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8.1 Preliminary Theory—Linear Systems
8.2 Homogeneous Linear Systems

8.2.1 Distinct Real Eigenvalues
8.2.2 Repeated Eigenvalues
8.2.3 Complex Eigenvalues

8.3 Nonhomogeneous Linear Systems
8.3.1 Undetermined Coefficient
8.3.2 Variation of Parameters

8.4 Matrix Exponential

Chapter 8 in Review

We encountered systems of ordinary differential equations in Sections 3.3, 4.9, and
7.6 and were able to solve some of these systems by means of either systematic
elimination or by the Laplace transform. In this chapter we are going to concentrate
only on systems of linear first-o der differential equations. Although most of the
systems that are considered could be solved using elimination or the Laplace
transform, we are going to develop a general theory for these kinds of systems and
in the case of systems with constant coefficients, a method of solution that utilize
some basic concepts from the algebra of matrices. We will see that this general
theory and solution procedure is similar to that of linear higher-order differential
equations considered in Chapter 4. This material is fundamental to the analysis of
systems of nonlinear first-order equations in Chapter 10

Systems of Linear First-Order 
Differential Equations8
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326 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

Linear Systems When each of the functions g1, g2, . . . , gn in (2) is linear
in the dependent variables x1, x2, . . . , xn, we get the normal form of a first-orde
system of linear equations:

We refer to a system of the form given in (3) simply as a linear system. We
assume that the coefficients aij as well as the functions fi are continuous on a
common interval I. When fi(t) � 0, i � 1, 2, . . . , n, the linear system (3) is said to
be homogeneous; otherwise, it is nonhomogeneous.

Matrix Form of a Linear System If X, A(t), and F(t) denote the respective
matrices

x1(t)
x2(t)

xn(t)

 X �
 (  

 
 ) ,

a11(t)
a21(t)

an1(t)

a1n(t)
a2n(t)

ann(t)

a12(t)
a22(t)

an2(t)

. . .

. . .

. . .

 A(t) �
 (   ) ,

f1(t)
f2(t)

fn(t)

 F(t) �
 (  ) ,...

...
...

...

� a11(t)x1 � a12(t)x2 � . . . � a1n(t)xn � f1(t)

� a21(t)x1 � a22(t)x2 � . . . � a2n(t)xn � f2(t)

� an1(t)x1 � an2(t)x2 � . . . � ann(t)xn � fn(t).

dx1–––
dt

dx2–––
dt

dxn–––
dt

...
...

(3)

PRELIMINARY THEORY—LINEAR SYSTEMS

REVIEW MATERIAL
● Matrix notation and properties are used extensively throughout this chapter. It is imperative that

you review either Appendix II or a linear algebra text if you unfamiliar with these concepts.

INTRODUCTION Recall that in Section 4.9 we illustrated how to solve systems of n linear
differential equations in n unknowns of the form

(1)

where the Pij were polynomials of various degrees in the differential operator D. In this chapter
we confine our study to systems of first-order DEs that are special cases of systems that have the
normal form

A system such as (2) of n first-order equations is called a first-orde system.

� g1(t,  x1,  x2, . . . ,  xn)

� g2(t,  x1,  x2, . . . ,  xn)

� gn(t,  x1,  x2, . . . ,  xn).

dx1–––
dt

dx2–––
dt

dxn–––
dt

...
...

P11(D)x1 � P12(D)x2 � . . . � P1n(D)xn � b1(t)

P21(D)x1 � P22(D)x2 � . . . � P2n(D)xn � b2(t)
                                                               

Pn1(D)x1 � Pn2(D)x2 � . . . � Pnn(D)xn � bn(t),

...
...

8.1

(2) 
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then the system of linear first-order di ferential equations (3) can be written as

or simply (4)

If the system is homogeneous, its matrix form is then

(5)X� � AX.

X� � AX � F.

  (d––
dt

x1

x2

xn

 ) a11(t)
a21(t)

an1(t)

a1n(t)
a2n(t)

ann(t)

a12(t)
a22(t)

an2(t)

. . .

. . .

. . .

� (   (x1

x2

xn

 ) � ( ) f1(t)
f2(t)

fn(t)

 )...
...

...
...

...

8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 327

EXAMPLE 1 Systems Written in Matrix Notation

(a) If , then the matrix form of the homogeneous system

(b) If , then the matrix form of the nonhomogeneous system

      
dx
dt

� 6x �   y � z �     t

  
dy
dt

� 8x � 7y � z � 10t

   
dz
dt

� 2x � 9y � z �  6t

is X� � �6
8
2

1
7
9

1
�1
�1

�X � � t
10t

6t
�.

X � � 
x
y
z
�

dx
dt

� 3x � 4y

dy
dt

� 5x � 7y
is  X� � �3

5
4

�7�X.

X � �x
y�

DEFINITION 8.1.1 Solution Vector

A solution vector on an interval I is any column matrix

whose entries are differentiable functions satisfying the system (4) on the
interval.

x1(t)
x2(t)

xn(t)

 X �
 (  

 )...

A solution vector of (4) is, of course, equivalent to n scalar equations 
x1 � f1(t), x2 � f2(t), . . . , xn � fn(t) and can be interpreted geometrically as a set
of parametric equations of a space curve. In the important case n � 2 the equations
x1 � f1(t), x2 � f2(t) represent a curve in the x1x2-plane. It is common practice to
call a curve in the plane a trajectory and to call the x1x2-plane the phase plane. We
will come back to these concepts and illustrate them in the next section.
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328 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 2 Verification of Solution

Verify that on the interval (��, �)

are solutions of . (6)

SOLUTION From and we see that

and

Much of the theory of systems of n linear first-order differential equations is
similar to that of linear nth-order differential equations.

Initial-Value Problem Let t0 denote a point on an interval I and

where the gi, i � 1, 2, . . . , n are given constants. Then the problem

(7)

is an initial-value problem on the interval.

 Subject to:     X(t0) � X0

 Solve:  X� � A(t)X � F(t)

x1(t0)
x2(t0)

xn(t0)

 X(t0) � ( and ) �1

�2

�n

 X0 � (  ) ,...
...

AX2 � �1
5

3
3��

3e6t

5e6t� � � 3e6t � 15e6t

15e6t � 15e6t� � �18e6t

30e6t� � X�2 .

AX1 � �1
5

3
3��

e�2t

�e�2t� � � e�2t � 3e�2t

5e�2t � 3e�2t� � ��2e�2t

2e�2t� � X�1,

X�2 � �18e6t

30e6t�X�1 � ��2e�2t

2e�2t�

X� � �1
5

3
3�X

X1 � � 1
�1�e�2t � � e�2t

�e�2t �    and    X2 � �3
5�e6t � �3e6t

5e6t�

THEOREM 8.1.1 Existence of a Unique Solution

Let the entries of the matrices A(t) and F(t) be functions continuous on a common
interval I that contains the point t0. Then there exists a unique solution of the initial-
value problem (7) on the interval.

Homogeneous Systems In the next several definitions and theorems we are
concerned only with homogeneous systems. Without stating it, we shall always assume
that the aij and the fi are continuous functions of t on some common interval I.

Superposition Principle The following result is a superposition principle for
solutions of linear systems.

THEOREM 8.1.2 Superposition Principle

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5)
on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

X � c1X1 � c2X2 � � � � � ckXk,
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It follows from Theorem 8.1.2 that a constant multiple of any solution vector of a
homogeneous system of linear first-order di ferential equations is also a solution.

8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 329

EXAMPLE 3 Using the Superposition Principle

You should practice by verifying that the two vectors

are solutions of the system

(8)

By the superposition principle the linear combination

is yet another solution of the system.

Linear Dependence and Linear Independence We are primarily inter-
ested in linearly independent solutions of the homogeneous system (5).

X � c1X1 � c2X2 � c1�
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t � � c2�

0
et

0�

X� � �
1
1

�2

0
1
0

1
0

�1�X.

X1 � �
cos t

�1
2  cos t � 1

2 sin t
�cos t � sin t � and X2 � �

0
et

0�

DEFINITION 8.1.2 Linear Dependence/Independence

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5)
on an interval I. We say that the set is linearly dependent on the interval if
there exist constants c1, c2, . . . , ck, not all zero, such that

for every t in the interval. If the set of vectors is not linearly dependent on the
interval, it is said to be linearly independent.

c1X1 � c2X2 � � � � � ckXk � 0

The case when k � 2 should be clear; two solution vectors X1 and X2 are linearly
dependent if one is a constant multiple of the other, and conversely. For k � 2 a set of
solution vectors is linearly dependent if we can express at least one solution vector as
a linear combination of the remaining vectors.

Wronskian As in our earlier consideration of the theory of a single ordi-
nary differential equation, we can introduce the concept of the Wronskian
determinant as a test for linear independence. We state the following theorem
without proof.

THEOREM 8.1.3 Criterion for Linearly Independent Solutions

Let  X1 � 
 ( x11

x21

xn1

x12

x22

xn2

 ) , X2�
 ( . . . , ) , x1n

x2n

xnn

Xn�
 (  )...

...
...

(continues on page 330)
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330 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

be n solution vectors of the homogeneous system (5) on an interval I. Then the set
of solution vectors is linearly independent on I if and only if the Wronskian

(9)

for every t in the interval.

W(X1, X2, . . . , Xn) �
 � � �x11

x21

xn1

x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

...
...

0

It can be shown that if X1, X2, . . . , Xn are solution vectors of (5), then for every
t in I either or Thus if we can
show that W 	 0 for some t0 in I, then W 	 0 for every t, and hence the solutions are
linearly independent on the interval.

Notice that, unlike our definition of the Wronskian in Section 4.1, here the
definition of the determinant (9) does not involve di ferentiation.

W(X1, X2, . . . , Xn) � 0.W(X1, X2, . . . , Xn) 	 0

EXAMPLE 4 Linearly Independent Solutions

In Example 2 we saw that and are solutions of 

system (6). Clearly, X1 and X2 are linearly independent on the interval (��, �), since
neither vector is a constant multiple of the other. In addition, we have

for all real values of t.

W(X1, X2) � � e�2t

�e�2t
3e6t

5e6t� � 8e4t 	 0

X2 � �3
5�e6tX1 � � 1

�1�e�2t

DEFINITION 8.1.3 Fundamental Set of Solutions

Any set of n linearly independent solution vectors of the
homogeneous system (5) on an interval I is said to be a fundamental set of
solutions on the interval.

X1, X2, . . . , Xn

THEOREM 8.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous system (5) on an
interval I.

The next two theorems are the linear system equivalents of Theorems 4.1.5
and 4.1.6.

