0 \quad 0 \quad 0 \quad 0 \quad 0$
$\begin{array}{lllll}0 & 0 & 1 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 0 & 0 & 1 & 0\end{array}$
$\begin{array}{lllll}1 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}$
$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$

Part 1a: 8-bit 4 to 1 Multiplexer:

Part 1a - 4 to 1 multiplexer with 8-bit bus

A 4 to 1 multiplexer selects one of 4 inputs based on the input of a 2 bit selector. For each of the 4 possible bit combinations of the selector it passes the appropriate input to the output. For this particular multiplexer, the inputs and output will be 8 -bit busses. In order to simplify the passing of the value from input to output, 8 bit tri-state buffers are used. The tristates are enables by the selector bits.

Inputs:
S0, S1- selector bits
IO, I1, I2, I3- 8 bit busses

Outputs:

Output- 8 bit bus
Gates:
AND- 4
NOT- 2
TRI STATE- 4

Testing:

I tested to show that each of the 4 bit combinations of the selector S0 and S1 passed the appropriate input bus to the output. S0S1= 00 should pass 10 to the output, 01 should pass I1, 10 should pass I2, and 11 should pass I3. For this test I made IO, I1, I2, I3 = 1,2,3,4 and checked that the value was passed to the output.

Truth Table:

S1 S0 IO I1 I2 I3 Output
$0 \quad 0 \quad 1 \times x \times 1$
$1 \times 2 \times x \quad 2$
$0 \times x 3 \times 3$
$1 \times x \times 44$

	${ }^{3.0}, \ldots, 1.0$	2.0	${ }^{3.0}, 1,1.10$
S1			
S0		$\sqrt{ }$	\checkmark
10		1	
11		2	
12		3	
13		4	
Output	UuU $\times 1$	*2	*3 $* 4$

The 4-to-1 multiplexer takes 2 selector inputs, S 0 and S 1 , and 4 single-bit inputs, $\mathrm{IO}, \mathrm{I} 1, \mathrm{I} 2$, and I 3 . Each input combination of the selectors allows one of IO, I1, I2, or I3 to pass to the output Y.

For testing, there are 64 possible input combinations but I think it is only necessary to test 8 in order to determine that the circuit works. For each bit combination of S0 and S1 I will test to make sure that it can pass a 1 and a 0 from the proper input. Since there are 4 selector bit combinations and both a 1 and 0 is tested at each one, it equals a total of 8 tests. These test will show that the
circuit can properly implement the function.

Truth Table:

S1 S0 I0 I1 I2 I3 Y

| 0 | 0 | 0 | x | x | x | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | x | x | x | 1 |
| 0 | 1 | x | 0 | x | x | 0 |
| 0 | 1 | x | 1 | x | x | 1 |
| 1 | 0 | x | x | 0 | x | 0 |
| 1 | 0 | x | x | 1 | x | 1 |
| 1 | 1 | x | x | x | 0 | 0 |
| 1 | 1 | x | x | x | 1 | 1 |

References:
Mano, M. Morris, and Charles R. Kime. Logic and Computer Design Fundamentals. 4th ed. Upper Saddle River, NJ: Prentice Hall, 2007. Print

