8. Linear equations

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Superposition

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ means f is a function that maps n-vectors to m-vectors
- we write $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$ to emphasize components of $f(x)$
- we write $f(x)=f\left(x_{1}, \ldots, x_{n}\right)$ to emphasize components of x
- f satisfies superposition if for all x, y, α, β

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

(this innocent looking equation says a lot ...)

- such an f is called linear

Matrix-vector product function

- with A an $m \times n$ matrix, define f as $f(x)=A x$
- f is linear:

$$
\begin{aligned}
f(\alpha x+\beta y) & =A(\alpha x+\beta y) \\
& =A(\alpha x)+A(\beta y) \\
& =\alpha(A x)+\beta(A y) \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

- converse is true: if $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is linear, then

$$
\begin{aligned}
f(x) & =f\left(x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}\right) \\
& =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)+\cdots+x_{n} f\left(e_{n}\right) \\
& =A x
\end{aligned}
$$

with $A=\left[\begin{array}{llll}f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots & f\left(e_{n}\right)\end{array}\right]$

Examples

- reversal: $f(x)=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)$

$$
A=\left[\begin{array}{cccc}
0 & \cdots & 0 & 1 \\
0 & \cdots & 1 & 0 \\
\vdots & . & \vdots & \vdots \\
1 & \cdots & 0 & 0
\end{array}\right]
$$

- running sum: $f(x)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}, \ldots, x_{1}+x_{2}+\cdots+x_{n}\right)$

$$
A=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & 0 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

Affine functions

- function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is affine if it is a linear function plus a constant, i.e.,

$$
f(x)=A x+b
$$

- same as:

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

holds for all x, y, and α, β with $\alpha+\beta=1$

- can recover A and b from f using

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
f\left(e_{1}\right)-f(0) & f\left(e_{2}\right)-f(0) & \cdots \\
f\left(e_{n}\right)-f(0)
\end{array}\right] \\
b & =f(0)
\end{aligned}
$$

- affine functions sometimes (incorrectly) called linear

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear and affine functions models

- in many applications, relations between n-vectors and m vectors are approximated as linear or affine
- sometimes the approximation is excellent, and holds over large ranges of the variables (e.g., electromagnetics)
- sometimes the approximation is reasonably good over smaller ranges (e.g., aircraft dynamics)
- in other cases it is quite approximate, but still useful (e.g., econometric models)

Price elasticity of demand

- n goods or services
- prices given by n-vector p, demand given as n-vector d
- $\delta_{i}^{\text {price }}=\left(p_{i}^{\text {new }}-p_{i}\right) / p_{i}$ is fractional changes in prices
- $\delta_{i}^{\text {dem }}=\left(d_{i}^{\text {new }}-d_{i}\right) / d_{i}$ is fractional change in demands
- price-demand elasticity model: $\delta^{\mathrm{dem}}=E \delta^{\text {price }}$
- what do the following mean?

$$
E_{11}=-0.3, \quad E_{12}=+0.1, \quad E_{23}=-0.05
$$

Taylor series approximation

- suppose $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ is differentiable
- first order Taylor approximation \hat{f} of f near z :

$$
\begin{aligned}
\hat{f}_{i}(x) & =f_{i}(z)+\frac{\partial f_{i}}{\partial x_{1}}(z)\left(x_{1}-z_{1}\right)+\cdots+\frac{\partial f_{i}}{\partial x_{n}}(z)\left(x_{n}-z_{n}\right) \\
& =f_{i}(z)+\nabla f_{i}(z)^{T}(x-z)
\end{aligned}
$$

- in compact notation: $\hat{f}(x)=f(z)+D f(z)(x-z)$
- $D f(z)$ is the $m \times n$ derivative or Jacobian matrix of f at z

$$
D f(z)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(z), \quad i=1, \ldots, m, \quad j=1, \ldots, n
$$

- $\hat{f}(x)$ is a very good approximation of $f(x)$ for x near z
- $\hat{f}(x)$ is an affine function of x