THEOREM 8.1.5 General Solution—Homogeneous Systems

Let be a fundamental set of solutions of the homogeneous
system (5) on an interval I. Then the general solution of the system on the
interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

X � c1X1 � c2X2 � � � � � cnXn ,

X1, X2, . . . , Xn
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8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 331

EXAMPLE 5 General Solution of System (6)

From Example 2 we know that and are linearly 

independent solutions of (6) on (��, �). Hence X1 and X2 form a fundamental set
of solutions on the interval. The general solution of the system on the interval
is then

(10)X � c1X1 � c2X2 � c1� 1
�1�e�2t � c2�3

5�e6t.

X2 � �3
5�e6tX1 � � 1

�1�e�2t

EXAMPLE 6 General Solution of System (8)

The vectors

are solutions of the system (8) in Example 3 (see Problem 16 in Exercises 8.1). Now

for all real values of t. We conclude that X1, X2, and X3 form a fundamental set of
solutions on (��, �). Thus the general solution of the system on the interval is the
linear combination X � c1X1 � c2X2 � c3X3; that is,

Nonhomogeneous Systems For nonhomogeneous systems a particular
solution Xp on an interval I is any vector, free of arbitrary parameters, whose entries
are functions that satisfy the system (4).

X � c1�
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t � � c2�

0
1
0�et � c3�

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t �.

W(X1, X2, X3) � p
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t

0
et

0

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t
p � et 	 0

X1 � �
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t �,  X2 � �

0
1
0�et,  X3 � �

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t �

THEOREM 8.1.6 General Solution—Nonhomogeneous Systems

Let Xp be a given solution of the nonhomogeneous system (4) on an interval I
and let

denote the general solution on the same interval of the associated homo-
geneous system (5). Then the general solution of the nonhomogeneous system
on the interval is

The general solution Xc of the associated homogeneous system (5) is
called the complementary function of the nonhomogeneous system (4).

X � Xc � Xp.

Xc � c1X1 � c2X2 � � � � � cnXn
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332 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 7 General Solution—Nonhomogeneous System

The vector is a particular solution of the nonhomogeneous system

(11)

on the interval (��, �). (Verify this.) The complementary function of (11) on 

the same interval, or the general solution of , was seen in (10) of

Example 5 to be . Hence by Theorem 8.1.6

is the general solution of (11) on (��, �).

X � Xc � Xp � c1 � 1
�1�e�2t � c2�3

5�e6t � � 3t � 4
�5t � 6�

Xc � c1� 1
�1�e�2t � c2�3

5�e6t

X� � �1
5

3
3�X

X� � �1
5

3
3�X � �12t � 11

�3 �

Xp � � 3t � 4
�5t � 6�

EXERCISES 8.1 Answers to selected odd-numbered problems begin on page ANS-14.

In Problems 1–6 write the linear system in matrix form.

1. 2.

3. 4.

5.

6.

In Problems 7–10 write the given system without the use of
matrices.

7. X� � � 4
�1

2
3�X � � 1

�1�et

dz
dt

 � y � 6z � e�t

dy
dt

 � 5x � 9z � 4e�tcos 2t

dx
dt

 � �3x � 4y � e�tsin 2t

 
dz
dt

� x � y � z � t2 � t � 2

 
dy
dt

� 2x � y � z � 3t2

 
dx
dt

� x � y � z � t � 1

 
dz
dt

� �x � z
dz
dt

 � 10x � 4y � 3z

 
dy
dt

� x � 2z
dy
dt

 � 6x � y

 
dx
dt

� x � y 
dx
dt

� �3x � 4y � 9z

 
dy
dt

� 5x 
dy
dt

� 4x � 8y

 
dx
dt

� 4x � 7y 
dx
dt

� 3x � 5y
8.

9.

10.

In Problems 11–16 verify that the vector X is a solution of
the given system.

11.

12.

13.

14. X� � � 2
�1

1
0�X; X � �1

3�et � � 4
�4� tet

X� � ��1
1

1
4

�1�X; X � ��1
2�e�3t/2

 
dy
dt

� �2x � 4y; X � � 5 cos t
3 cos t � sin t�et

 
dx
dt

� �2x � 5y

dy
dt

 � 4x � 7y; X � �1
2�e�5t

dx
dt

 � 3x � 4y

d
dt

 �x
y� � �3

1
�7

1��
x
y� � �4

8�sin t � �  t � 4
2t � 1�e4t

d
dt

 �
x
y
z� � �

1
3

�2

�1
�4

5

2
1
6��

x
y
z� � �

1
2
2�e�t � �

3
�1

1�t

X� � �
7
4
0

5
1

�2

�9
1
3�X � �

0
2
1�e5t � �

8
0
3�e�2t
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15.

16.

In Problems 17–20 the given vectors are solutions of a
system X� � AX. Determine whether the vectors form a
fundamental set on the interval (��, �).

17.

18.

19.

20.

In Problems 21–24 verify that the vector Xp is a particular
solution of the given system.

21.

dy
dt

 � 3x � 2y � 4t � 18; Xp � � 2
�1�t � �5

1�

dx
dt

 � x � 4y � 2t � 7

X1 � �
1
6

�13�, X2 � �
1

�2
�1�e�4t, X3 � �

2
3

�2�e3t

X3 � �
3

�6
12� � t�

2
4
4�

 X1 � �
1

�2
4� � t�

1
2
2�, X2 � �

1
�2

4�,

X1 � � 1
�1�et, X2 � �2

6�et � � 8
�8� tet

X1 � �1
1�e�2t, X2 � � 1

�1�e�6t

X� � �
1
1

�2

0
1
0

1
0

�1�X; X � �
sin t

�1
2 sin t � 1

2 cos t 
�sin t � cos t �

X� � �
1
6

�1

2
�1
�2

1
0

�1�X; X � �
1
6

�13�

8.2 HOMOGENEOUS LINEAR SYSTEMS ● 333

22.

23.

24.

25. Prove that the general solution of

on the interval (��, �) is

26. Prove that the general solution of

on the interval (��, �) is

�  �1
0� t2 � ��2

4� t � �1
0�.

 X � c1� 1
�1 � 12�e12t � c2� 1

�1 � 12�e�12t

X� � ��1
�1

�1
1�X � �1

1� t2 � � 4
�6� t � ��1

5�

X � c1�
6

�1
�5�e�t � c2�

�3
1
1�e�2t � c3�

2
1
1�e3t.

X� � �
0
1
1

6
0
1

0
1
0�X

X� � �
1

�4
�6

2
2
1

3
0
0�X � �

�1
4
3�sin 3t; Xp � �

sin 3t
0

cos 3t�

X� � �2
3

1
4�X � �1

7�et; Xp � �1
1�et � � 1

�1� tet

X� � �2
1

1
�1�X � ��5

2�; Xp � �1
3�

HOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section II.3 of Appendix II
● Also the Student Resource Manual

INTRODUCTION We saw in Example 5 of Section 8.1 that the general solution of the homogeneous

system is

. 

Because the solution vectors X1 and X2 have the form 

, i � 1, 2, Xi � �k1

k2
�e
i t

X � c1X1 � c2X2 � c1� 1
�1�e�2t � c2�3

5�e6t

X� � �1
5

3
3�X 

8.2

(continues on page 334)
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where k1, k2, l1, and l2 are constants, we are prompted to ask whether we can always find a solution
of the form

(1)

for the general homogeneous linear first-order syste
(2)

where A is an n � n matrix of constants.
X� � AX,

X �
 ( k1

k2

kn

)elt � Kelt...

THEOREM 8.2.1 General Solution—Homogeneous Systems

Let l1, l2, . . . , ln be n distinct real eigenvalues of the coefficient matrix A of the
homogeneous system (2) and let K1, K2, . . . , Kn be the corresponding eigenvec-
tors. Then the general solution of (2) on the interval (��, �) is given by

X � c1K1e
1t � c2K2e
2t � � � � � cnKne
nt.

Eigenvalues and Eigenvectors If (1) is to be a solution vector of the homoge-
neous linear system (2), then X� � Klelt, so the system becomes Klelt � AKelt.
After dividing out elt and rearranging, we obtain AK � lK or AK � lK � 0. Since
K � IK, the last equation is the same as

(3)
The matrix equation (3) is equivalent to the simultaneous algebraic equations

Thus to find a nontrivial solution X of (2), we must first find a nontrivial solution
of the foregoing system; in other words, we must find a nontrivial vector K that
satisfies (3). But for (3) to have solutions other than the obvious solution

, we must have

This polynomial equation in l is called the characteristic equation of the matrix A;
its solutions are the eigenvalues of A. A solution K 	 0 of (3) corresponding to
an eigenvalue l is called an eigenvector of A. A solution of the homogeneous system
(2) is then X � Kelt.

In the discussion that follows we examine three cases: real and distinct eigen-
values (that is, no eigenvalues are equal), repeated eigenvalues, and, finall , complex
eigenvalues.

8.2.1 DISTINCT REAL EIGENVALUES

When the n � n matrix A possesses n distinct real eigenvalues l1, l2, . . . , ln, then a
set of n linearly independent eigenvectors K1, K2, . . . , Kn can always be found, and

is a fundamental set of solutions of (2) on the interval (��, �).

X1 � K1e
1t,    X2 � K2e
2t,    . . . ,    Xn � Kne
nt

det(A � 
I) � 0.

k1 � k2 � � � � � kn � 0

(a11 � l)k1 � a12k2 � . . . � a1nkn � 0

a2nkn � 0a21k1 � (a22 � l)k2 � . . . �

                      

an1k1 �            an2k2 � . . . � (ann � l)kn � 0.

...
...

(A � 
I)K � 0.
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(a) graph of x � e�t � 3e4t

(b) graph of y � �e�t � 2e4t

(c) trajectory defined by
x � e�t � 3e4t, y � �e�t � 2e4t

in the phase plane
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FIGURE 8.2.1 A solution from (5)
yields three different curves in three
different planes

EXAMPLE 1 Distinct Eigenvalues

Solve
(4)

SOLUTION We first find the eigenvalues and eigenvectors of the matrix of
coefficients

From the characteristic equation

we see that the eigenvalues are l1 � �1 and l2 � 4.
Now for l1 � �1, (3) is equivalent to

Thus k1 � �k2. When k2 � �1, the related eigenvector is

For 
2 � 4 we have

so therefore with k2 � 2 the corresponding eigenvector is

Since the matrix of coefficients A is a 2 � 2 matrix and since we have found two lin-
early independent solutions of (4),

we conclude that the general solution of the system is

(5)

Phase Portrait You should keep firmly in mind that writing a solution of a sys-
tem of linear first-order differential equations in terms of matrices is simply an
alternative to the method that we employed in Section 4.9, that is, listing the individ-
ual functions and the relationship between the constants. If we add the vectors on the
right-hand side of (5) and then equate the entries with the corresponding entries in
the vector on the left-hand side, we obtain the more familiar statement

As was pointed out in Section 8.1, we can interpret these equations as parametric
equations of curves in the xy-plane or phase plane. Each curve, corresponding to
specific choices for c1 and c2, is called a trajectory. For the choice of constants
c1 � c2 � 1 in the solution (5) we see in Figure 8.2.1 the graph of x(t) in the
tx-plane, the graph of y(t) in the ty-plane, and the trajectory consisting of the points

x � c1e�t � 3c2e4t,    y � �c1e�t � 2c2e4t.

X � c1X1 � c2X2 � c1� 1
�1�e�t � c2�3

2�e4t.

X1 � � 1
�1�e�t    and    X2 � �3

2�e4 t,

K2 � �3
2�.

k1 � 3
2 k2;

 2k1 � 3k2 � 0

 �2k1 � 3k2 � 0

K1 � � 1
�1�.

 2k1 � 2k2 � 0.

 3k1 � 3k2 � 0

det(A � 
I) � �2 � 


2
3

1 � 
 � � 
2 � 3
 � 4 � (
 � 1)(
 � 4) � 0

 
dy
dt

� 2x �  y.

 
dx
dt

� 2x � 3y
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(x(t), y(t)) in the phase plane. A collection of representative trajectories in the phase
plane, as shown in Figure 8.2.2, is said to be a phase portrait of the given linear
system. What appears to be two red lines in Figure 8.2.2 are actually four red
half-lines defined parametrically in the first, second, third, and fourth quadrants
by the solutions X2, �X1, �X2, and X1, respectively. For example, the Cartesian
equations , and y � �x, x � 0, of the half-lines in the first and fourth
quadrants were obtained by eliminating the parameter t in the solutions x � 3e4t,
y � 2e4t, and x � e�t, y � �e�t, respectively. Moreover, each eigenvector can be
visualized as a two-dimensional vector lying along one of these half-lines. The

eigenvector lies along in the first quadrant, and lies

along y � �x in the fourth quadrant. Each vector starts at the origin; K2 terminates
at the point (2, 3), and K1 terminates at (1, �1).

The origin is not only a constant solution x � 0, y � 0 of every 2 � 2 homoge-
neous linear system X� � AX, but also an important point in the qualitative study of
such systems. If we think in physical terms, the arrowheads on each trajectory
in Figure 8.2.2 indicate the direction that a particle with coordinates (x(t), y(t)) on
that trajectory at time t moves as time increases. Observe that the arrowheads, with
the exception of only those on the half-lines in the second and fourth quadrants,
indicate that a particle moves away from the origin as time t increases. If we imagine
time ranging from �� to �, then inspection of the solution x � c1e�t � 3c2e4t,
y � �c1e�t � 2c2e4t, c1 	 0, c2 	 0 shows that a trajectory, or moving particle,
“starts” asymptotic to one of the half-lines defined by X1 or �X1 (since e4t is negli-
gible for ) and “finishes” asymptotic to one of the half-lines defined by X2
and �X2 (since e�t is negligible for ).

We note in passing that Figure 8.2.2 represents a phase portrait that is typical of
all 2 � 2 homogeneous linear systems X� � AX with real eigenvalues of opposite
signs. See Problem 17 in Exercises 8.2. Moreover, phase portraits in the two cases
when distinct real eigenvalues have the same algebraic sign are typical of all such
2 � 2 linear systems; the only difference is that the arrowheads indicate that a parti-
cle moves away from the origin on any trajectory as when both l1 and l2 are
positive and moves toward the origin on any trajectory when both l1 and l2 are neg-
ative. Consequently, we call the origin a repeller in the case l1 � 0, l2 � 0 and an
attractor in the case l1 � 0, l2 � 0. See Problem 18 in Exercises 8.2. The origin in
Figure 8.2.2 is neither a repeller nor an attractor. Investigation of the remaining case
when l � 0 is an eigenvalue of a 2 � 2 homogeneous linear system is left as an
exercise. See Problem 49 in Exercises 8.2.

t : �

t : �
t : ��

K1 � � 1
�1�y � 2

3
 xK2 � �3

2�

y � 2
3

 x, x � 0
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x

y

X1
X2

FIGURE 8.2.2 A phase portrait of
system (4)

EXAMPLE 2 Distinct Eigenvalues

Solve

(6)

SOLUTION Using the cofactors of the third row, we fin

and so the eigenvalues are l1 � �3, l2 � �4, and l3 � 5.

det(A � 
I) � p
�4 � 


1
0

1
5 � 


1

   1
�1

�3 � 

p � �(
 � 3)(
 � 4)(
 � 5) � 0,

 
dz
dt

�  y � 3 z.

 
dy
dt

�   x � 5 y �  z

 
dx
dt

� �4x �  y �  z
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For l1 � �3 Gauss-Jordan elimination gives

Therefore k1 � k3 and k2 � 0. The choice k3 � 1 gives an eigenvector and corre-
sponding solution vector

(7)

Similarly, for l2 � �4

implies that k1 � 10k3 and k2 � �k3. Choosing k3 � 1, we get a second eigenvector
and solution vector

(8)

Finally, when l3 � 5, the augmented matrices

yield (9)

The general solution of (6) is a linear combination of the solution vectors in (7),
(8), and (9):

Use of Computers Software packages such as MATLAB, Mathematica,
Maple, and DERIVE can be real time savers in finding eigenvalues and eigenvectors
of a matrix A.

8.2.2 REPEATED EIGENVALUES

Of course, not all of the n eigenvalues l1, l2, . . . , ln of an n � n matrix A need be
distinct; that is, some of the eigenvalues may be repeated. For example, the charac-
teristic equation of the coefficient matrix in the syste

(10)X� � �3
2

�18
�9�X

X � c1�1
0
1
�e�3t � c2� 10

�1
1
�e�4t � c3�1

8
1
�e5t.

K3 � �
1
8
1�,    X3 � �

1
8
1�e5t.

(A � 5I �0) � ( ��9
1
0

1
�1
�8

0
0
0

1
0
1

 ) ( �1
0
0

�1
�8

0

0
0
0

0
1
0

 )row
operations

K2 � �
10

�1
1�,    X2 � �

10
�1

1�e�4t.

(A � 4I �0) � ( �0
1
0

1
�1

1

0
0
0

1
9
1

 )  ( �1
0
0

�10
1
0

0
0
0

0
1
0

 )row
operations

K1 � �
1
0
1�,    X1 � �

1
0
1�e�3t.

(A � 3I �0) � ( ��1
1
0

1
�1

0

0
0
0

1
8
1

 ) ( �1
0
0

�1
0
0

0
0
0

0
1
0

 ).row
operations
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is readily shown to be (l � 3)2 � 0, and therefore l1 � l2 � �3 is a root of multi-
plicity two. For this value we find the single eigenvecto

(11)

is one solution of (10). But since we are obviously interested in forming the general
solution of the system, we need to pursue the question of finding a second solution.

In general, if m is a positive integer and (l� l1)m is a factor of the characteristic
equation while (l� l1)m�1 is not a factor, then l1 is said to be an eigenvalue of
multiplicity m. The next three examples illustrate the following cases:

(i) For some n � n matrices A it may be possible to find m linearly inde-
pendent eigenvectors K1, K2, . . . , Km corresponding to an eigenvalue

1 of multiplicity m  n. In this case the general solution of the system
contains the linear combination

(ii) If there is only one eigenvector corresponding to the eigenvalue l1 of
multiplicity m, then m linearly independent solutions of the form

where Kij are column vectors, can always be found.

Eigenvalue of Multiplicity Two We begin by considering eigenvalues of
multiplicity two. In the first example we illustrate a matrix for which we can find two
distinct eigenvectors corresponding to a double eigenvalue.

X1 � K11el1t

X2 � K21tel1t � K22el1t

               
Xm � Km1                       el1t � Km2                        el1t � . . . � Kmmel1t, 

tm�1
––––––––
(m � 1)!

tm�2
––––––––
(m � 2)!

...

c1K1e
1t � c2K2e
1t � � � � � cmKme
1t.

K1 � �3
1�,    so    X1 � �3

1�e�3t
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EXAMPLE 3 Repeated Eigenvalues

Solve 

SOLUTION Expanding the determinant in the characteristic equation

yields �(l� 1)2(l � 5) � 0. We see that l1 � l2 � �1 and l3 � 5.
For l1 � �1 Gauss-Jordan elimination immediately gives

(A � I �0) � ( �2
�2

2

2
�2

2

0
0
0

�2
2

�2
 ) ( �1

0
0

�1
0
0

0
0
0

1
0
0

 ).row
operations

det(A � 
I) � p
1 � 


�2
   2

�2
1 � 


�2

   2
�2

1 � 

p � 0

X� � �
1

�2
2

�2
1

�2

2
�2

1�X.
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The first row of the last matrix means k1 � k2 � k3 � 0 or k1 � k2 � k3. The choices
k2 � 1, k3 � 0 and k2 � 1, k3 � 1 yield, in turn, k1 � 1 and k1 � 0. Thus two
eigenvectors corresponding to l1 � �1 are

Since neither eigenvector is a constant multiple of the other, we have found two
linearly independent solutions,

corresponding to the same eigenvalue. Lastly, for l3 � 5 the reduction

implies that k1 � k3 and k2 � �k3. Picking k3 � 1 gives k1 � 1, k2 � �1; thus a
third eigenvector is

We conclude that the general solution of the system is

The matrix of coefficients A in Example 3 is a special kind of matrix known
as a symmetric matrix. An n � n matrix A is said to be symmetric if its transpose
AT (where the rows and columns are interchanged) is the same as A—that is, if
AT � A. It can be proved that if the matrix A in the system X� � AX is symmetric
and has real entries, then we can always find n linearly independent eigen-
vectors K1, K2, . . . , Kn, and the general solution of such a system is as given in
Theorem 8.2.1. As illustrated in Example 3, this result holds even when some of the
eigenvalues are repeated.

Second Solution Now suppose that l1 is an eigenvalue of multiplicity two
and that there is only one eigenvector associated with this value. A second solution
can be found of the form

, (12)

where and )K �
 ( k1

k2

kn

 ) .P �
 ( p1

p2

pn

...
...

X2 � Kte
1t � Pe
1t

X � c1�
1
1
0�e�t � c2�

0
1
1�e�t � c3�

1
�1

1�e5t.

K3 � �
1

�1
1�.

(A � 5I �0) � ( ��4
�2

2

2
�2
�4

0
0
0

�2
�4
�2

 ) ( �1
0
0

�1
1
0

0
0
0

0
1
0

 )row
operations

 X1 � �
1
1
0�e�t     and    X2 � �

0
1
1�e�t,

 K1 � �
1
1
0�    and     K2 � �

0
1
1�.
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To see this, we substitute (12) into the system X� � AX and simplify:

Since this last equation is to hold for all values of t, we must have

(13)

and (14)

Equation (13) simply states that K must be an eigenvector of A associated with l1.
By solving (13), we find one solution . To find the second solution X2, we
need only solve the additional system (14) for the vector P.

X1 � Ke
1t

(A � 
1I)P � K.

(A � 
1I)K � 0

(AK � 
1K)te
1t � (AP � 
1P � K)e
1t � 0.
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x

y

X1

FIGURE 8.2.3 A phase portrait of
system (10)

EXAMPLE 4 Repeated Eigenvalues

Find the general solution of the system given in (10).

SOLUTION From (11) we know that l1 � �3 and that one solution is

. Identifying , we find from (14) that we must

now solve

.

Since this system is obviously equivalent to one equation, we have an infinit
number of choices for p1 and p2. For example, by choosing p1 � 1, we find .

However, for simplicity we shall choose so that p2 � 0. Hence .

Thus from (12) we find . The general solution of (10) is  

then X � c1X1 � c2X2 or

By assigning various values to c1 and c2 in the solution in Example 4, we
can plot trajectories of the system in (10). A phase portrait of (10) is given in
Figure 8.2.3. The solutions X1 and �X1 determine two half-lines 
and , respectively, shown in red in the figure. Because the single
eigenvalue is negative and as on every trajectory, we have

as . This is why the arrowheads in Figure 8.2.3 indicate
that a particle on any trajectory moves toward the origin as time increases and why
the origin is an attractor in this case. Moreover, a moving particle or trajectory

, approaches (0, 0)
tangentially to one of the half-lines as . In contrast, when the repeated eigen-
value is positive, the situation is reversed and the origin is a repeller. See Problem 21
in Exercises 8.2. Analogous to Figure 8.2.2, Figure 8.2.3 is typical of all 2 � 2
homogeneous linear systems X� � AX that have two repeated negative eigenvalues.
See Problem 32 in Exercises 8.2.

Eigenvalue of Multiplicity Three When the coefficient matrix A has only
one eigenvector associated with an eigenvalue l1 of multiplicity three, we can find a

t : �
y � c1e�3t � c2te�3t, c2 	 0x � 3c1e�3t � c2(3te�3t � 1

2e�3t),

t : �(x(t), y(t)) : (0, 0)
t : �e�3t : 0

y � 1
3 x, x � 0

y � 1
3 x, x � 0

X � c1�3
1�e�3t � c2��3

1� te�3t � �
1
2

0�e�3t�.

X2 � �3
1� te�3t � �

1
2

0�e�3t

P � �
1
2

0�p1 � 1
2

p2 � 1
6

(A � 3I)P � K    or    
6p1 � 18p2 � 3
2p1 �    6p2 � 1

K � �3
1� and P � �p1

p2
�X1 � �3

1�e�3t
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second solution of the form (12) and a third solution of the form

, (15)

where

By substituting (15) into the system X� � AX, we find that the column vectors K, P,
and Q must satisfy

(16)

(17)

and (18)

Of course, the solutions of (16) and (17) can be used in forming the solutions X1
and X2.

 (A � 
1I)Q � P.

 (A � 
1I)P � K

 (A � 
1I)K � 0

and ),K �
 ( k1

k2

kn

...
 ),P �

 ( p1

p2

pn

...
 ).Q �

 ( q1

q2

qn

...

X3 � K 
t2

2
e
1t � Pte
1t � Qe
1t
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EXAMPLE 5 Repeated Eigenvalues

Solve .

SOLUTION The characteristic equation (l� 2)3 � 0 shows that l1 � 2 is an
eigenvalue of multiplicity three. By solving (A � 2I)K � 0, we find the single
eigenvector

We next solve the systems (A � 2I)P � K and (A � 2I)Q � P in succession and
find tha

Using (12) and (15), we see that the general solution of the system is

.X � c1�
1
0
0�e2t � c2��

1
0
0�te2t � �

0
1
0�e2t�� c3��

1
0
0� t2

2
 e2t � �

0
1
0� te2t � �

0
�6

5
1
5
�e2t�

P � �
0
1
0�    and    Q � �

0
�6

5
1
5
�.

K � �
1
0
0�.

X� � �
2
0
0

1
2
0

6
5
2�X

REMARKS

When an eigenvalue l1 has multiplicity m, either we can find m linearly
independent eigenvectors or the number of corresponding eigenvectors is less
than m. Hence the two cases listed on page 338 are not all the possibilities under
which a repeated eigenvalue can occur. It can happen, say, that a 5 � 5 matrix
has an eigenvalue of multiplicity five and there exist three corresponding lin-
early independent eigenvectors. See Problems 31 and 50 in Exercises 8.2.

27069_08_ch08_p325-361.qxd  2/2/12  2:46 PM  Page 341

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8.2.3 COMPLEX EIGENVALUES

If l1 � a � bi and l2 � a � bi, b � 0, i2 � �1 are complex eigenvalues of the
coefficient matrix A, we can then certainly expect their corresponding eigenvectors
to also have complex entries.*

For example, the characteristic equation of the system

(19)

is

From the quadratic formula we find l1 � 5 � 2i, l2 � 5 � 2i.
Now for l1 � 5 � 2i we must solve

Since k2 � (1 � 2i)k1,† the choice k1 � 1 gives the following eigenvector and
corresponding solution vector:

In like manner, for l2 � 5 � 2i we fin

We can verify by means of the Wronskian that these solution vectors are linearly
independent, and so the general solution of (19) is

(20)

Note that the entries in K2 corresponding to l2 are the conjugates of the
entries in K1 corresponding to l1. The conjugate of l1 is, of course, l2. We
write this as and . We have illustrated the following general
result.

K2 � K1
2 � 
1

X � c1� 1
1 � 2i�e(5�2i )t � c2� 1

1 � 2i�e(5�2i )t.

K2 � � 1
1 � 2i�,    X2 � � 1

1 � 2i�e(5�2i)t.

K1 � � 1
1 � 2i�,    X1 � � 1

1 � 2i�e(5�2i)t.

 5k1 � (1 � 2i) k2 � 0.

 (1 � 2i)k1 �   k2 � 0

det(A � 
I) � �6 � 


5
�1

4 � 
� � 
2 � 10
 � 29 � 0.

dx
dt

� 6x � y

  
dy
dt

� 5x � 4y

342 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

*When the characteristic equation has real coefficients, complex eigenvalues always appear in conjugat
pairs.
†Note that the second equation is simply (1 � 2i) times the first

THEOREM 8.2.2 Solutions Corresponding to a Complex Eigenvalue

Let A be the coefficient matrix having real entries of the homogeneous system (2),
and let K1 be an eigenvector corresponding to the complex eigenvalue l1 �
a� ib, a and b real. Then

are solutions of (2).

K1e
1t    and    K1e
1t
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It is desirable and relatively easy to rewrite a solution such as (20) in terms of
real functions. To this end we first use Eule ’s formula to write

Then, after we multiply complex numbers, collect terms, and replace c1 � c2 by C1
and (c1 � c2)i by C2, (20) becomes

(21)

where

and

It is now important to realize that the vectors X1 and X2 in (21) constitute a linearly
independent set of real solutions of the original system. Consequently, we are justi-
fied in ignoring the relationship between C1, C2 and c1, c2, and we can regard C1 and
C2 as completely arbitrary and real. In other words, the linear combination (21) is
an alternative general solution of (19). Moreover, with the real form given in (21) we
are able to obtain a phase portrait of the system in (19). From (21) we find x(t) and
y(t) to be

By plotting the trajectories (x(t), y(t)) for various values of C1 and C2, we obtain the
phase portrait of (19) shown in Figure 8.2.4. Because the real part of l1 is 5 � 0,

as . This is why the arrowheads in Figure 8.2.4 point away from the
origin; a particle on any trajectory spirals away from the origin as . The origin
is a repeller.

The process by which we obtained the real solutions in (21) can be generalized.
Let K1 be an eigenvector of the coefficient matrix A (with real entries)
corresponding to the complex eigenvalue l1 � a � ib. Then the solution vectors in
Theorem 8.2.2 can be written as

By the superposition principle, Theorem 8.1.2, the following vectors are also
solutions:

Both and are real numbers for any complex
number z � a � ib. Therefore, the entries in the column vectors and

are real numbers. By definin

(22)

we are led to the following theorem.

B1 �
1
2
 (K1 � K1)    and    B2 �

i
2
 (�K1 � K1),

1
2 i(�K1 � K1)

1
2(K1 � K1)

1
2 i (�z � z) � b1

2 (z � z) � a

 X2 �
i
2

(�K1e
1t � K1e
1t ) �
i
2

(�K1 � K1)e�t cos �t �
1
2

(K1 � K1)e�t sin �t.

 X1 �
1
2

(K1e
1t � K1e
1t ) �
1
2

(K1 � K1)e�t cos �t �
i
2

(�K1 � K1)e�t sin �t

 K1e
1t � K1e�te�i�t � K1e�t(cos �t � i sin �t).

 K1e
1t � K1e�tei�t � K1e�t(cos �t � i sin �t)

t : �
t : �e5t : �

 y � (C1 � 2C2)e5t cos 2t � (2C1 � C2)e5t sin 2t.

 x � C1e5t cos 2t � C2e5t sin 2t

 X2 � �� 0
�2�cos 2t � �1

1�sin 2t�e5t.

 X1 � ��1
1�cos 2t � � 0

�2�sin 2t�e5t

X � C1X1 � C2X2 ,

 e(5�2i )t � e5te�2ti � e5t(cos 2t � i sin 2t).

 e(5�2i )t � e5te2ti � e5t(cos 2t � i sin 2t)

8.2 HOMOGENEOUS LINEAR SYSTEMS ● 343

FIGURE 8.2.4 A phase portrait of
system (19)

x

y
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The matrices B1 and B2 in (22) are often denoted by
(24)

since these vectors are, respectively, the real and imaginary parts of the eigenvector
K1. For example, (21) follows from (23) with

 B1 � Re(K1) � �1
1�   and   B2 � Im(K1) � � 0

�2�.

 K1 � � 1
1 � 2i� � �1

1� � i� 0
�2�,

B1 � Re(K1)    and    B2 � Im(K1)

344 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

THEOREM 8.2.3 Real Solutions Corresponding to a Complex Eigenvalue

Let l1 � a� ib be a complex eigenvalue of the coefficient matrix A in the
homogeneous system (2) and let B1 and B2 denote the column vectors define
in (22). Then

(23)

are linearly independent solutions of (2) on (��, �).

 X2 � [B2 cos �t � B1 sin �t]e�t

 X1 � [B1 cos �t � B2 sin �t]e�t

EXAMPLE 6 Complex Eigenvalues

Solve the initial-value problem

(25)

SOLUTION First we obtain the eigenvalues from

The eigenvalues are l1 � 2i and . For l1 the system

gives k1 � �(2 � 2i)k2. By choosing k2 � �1, we get

Now from (24) we form

Since a� 0, it follows from (23) that the general solution of the system is

(26) � c1�2 cos 2t � 2 sin 2t
�cos 2t � � c2�2 cos 2t � 2 sin 2t

�sin 2t �.

X � c1�� 2
�1�cos 2t � �2

0�sin 2t� � c2��2
0�cos 2t � � 2

�1�sin 2t�

B1 � Re(K1) � � 2
�1�    and    B2 � Im(K1) � �2

0�.

K1 � �2 � 2i
�1 � � � 2

�1� � i�2
0�.

   �k1 � (�2 � 2i ) k2 � 0

(2 � 2i ) k1 �   8k2 � 0


2 � 
1 � �2i

det(A � 
I ) � �2 � 


�1
8

�2 � 
 � � 
2 � 4 � 0.

X� � � 2
�1

8
�2�X,  X(0) � � 2

�1�.
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X� � X. (29)�
   0
   0

�
k1

m1
�

k2

m1

   
k2

m2

 0
 0

   
k2

m1

�
k2

m2

1
0

0

0

0
1

0

0
�
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Some graphs of the curves or trajectories defined by solution (26) of the system
are illustrated in the phase portrait in Figure 8.2.5. Now the initial condition

or, equivalently, x(0) � 2 and y(0) � �1 yields the algebraic system

2c1 � 2c2 � 2, �c1 � �1, whose solution is c1 � 1, c2 � 0. Thus the solution 

to the problem is . The specific trajectory defined

parametrically by the particular solution x � 2 cos 2t � 2 sin 2t, y � �cos 2t is the
red curve in Figure 8.2.5. Note that this curve passes through (2, �1).

X � �2 cos 2t � 2 sin 2t
�cos 2t �

X(0) � � 2
�1�

FIGURE 8.2.5 A phase portrait of (25)
in Example 6

x

y

(2, _1)

REMARKS

In this section we have examined exclusively homogeneous first-order systems
of linear equations in normal form X� � AX. But often the mathematical
model of a dynamical physical system is a homogeneous second-order system
whose normal form is X� � AX. For example, the model for the coupled
springs in (1) of Section 7.6,

(27)

can be written as
where

Since M is nonsingular, we can solve for X� as X� � AX, where A � M�1K.
Thus (27) is equivalent to

(28)

The methods of this section can be used to solve such a system in two ways:

• First, the original system (27) can be transformed into a first-order system
by means of substitutions. If we let and , then and

and so (27) is equivalent to a system of four linear first-order DEs:

or

By finding the eigenvalues and eigenvectors of the coefficient matrix A in
(29), we see that the solution of this first-order system gives the complete
state of the physical system—the positions of the masses relative to the
equilibrium positions (x1 and x2) as well as the velocities of the masses
(x3 and x4) at time t. See Problem 48(a) in Exercises 8.2.

x�4 �
k2

m2
 x1 �

k2

m2
 x2

x�3 � �� k1

m1
�

k2

m1
�x1 �

k2

m1
 x2

x�2 � x4

x�1 � x3

x�4 � x �2

x�3 � x �1x�2 � x4x�1 � x3

X � � ��
k1

m1
�

k2

m1

     
k2

m2

   
k2

m1

�
k2

m2

�X.

M � �m1

0
0

m2
�,    K � ��k1 � k2

k2

   k2

�k2
�,    and    X � �x1(t)

x2(t)�.

MX � � KX,

 m2x �2 � �k2(x2 � x1),

 m1x �1 � �k1x1 � k2(x2 � x1)
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• Second, because (27) describes free undamped motion, it can be argued
that real-valued solutions of the second-order system (28) will have
the form

, (30)

where V is a column matrix of constants. Substituting either of the
functions in (30) into X� � AX yields (A � v2I)V � 0. (Verify.)
By identification with (3) of this section we conclude that l � �v2

represents an eigenvalue and V a corresponding eigenvector of A. It can
be shown that the eigenvalues , i � 1, 2 of A are negative, and
so is a real number and represents a (circular) frequency
of vibration (see (4) of Section 7.6). By superposition of solutions the
general solution of (28) is then

(31)

where V1 and V2 are, in turn, real eigenvectors of A corresponding to l1
and l2.

The result given in (31) generalizes. If are
distinct negative eigenvalues and V1, V2, . . . , Vn are corresponding real
eigenvectors of the n � n coefficient matrix A, then the homogeneous
second-order system X� � AX has the general solution

(32)

where ai and bi represent arbitrary constants. See Problem 48(b) in
Exercises 8.2.

X � �
n

i�1
 (ai cos �i t � bi sin �i t)Vi ,

��1
2, ��2

2, . . . , ��n
2

 � (c1 cos �1t � c2 sin �1t)V1 � (c3 cos �2t � c4 sin �2t)V2,

 X � c1V1 cos �1t � c2V1 sin �1t � c3V2 cos �2t � c4V2 sin �2t

�i � 1�
i


i � ��i
2

X � V cos �t    and    X � V sin �t

EXERCISES 8.2 Answers to selected odd-numbered problems begin on page ANS-14.

8.2.1 DISTINCT REAL EIGENVALUES

In Problems 1–12 find the general solution of the given
system.

1. 2.

3. 4.

5. 6.

7. 8.

dz
dt

 � 5y � 2z
dz
dt

 � y � z

dy
dt

 � 5x � 10y � 4z
dy
dt

 � 2y

dx
dt

 � 2x � 7y
dx
dt

 � x � y � z

X� � ��6
�3

2
1�XX� � �10

8
�5

�12�X

dy
dt

�
3
4

x � 2y
dy
dt

� � 5
2

x � 2y

dx
dt

� � 5
2

x � 2y
dx
dt

� �4x � 2y

dy
dt

� x � 3y
dy
dt

� 4x � 3y

dx
dt

� 2x � 2y
dx
dt

� x � 2y

9.

10.

11.

12.

In Problems 13 and 14 solve the given initial-value problem.

13.

14. X� � �
1
0
1

1
2
1

4
0
1�X, X(0) � �

1
3
0�

X� � �
1
2

1
0

�1
2
�X, X(0) � �3

5�

X� � �
�1

4
0

4
�1

0

2
�2

6�X

X� � �
�1

3
4
1
8

�1
�3

2
1
4

0
3

�1
2
�X

X� � �
1
0
1

0
1
0

1
0
1�X

X� � �
�1

1
0

1
2
3

0
1

�1�X
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Computer Lab Assignments

In Problems 15 and 16 use a CAS or linear algebra software
as an aid in finding the general solution of the given system.

15.

16.

17. (a) Use computer software to obtain the phase portrait
of the system in Problem 5. If possible, include
arrowheads as in Figure 8.2.2. Also include four
half-lines in your phase portrait.

(b) Obtain the Cartesian equations of each of the four
half-lines in part (a).

(c) Draw the eigenvectors on your phase portrait of the
system.

18. Find phase portraits for the systems in Problems 2 and 4.
For each system find any half-line trajectories and
include these lines in your phase portrait.

8.2.2 REPEATED EIGENVALUES

In Problems 19–28 find the general solution of the given
system.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. X� � �
4
0
0

1
4
0

0
1
4�XX� � �

1
2
0

0
2
1

0
�1

0�X

X� � �
1
0
0

0
3

�1

0
1
1�XX� � �

5
1
0

�4
0
2

0
2
5�X

dz
dt

 � 4x � 2y � 3z
dz
dt

� x � y � z

dy
dt

 � 2x � 2z
dy
dt

� x � y � z

dx
dt

 � 3x � 2y � 4z
dx
dt

� 3x � y � z

X� � �12
4

�9
0�XX� � ��1

�3
3
5�X

dy
dt

 � �5x � 4y
dy
dt

 � 9x � 3y

dx
dt

 � �6x � 5y
dx
dt

 � 3x � y

X� � �
 1
 0
 1
 0
 �2.8

0
5.1
2
1
0

  2
  0
�3
�3.1
  0

�1.8
�1
 0
 4
 1.5

0
3
0
0
1
�X

X� � �
0.9
0.7
1.1

2.1
6.5
1.7

3.2
4.2
3.4�X
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In Problems 29 and 30 solve the given initial-value problem.

29.

30.

31. Show that the 5 � 5 matrix

has an eigenvalue l1 of multiplicity 5. Show that three
linearly independent eigenvectors corresponding to l1
can be found.

Computer Lab Assignments

32. Find phase portraits for the systems in Problems 20
and 21. For each system find any half-line trajectories
and include these lines in your phase portrait.

8.2.3 COMPLEX EIGENVALUES

In Problems 33–44 find the general solution of the given
system.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. X� � �
4
0

�4

0
6
0

1
0
4�XX� � �

1
�1
�1

�1
1
0

2
0
1�X

dz
dt

 � �4x � 3z
dz
dt

 � y

dy
dt

 � 3x � 6z
dy
dt

 � �z

dx
dt

 � 2x � y � 2z
dx
dt

 � z

X� � �1
1

�8
�3�XX� � �4

5
�5
�4�X

dy
dt

 � �2x � 6y
dy
dt

 � �2x � 3y

dx
dt

 � 4x � 5y
dx
dt

 � 5x � y

dy
dt

 � �2x � y
dy
dt

� 5x � 2y

dx
dt

 � x � y
dx
dt

� 6x � y

A � �
2
0
0
0
0

1
2
0
0
0

0
0
2
0
0

0
0
0
2
0

0
0
0
1
2
�

X� � �
0
0
1

0
1
0

1
0
0�X, X(0) � �

1
2
5�

X� � � 2
�1

4
6�X, X(0) � ��1

6�
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43. 44.

In Problems 45 and 46 solve the given initial-value problem.

45.

46.

Computer Lab Assignments

47. Find phase portraits for the systems in Problems 36, 37,
and 38.

48. (a) Solve (2) of Section 7.6 using the first method
outlined in the Remarks (page 345)—that is, express
(2) of Section 7.6 as a first-order system of four lin-
ear equations. Use a CAS or linear algebra software
as an aid in finding eigenvalues and eigenvectors of
a 4 � 4 matrix. Then apply the initial conditions to
your general solution to obtain (4) of Section 7.6.

(b) Solve (2) of Section 7.6 using the second method out-
lined in the Remarks—that is, express (2) of Sec-
tion 7.6 as a second-order system of two linear equa-
tions. Assume solutions of the form X � V sin vt

X� � �6
5

�1
4�X, X(0) � ��2

8�

X� � �
1
1
1

�12
2
1

�14
�3
�2�X,  X(0) � �

4
6

�7�

X� � �
2

�1
�1

4
�2

0

4
0

�2�XX� � �
2

�5
0

5
�6

0

1
4
2�X
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and X � V cos vt. Find the eigenvalues and eigen-
vectors of a 2 � 2 matrix. As in part (a), obtain (4)
of Section 7.6.

Discussion Problems

49. Solve each of the following linear systems.

(a) (b)

Find a phase portrait of each system. What is the geo-
metric significance of the line y � �x in each portrait?

50. Consider the 5 � 5 matrix given in Problem 31. Solve
the system X� � AX without the aid of matrix methods,
but write the general solution using matrix notation. Use
the general solution as a basis for a discussion of how the
system can be solved using the matrix methods of this
section. Carry out your ideas.

51. Obtain a Cartesian equation of the curve define
parametrically by the solution of the linear system in
Example 6. Identify the curve passing through (2, �1)
in Figure 8.2.5. [Hint: Compute x2, y2, and xy.]

52. Examine your phase portraits in Problem 47. Under
what conditions will the phase portrait of a 2 � 2
homogeneous linear system with complex eigenvalues
consist of a family of closed curves? consist of a family
of spirals? Under what conditions is the origin (0, 0) a
repeller? An attractor?

X� � � 1
�1

1
�1�XX� � �1

1
1
1�X

8.3.1 UNDETERMINED COEFFICIENTS

The Assumptions As in Section 4.4, the method of undetermined coefficient
consists of making an educated guess about the form of a particular solution vector
Xp; the guess is motivated by the types of functions that make up the entries of the

NONHOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section 4.4 (Undetermined Coefficients
● Section 4.6 (Variation of Parameters)

INTRODUCTION In Section 8.1 we saw that the general solution of a nonhomogeneous linear
system X� � AX � F(t) on an interval I is X � Xc � Xp, where 
is the complementary function or general solution of the associated homogeneous linear system
X� � AX and Xp is any particular solution of the nonhomogeneous system. In Section 8.2 we saw
how to obtain Xc when the coefficient matrix A was an n � n matrix of constants. In the present
section we consider two methods for obtaining Xp.

The methods of undetermined coefficient and variation of parameters used in Chapter 4 to
find particular solutions of nonhomogeneous linear ODEs can both be adapted to the solution of
nonhomogeneous linear systems X� � AX � F(t). Of the two methods, variation of parameters
is the more powerful technique. However, there are instances when the method of undetermined
coefficients provides a quick means of finding a particular solutio

Xc � c1X1 � c2X2 � � � � � cnXn

8.3
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column matrix F(t). Not surprisingly, the matrix version of undetermined coefficient
is applicable to X� � AX � F(t) only when the entries of A are constants and the
entries of F(t) are constants, polynomials, exponential functions, sines and cosines,
or finite sums and products of these functions

8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 349

EXAMPLE 1 Undetermined Coefficient

Solve the system on (��, �).

SOLUTION We first solve the associated homogeneous syste

The characteristic equation of the coefficient matrix A,

yields the complex eigenvalues l1 � i and . By the procedures of
Section 8.2 we fin

Now since F(t) is a constant vector, we assume a constant particular solution vector

. Substituting this latter assumption into the original system and equat-

ing entries leads to

Solving this algebraic system gives a1 � 14 and b1 � 11, and so a particular solution

is . The general solution of the original system of DEs on the interval

(��, �) is then X � Xc � Xp or

X � c1�cos t � sin t
cos t � � c2�cos t � sin t

�sin t � � �14
11�.

Xp � �14
11�

 0 � �a1 �  b1 � 3.

 0 � �a1 � 2b1 � 8

Xp � �a1

b1
�

Xc � c1�cos t � sin t
cos t � � c2�cos t � sin t

�sin t �.


2 � 
1 � �i

det(A � 
I ) � ��1 � 


�1
2

1 � 
� � 
2 � 1 � 0,

X� � ��1
�1

2
1�X.

X� � ��1
�1

2
1�X � ��8

3�

EXAMPLE 2 Undetermined Coefficient

Solve the system on (��, �).

SOLUTION The eigenvalues and corresponding eigenvectors of the associated

homogeneous system are found to be l1 � 2, l2 � 7, ,

and . Hence the complementary function is

Xc � c1� 1
�4�e2t � c2�1

1�e7t.

K2 � �1
1�

K1 � � 1
�4�X� � �6

4
1
3�X

X� � �6
4

1
3�X � � 6t

�10t � 4�
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Now because F(t) can be written , we shall try to find a

particular solution of the system that possesses the same form:

Substituting this last assumption into the given system yields

or

From the last identity we obtain four algebraic equations in four unknowns

Solving the first two equations simultaneously yields a2 � �2 and b2 � 6. We then
substitute these values into the last two equations and solve for a1 and b1. The results
are . It follows, therefore, that a particular solution vector is

.

The general solution of the system on (��, �) is X � Xc � Xp or

.X � c1�   1
�4�e2t � c2�1

1�e7t � ��2
6� t � ��

4
7

10
7
�

Xp � ��2
6� t � ��4

7

10
7
�

a1 � �4
7, b1 � 10

7

6a2 �   b2 �   6 � 0
4a2 � 3b2 � 10 � 0

    and    
6a1 �  b1 � a2    � 0 
4a1 � 3b1 � b2 � 4 � 0.

 �0
0� � � (6a2 � b2 � 6)t � 6a1 � b1 � a2

(4a2 � 3b2 � 10)t � 4a1 � 3b1 � b2 � 4�.

 �a2

b2
� � �6

4
1
3���

a2

b2
� t � �a1

b1
�� � � 6

�10� t � �0
4�

Xp � �a2

b2
� t � �a1

b1
�.

F(t) � � 6
�10� t � �0

4�
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EXAMPLE 3 Form of Xp

Determine the form of a particular solution vector Xp for the system

SOLUTION Because F(t) can be written in matrix terms as

a natural assumption for a particular solution would be

Xp � �a3

b3
�e�t � �a2

b2
�t � �a1

b1
�.

F(t) � ��2
1�e�t � � 0

�5� t � �1
7�

dy
dt

 � �x � y � e�t � 5t � 7.

dx
dt

 � 5x � 3y � 2e�t � 1
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8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 351

REMARKS

The method of undetermined coefficients for linear systems is not as straightfor-
ward as the last three examples would seem to indicate. In Section 4.4 the form
of a particular solution yp was predicated on prior knowledge of the comple-
mentary function yc. The same is true for the formation of Xp. But there are fur-
ther difficulties: The special rules governing the form of yp in Section 4.4 do not
quite carry to the formation of Xp. For example, if F(t) is a constant vector, as
in Example 1, and l� 0 is an eigenvalue of multiplicity one, then Xc contains
a constant vector. Under the Multiplication Rule on page 145 we would 

ordinarily try a particular solution of the form . This is not the

proper assumption for linear systems; it should be . 

Similarly, in Example 3, if we replace e�t in F(t) by e2t (l� 2 is an eigenvalue),
then the correct form of the particular solution vector is

Rather than delving into these difficulties, we turn instead to the method of
variation of parameters.

Xp � �a4

b4
� te2t � �a3

b3
�e2t � �a2

b2
� t � �a1

b1
�.

Xp � �a2

b2
� t � �a1

b1
�

Xp � �a1

b1
� t

8.3.2 VARIATION OF PARAMETERS

A Fundamental Matrix If X1, X2, . . . , Xn is a fundamental set of solutions of
the homogeneous system X� � AX on an interval I, then its general solution on the in-
terval is the linear combination 

(1)

The last matrix in (1) is recognized as the product of an n � n matrix with an
n � 1 matrix. In other words, the general solution (1) can be written as the product

, (2)

where C is an n � 1 column vector of arbitrary constants c1, c2, . . . , cn and the n � n
matrix, whose columns consist of the entries of the solution vectors of the system
X� � AX,

is called a fundamental matrix of the system on the interval.

x11

x21

xn1

�(t) � (  ),x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

...
...

X � �(t)C

x11

x21

xn1

x12

x22

xn2

X � c1( ) � c2( ) � . . . � cn(...
...

x1n

x2n

xnn

c1x11 � c2x12 � . . . � cnx1n

c1x21 � c2x22 � . . . � cnx2n

c1xn1 � c2xn2 � . . . � cnxnn

) � ( ) ....
...

 X � c1X1 � c2X2 � � � � � cnXn or
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In the discussion that follows we need to use two properties of a fundamental
matrix:

• A fundamental matrix is nonsingular.
• If is a fundamental matrix of the system X� � AX, then

. (3)

A reexamination of (9) of Theorem 8.1.3 shows that det is the same as the
Wronskian W(X1, X2, . . . , Xn). Hence the linear independence of the columns
of on the interval I guarantees that det for every t in the interval. Since

is nonsingular, the multiplicative inverse exists for every t in the inter-
val. The result given in (3) follows immediately from the fact that every column of

is a solution vector of X� � AX.

Variation of Parameters Analogous to the procedure in Section 4.6 we ask
whether it is possible to replace the matrix of constants C in (2) by a column matrix
of functions

(4)

is a particular solution of the nonhomogeneous system

. (5)

By the Product Rule the derivative of the last expression in (4) is

. (6)

Note that the order of the products in (6) is very important. Since U(t) is a column
matrix, the products and are not defined. Substituting (4) and (6)
into (5) gives

(7)

Now if we use (3) to replace , (7) becomes

or (8)

Multiplying both sides of equation (8) by gives

.

Since , we conclude that a particular solution of (5) is

. (9)

To calculate the indefinite integral of the column matrix in (9), we inte-
grate each entry. Thus the general solution of the system (5) is X � Xc � Xp or

. (10)

Note that it is not necessary to use a constant of integration in the evaluation of
for the same reasons stated in the discussion of variation of parame-

ters in Section 4.6.
���1(t)F(t) dt

X � �(t)C � �(t)���1(t)F(t) dt

��1(t)F(t)

Xp � �(t)���1(t)F(t) dt

Xp � �(t)U(t)

U�(t) � ��1(t)F(t)    and so    U(t) � ���1(t)F(t) dt

��1(t)

�(t)U�(t) � F(t).

�(t)U�(t) � A�(t)U(t) � A�(t)U(t) � F(t)

��(t)

�(t)U�(t) � ��(t)U(t) � A�(t)U(t) � F(t).

U(t)��(t)U�(t)�(t)

X�p � �(t)U�(t) � ��(t)U(t)

X� � AX � F(t)

u1(t)
u2(t)

un(t)

U(t) � ( Xp � �(t)U(t)so)...

�(t)

��1(t)�(t)
�(t) 	 0�(t)

�(t)

��(t) � A�(t)

�(t)
�(t)
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8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 353

EXAMPLE 4 Variation of Parameters

Solve the system

(11)

on (��, �).

SOLUTION We first solve the associated homogeneous syste

. (12)

The characteristic equation of the coefficient matrix i

,

so the eigenvalues are l1 � �2 and l2 � �5. By the usual method we find that the

eigenvectors corresponding to l1 and l2 are, respectively, and

. The solution vectors of the homogeneous system (12) are then

.

The entries in X1 form the first column of , and the entries in X2 form the second
column of . Hence

.

From (9) we obtain the particular solution

Hence from (10) the general solution of (11) on the interval is

. � c1�1
1�e�2t � c2� 1

�2�e�5t � �
6
5
3
5
� t � �

27
50
21
50
� � �

1
4
1
2
� e�t

X � �e�2t

e�2t
e�5t

�2e�5t��c1

c2
� � �

6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �

 � �
6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �.

 � �e�2t

e�2t
e�5t

�2e�5t��  te2t � 1
2 e2t � 1

3et

1
5 te5t � 1

25 e5t � 1
12 e4t�

 � �e�2t

e�2t
e�5t

�2e�5t� � �2te2t � 1
3 et

  te5t � 1
3 e4t� dt

Xp � �(t)���1(t)F(t) dt � �e�2t

e�2t
e�5t

�2e�5t� � �
2
3 e2t

1
3 e5t

1
3 e2t

�1
3 e5t�� 3t

e�t� dt

�(t) � �e�2t

e�2t
e�5t

�2e�5t�    and    ��1(t) � �
2
3e2t

1
3 e5t

1
3 e2t

�1
3 e5t�

�(t)
�(t)

X1 � �1
1�e�2t � �e�2t

e�2t�    and    X2 � � 1
�2�e�5t � � e�5t

�2e�5t�

K2 � � 1
�2�

K1 � �1
1�

det(A � 
I) � ��3 � 


2
1

�4 � 
� � (
 � 2)(
 � 5) � 0

X� � ��3
2

1
�4�X

X� � ��3
2

1
�4�X � � 3t

e�t�
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Initial-Value Problem The general solution of (5) on an interval can be writ-
ten in the alternative manner

, (13)

where t and t0 are points in the interval. This last form is useful in solving (5) subject
to an initial condition X(t0) � X0, because the limits of integration are chosen so that
the particular solution vanishes at t � t0. Substituting t � t0 into (13) yields

from which we get . Substituting this last result into
(13) gives the following solution of the initial-value problem:

. (14)X � �(t)��1(t0)X0 � �(t) �t

t0

 ��1(s)F(s) ds

C � ��1(t0)X0X0 � �(t0)C

X � �(t)C � �(t) �t

t0

 ��1(s)F(s) ds
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FIGURE 8.3.1 Network in Problem 10

R1 R2

L1 L2

i1
i2

i3

E

8.3.2 VARIATION OF PARAMETERS

In Problems 11–30 use variation of parameters to solve the
given system.

11.

12.

13. X� � �3
3
4

�5
�1�X � �   1

�1�et/2

dy
dt

 � 3x � 2y � 4t

dx
dt

 � 2x � y

dy
dt

� 2x � 2y � 1

dx
dt

� 3x � 3y � 4

EXERCISES 8.3 Answers to selected odd-numbered problems begin on page ANS-15.

8.3.1 UNDETERMINED COEFFICIENTS

In Problems 1–8 use the method of undetermined coeffi
cients to solve the given system.

1.

2.

3.

4.

5.

6.

7.

8.

9. Solve subject to

.X(0) � ��4
5�

X� � ��1
3

�2
4�X � �3

3�

X� � �0
0
5

0
5
0

5
0
0
�X � � 5

�10
40
�

X� � �1
0
0

1
2
0

1
3
5
�X � � 1

�1
2
�e4t

X� � ��1
�1

5
1�X � � sin t

�2 cos t�

X� � �4
9

1
3

6�X � ��3
10�et

X� � �1
4

�4
1�X � �4t � 9e6t

�t � e6t�

X� � �1
3

3
1�X � ��2t2

t � 5�

dy
dt

� �x � 11y � 6

dx
dt

� 5x � 9y � 2

dy
dt

� �x � 2y � 5

dx
dt

� 2x � 3y � 7

10. (a) The system of differential equations for the currents
i2(t) and i3(t) in the electrical network shown in
Figure 8.3.1 is

.

Use the method of undetermined coefficients to
solve the system if R1 � 2 �, R2 � 3 �, L1 � 1 h,
L2 � 1 h, E � 60 V, i2(0) � 0, and i3(0) � 0.

(b) Determine the current i1(t).

d
dt

 �i2

i3
� � ��R1>L1

�R1>L2

�R1>L1

�(R1 � R2)>L2
��i2

i3
� � �E>L1

E>L2
�
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Problems 31 and 32 use (14) to solve the given initial-
value problem.

31.

32. X� � �1
1

�1
�1�X � �1>t

1>t�, X(1) � � 2
�1�

X� � � 3
�1

�1
3�X � �4e2t

4e4t�, X(0) � �1
1�

X� � �3
1
1

�1
1

�1

�1
�1

1
�X � � 0

t
2et�

X� � �1
1
0

1
1
0

0
0
3
�X � � et

e2t

te3t�
X� � �1

1
�2
�1�X � �tan t

1 �

X� � � 1
�1

2

2
1�X � �csc t

sec t�et

X� � � 0
�1

1
0�X � � 1

cot t�

X� � � 0
�1

1
0�X � � 0

sec t tan t�

X� � �2
8

�2
�6�X � �1

3� 
e�2t

t

X� � �1
1

�1
1�X � �cos t

sin t�et

X� � �1
1

�1
1�X � �3

3�et

X� � �0
1

�1
0�X � �sec t

0 �

X� � � 3
�2

2
�1�X � �1

1�

X� � � 3
�2

2
�1�X � �2e�t

e�t �

X� � �1
1

8
�1�X � �e�t

tet �

X� � �1
1

8
�1�X � �12

12� t

X� � � 0
�1

2
3�X � � 2

e�3t�

X� � � 0
�1

2
3�X � � 1

�1�et

X� � �2
4

�1
2�X � � sin 2t

2 cos 2t�e2t
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33. The system of differential equations for the currents i1(t)
and i2(t) in the electrical network shown in Figure 8.3.2 is

.

Use variation of parameters to solve the system
if R1 � 8 �, R2 � 3 �, L1 � 1 h, L2 � 1 h,
E(t) � 100 sin t V, i1(0) � 0, and i2(0) � 0.

d
dt

 �i1

i2
� � ��(R1 � R2)>L2

R2>L1

    R2>L2

�R2>L1
��i1

i2
� � �E>L2

0 �

FIGURE 8.3.2 Network in Problem 33

i1
i2 i3R1

R2E L1

L2

Discussion Problems

34. If y1 and y2 are linearly independent solutions of the
associated homogeneous DE for y� � P(x)y� �
Q(x)y � f (x), show in the case of a nonhomogeneous
linear second-order DE that (9) reduces to the form of
variation of parameters discussed in Section 4.6.

Computer Lab Assignments

35. Solving a nonhomogeneous linear system X� � AX � F(t)
by variation of parameters when A is a 3 � 3 (or larger)
matrix is almost an impossible task to do by hand.
Consider the system

(a) Use a CAS or linear algebra software to find the
eigenvalues and eigenvectors of the coefficien
matrix.

(b) Form a fundamental matrix and use the com-
puter to find .

(c) Use the computer to carry out the computations of:

where C is a
column matrix of constants c1, c2, c3, and c4.

(d) Rewrite the computer output for the general solu-
tion of the system in the form X � Xc � Xp, where
Xc � c1X1 � c2X2 � c3X3 � c4X4.

�(t)C, and �(t)C � ���1(t)F(t) dt,
��1(t)F(t), ���1(t)F(t) dt, �(t)���1(t)F(t) dt,

��1(t)
�(t)

X� � �
2

�1
0
0

�2
3
0
0

2
0
4
2

1
3

�2
�1

�X � �
tet

e�t

e2t

1
�.
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Homogeneous Systems We shall now see that it is possible to define a ma-
trix exponential eAt so that

(1)

is a solution of the homogeneous system X� � AX. Here A is an n � n matrix of
constants, and C is an n � 1 column matrix of arbitrary constants. Note in (1) that the
matrix C post multiplies eAt because we want eAt to be an n � n matrix. While the
complete development of the meaning and theory of the matrix exponential would
require a thorough knowledge of matrix algebra, one way of defining eAt is inspired
by the power series representation of the scalar exponential function eat:

(2)

The series in (2) converges for all t. Using this series, with 1 replaced by the identity
matrix I and the constant a replaced by an n � n matrix A of constants, we arrive at
a definition for the n � n matrix eAt.

 � 1 � at � a2 t
2

2!
� � � � � �k t

k

k!
� � � � � �

�

k�0
�k 

tk

k!
.

 eat � 1 � at �
(at)2

2!
� � � � �

(at)k

k!
� � � �

X � eAtC
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MATRIX EXPONENTIAL

REVIEW MATERIAL
● Appendix II.1 (Definitions II.10 and II. 1)

INTRODUCTION Matrices can be used in an entirely different manner to solve a system of
linear first-order differential equations. Recall that the simple linear first-order differential equation
x� � ax, where a is constant, has the general solution x � ceat, where c is a constant. It seems
natural then to ask whether we can define a matrix exponential function eAt, where A is a matrix of
constants, so that a solution of the linear system X� � AX is eAt.

8.4

DEFINITION 8.4.1 Matrix Exponential

For any n � n matrix A,

. (3)eAt � I � At � A2 
t2

2!
� � � � � Ak 

tk

k!
� � � � � �

�

k�0
Ak 

tk

k!

It can be shown that the series given in (3) converges to an n � n matrix for
every value of t. Also, A2 � AA, A3 � A(A2), and so on.

EXAMPLE 1 Matrix Exponential Using (3)

Compute for the matrix

SOLUTION From the various powers

A2 � �22

0
0
32�, A3 � �23

0
0
33�, A4 � �24

0
0
34�, . . . , An � �2n

0
0
3n�, . . . ,

A � �2
0

0
3�.

eAt
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8.4 MATRIX EXPONENTIAL ● 357

we see from (3) that

In view of (2) and the identifications and the power series in the firs
and second rows of the last matrix represent, respectively, and so we have

.

The matrix in Example 1 is an example of a diagonal matrix. In general,
an matrix A is a diagonal matrix if all its entries off the main diagonal are
zero, that is,

.

Hence if A is any diagonal matrix it follows from Example 1 that

.eAt � �
ea11t

0
o

0

0
ea22t

o

0

. . .

. . .

. . .

0
0
o

eannt
�

n � n

A � �
a11

0
o

0

0
a22

o

0

. . .

. . .

. . .

0
0
o

ann

�
n � n

2 � 2

eAt � �e2t

0
0
e3t�

e2t and  e3t
a � 3,a � 2

 � �1 � 2t � 22 
t2

2!
 � . . .

0

0

1 � 3t � 32 t
2

2!
 � . . .�.

 � �1
0

0
1� � �2

0
0
3�t � �22

0
0
32� 

t2

2!
 � . . . � �2n

0
0
3n�

 t n

n!
 � . . .

 eAt � I � At �
A2

2!
 t2 � . . .

 � A�I � At � A2 
t2

2!
� � � �� � AeAt.

d
dt

eAt �
d
dt

 �I � At � A2 
t2

2!
� � � � � Ak 

tk

k!
� � � �� � A � A2t �

1
2!

 A3t2 � � � �

Because of (4), we can now prove that (1) is a solution of X� � AX for every n � 1
vector C of constants:

eAt is a Fundamental Matrix If we denote the matrix exponential eAt by

X� �
d
dt

 eAtC � AeAtC � A(eAtC) � AX.

the symbol �(t), then (4) is equivalent to the matrix differential equation
��(t) � A�(t) (see (3) of Section 8.3). In addition, it follows immediately from

Derivative of eAt The derivative of the matrix exponential is analogous to the

differentiation property of the scalar exponential . To justify

, (4)

we differentiate (3) term by term: 

d
dt

 eAt � AeAt

d
dt

 eat � aeat
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Definition 8.4.1 that �(0) � eA0 � I, and so det �(0) 	 0. It turns out that these
two properties are sufficient for us to conclude that �(t) is a fundamental matrix of the
system X� � AX.

Nonhomogeneous Systems We saw in (4) of Section 2.3 that the general

358 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

solution of the single linear first-order differential equation x� � ax � f (t), where a
is a constant, can be expressed as

.

For a nonhomogeneous system of linear first-order differential equations it can be
shown that the general solution of X� � AX � F(t), where A is an n � n matrix of
constants, is

. (5)

Since the matrix exponential eAt is a fundamental matrix, it is always nonsingular and
e�As � (eAs)�1. In practice, e�As can be obtained from eAt by simply replacing t by �s.

Computation of eAt The definition of eAt given in (3) can, of course, always
be used to compute eAt. However, the practical utility of (3) is limited by the fact that
the entries in eAt are power series in t. With a natural desire to work with simple and
familiar things, we then try to recognize whether these series define a closed-form
function. Fortunately, there are many alternative ways of computing eAt; the follow-
ing discussion shows how the Laplace transform can be used.

Use of the Laplace Transform We saw in (5) that X � eAt is a solution of 

X � Xc � Xp � eAtC � eAt�t

t0

e�AsF(s) ds

x � xc � xp � ceat � eat�t

t0

e�asf (s) ds

EXAMPLE 2 Matrix Exponential Using (7)

Use the Laplace transform to compute eAt for .

SOLUTION First we compute the matrix sI � A and find its inverse

 (sI � A)�1 � �s � 1
 �2

1
s � 2�

�1
� �

s � 2
s(s � 1)

2
s(s � 1)

�1
s(s � 1)

s � 1
s(s � 1)

�.

 sI � A � �s � 1
�2

1
s � 2�,

A � �1
2

�1
�2�

X� � AX. Indeed, since eA0 � I, X � eAt is a solution of the initial-value problem

. (6)

If , then the Laplace transform of (6) is

.

Multiplying the last equation by (sI � A)�1 implies that x(s) � (sI � A)�1

I � (sI � A)�1. In other words, 

(7)eAt � ��1{(sI � A)�1}.

�{eAt} � (sI � A)�1 or

sx(s) � X(0) � Ax(s)    or    (sI � A)x(s) � I

x(s) � �{X(t)} � �{eAt}

X� � AX,  X(0) � I

27069_08_ch08_p325-361.qxd  2/2/12  2:47 PM  Page 358

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Then we decompose the entries of the last matrix into partial fractions:

. (8)

It follows from (7) that the inverse Laplace transform of (8) gives the desired result,

.

Use of Computers For those who are willing to momentarily trade under-
standing for speed of solution, eAt can be computed with the aid of computer software.
See Problems 27 and 28 in Exercises 8.4.

eAt � �2 � e�t

2 � 2e�t
�1 � e�t

�1 � 2e�t�

(sI � A)�1 � �
2
s

�
1

s � 1
2
s

�
2

s � 1

�
1
s

�
1

s � 1

�
1
s

�
2

s � 1
�
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EXERCISES 8.4 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1 and 2 use (3) to compute eAt and e�At.

1. 2.

In Problems 3 and 4 use (3) to compute eAt.

3.

4.

In Problems 5–8 use (1) to find the general solution of the
given system.

5. 6.

7. 8.

In Problems 9–12 use (5) to find the general solution of the
given system.

9.

10.

11.

12. X� � �0
1

1
0�X � �cosh t

sinh t�

X� � �0
1

1
0�X � �1

1�

X� � �1
0

0
2�X � � t

e4t�

X� � �1
0

0
2�X � � 3

�1�

X� � �0
3
5

0
0
1

0
0
0
�XX� � � 1

1
�2

1
1

�2

1
1

�2
�X

X� � �0
1

1
0�XX� � �1

0
0
2�X

A � �0
3
5

0
0
1

0
0
0
�

A � � 1
1

�2

1
1

�2

1
1

�2
�

A � �0
1

1
0�A � �1

0
0
2�

13. Solve the system in Problem 7 subject to the initial
condition

.

14. Solve the system in Problem 9 subject to the initial
condition

.

In Problems 15–18 use the method of Example 2 to com-
pute eAt for the coefficient matrix. Use (1) to find the general
solution of the given system.

15. 16.

17. 18.

Let P denote a matrix whose columns are eigenvectors
K1, K2, . . . , Kn corresponding to distinct eigenvalues
l1, l2, . . . , ln of an n � n matrix A. Then it can be shown
that A � PDP�1, where D is a diagonal matrix defined by

(9)

In Problems 19 and 20 verify the foregoing result for the
given matrix.

19. 20. A � �2
1

1
2�A � � 2

�3
1
6�

l1

0

0

D � ( ).0
0

ln

0
l2

0

. . .

. . .

. . .

...
...

...

X� � � 0
�2

1
�2�XX� � �5

1
�9
�1�X

X� � �4
1

�2
1�XX� � � 4

�4
3

�4�X

X(0) � �4
3�

X(0) � � 1
�4

6
�

27069_08_ch08_p325-361.qxd  2/2/12  2:47 PM  Page 359

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



21. Suppose A � PDP�1, where D is defined as in (9). Use
(3) to show that eAt � PeDtP�1.

22. If D is defined as in (9), then fin eDt .

In Problems 23 and 24 use the results of Problems 19–22 to
solve the given system.

23.

24.

Discussion Problems

25. Reread the discussion leading to the result given in (7).
Does the matrix sI � A always have an inverse? Discuss.

26. A matrix A is said to be nilpotent if there exists
some positive integer m such that Am � 0. Verify that

is nilpotent. Discuss why it is relatively easy to compute
eAt when A is nilpotent. Compute eAt and then use (1) to
solve the system X� � AX.

A � ��1
�1
�1

1
0
1

1
1
1
�

X� � �2
1

1
2�X

X� � � 2
�3

1
6�X

360 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

Computer Lab Assignments

27. (a) Use (1) to find the general solution of

. Use a CAS to find eAt. Then use 

the computer to find eigenvalues and eigenvectors 

of the coefficient matrix and form the 

general solution in the manner of Section 8.2.
Finally, reconcile the two forms of the general solu-
tion of the system.

(b) Use (1) to find the general solution of

. Use a CAS to find eAt. In the

case of complex output, utilize the software to do
the simplification; for example, in Mathematica, if
m � MatrixExp[A t] has complex entries, then
try the command Simplify[ComplexExpand[m]].

28. Use (1) to find the general solution o

.

Use MATLAB or a CAS to find eAt.

X� � �
�4

0
�1

0

0
�5

0
3

6
0
1
0

0
�4

0
2
�X

X� � ��3
2

�1
�1�X

A � �4
3

2
3�

X� � �4
3

2
3�X

CHAPTER 8 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1 and 2 fill in the blanks

1. The vector is a solution of

for k � __________.

2. The vector is solution of 

the initial-value problem 

for c1 � __________ and c2 � __________.

3. Consider the linear system .

Without attempting to solve the system, determine
which one of the vectors

K1 � �0
1
1
�, K2 � � 1

1
�1

�, K3 � � 3
1

�1
�, K4 � � 6

2
�5

�

X� � � 4
1

�1

6
3

�4

6
2

�3
�X

X� � �1
6

10
�3�X, X(0) � �2

0�
X � c1��1

1�e�9t � c2�5
3�e7t

X� � �1
2

4
�1�X � �8

1�

X � k�4
5�

is an eigenvector of the coefficient matrix. What is
the solution of the system corresponding to this
eigenvector?

4. Consider the linear system X� � AX of two differential
equations, where A is a real coefficient matrix. What is
the general solution of the system if it is known that

l1 � 1 � 2i is an eigenvalue and is a corre-

sponding eigenvector?

In Problems 5–14 solve the given linear system.

5. 6.

7. 8.

9. 10. X� � �0
1
2

2
1
2

1
�2
�1

�XX� � �1
0
4

�1
1
3

1
3
1
�X

X� � ��2
�2

5
4�XX� � � 1

�2
2
1�X

dy
dt

� 2x � 4y
dy
dt

 � �x

dx
dt

� �4x � 2y
dx
dt

 � 2x � y

K1 � �1
i�
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11.

12.

13.

14.

15. (a) Consider the linear system X� � AX of three first
order differential equations, where the coefficien
matrix is

A � � 5
3

�5

3
5

�5

3
3

�3
�

X� � � 3
�1

1
1�X � ��2

1�e2t

X� � ��1
�2

1
1�X � � 1

cot t�

X� � � 1
�1

2

2
1�X � � 0

et tan t�

X� � �2
0

8
4�X � � 2

16t�

CHAPTER 8 IN REVIEW ● 361

and l � 2 is known to be an eigenvalue of multi-
plicity two. Find two different solutions of the sys-
tem corresponding to this eigenvalue without using
a special formula (such as (12) of Section 8.2).

(b) Use the procedure of part (a) to solve

.

16. Verify that is a solution of the linear system

for arbitrary constants c1 and c2. By hand, draw a phase
portrait of the system.

X� � � 1
0

0
1�X

X � �c1

c2
�et

X� � �1
1
1

1
1
1

1
1
1
�X
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