Regression model

- regression model: $\hat{y}=x^{T} \beta+v$
$-x$ is n-vector of features or regressors
- β is n-vector of model parameters; v is offset parameter
- (scalar) \hat{y} is our prediction of y
- now suppose we have N examples or samples $x^{(1)}, \ldots, x^{(N)}$, and associated responses $y^{(1)}, \ldots, y^{(N)}$
- associated predictions are $\hat{y}^{(i)}=\left(x^{(i)}\right)^{T} \beta+v$
- write as $\hat{y}^{\mathrm{d}}=X^{T} \beta+v \mathbf{1}$
- X is feature matrix with columns $x^{(1)}, \ldots, x^{(N)}$
- y^{d} is N-vector of responses $\left(y^{(1)}, \ldots, y^{(N)}\right)$
- \hat{y}^{d} is N-vector of predictions $\left(\hat{y}^{(1)}, \ldots, \hat{y}^{(N)}\right)$
- prediction error (vector) is $y^{\mathrm{d}}-\hat{y}^{\mathrm{d}}=y^{\mathrm{d}}-X^{T} \beta-v \mathbf{1}$

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Systems of linear equations

- set (or system) of m linear equations in n variables x_{1}, \ldots, x_{n} :

$$
\begin{aligned}
A_{11} x_{1}+A_{12} x_{2}+\cdots+A_{1 n} x_{n} & =b_{1} \\
A_{21} x_{1}+A_{22} x_{2}+\cdots+A_{2 n} x_{n} & =b_{2} \\
& \vdots \\
A_{m 1} x_{1}+A_{m 2} x_{2}+\cdots+A_{m n} x_{n} & =b_{m}
\end{aligned}
$$

- n-vector x is called the variable or unknowns
- $A_{i j}$ are the coefficients; A is the coefficient matrix
- b is called the right-hand side
- can express very compactly as $A x=b$

Systems of linear equations

- systems of linear equations classified as
- under-determined if $m<n$ (A wide)
- square if $m=n$ (A square)
- over-determined if $m>n$ (A tall)
- x is called a solution if $A x=b$
- depending on A and b, there can be
- no solution
- one solution
- many solutions
- we'll see how to solve linear equations later

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Chemical equations

- a chemical reaction involves p reactants, q products (molecules)
- expressed as

$$
a_{1} R_{1}+\cdots+a_{p} R_{p} \longrightarrow b_{1} P_{1}+\cdots+b_{q} P_{q}
$$

- R_{1}, \ldots, R_{p} are reactants
- P_{1}, \ldots, P_{q} are products
- $a_{1}, \ldots, a_{p}, b_{1}, \ldots, b_{q}$ are positive coefficients
- coefficients usually integers, but can be scaled
- e.g., multiplying all coefficients by $1 / 2$ doesn't change the reaction

Example: electrolysis of water

$$
2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

- one reactant: water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
- two products: hydrogen $\left(\mathrm{H}_{2}\right)$ and oxygen $\left(\mathrm{O}_{2}\right)$
- reaction consumes 2 water molecules and produces 2 hydrogen molecules and 1 oxygen molecule

Balancing equations

- each molecule (reactant/product) contains specific numbers of (types of) atoms, given in its formula
- e.g., $\mathrm{H}_{2} \mathrm{O}$ contains two H and one O
- conservation of mass: total number of each type of atom in a chemical equation must balance
- for each atom, total number on LHS must equal total on RHS
- e.g., electrolysis reaction is balanced:
- 4 units of H on LHS and RHS
- 2 units of O on LHS and RHS
- finding (nonzero) coefficients to achieve balance is called balancing equations

Reactant and product matrices

- consider reaction with m types of atoms, p reactants, q products
- $m \times p$ reactant matrix R is defined by
$R_{i j}=$ number of atoms of type i in reactant R_{j},
for $i=1, \ldots, m$ and $j=1, \ldots, p$
- with $a=\left(a_{1}, \ldots, a_{p}\right)$ (vector of reactant coefficients)
$R a=$ (vector of) total numbers of atoms of each type in reactants
- define product $m \times q$ matrix P in similar way
- m-vector Pb is total numbers of atoms of each type in products
- conservation of mass is $R a=P b$

Balancing equations via linear equations

- conservation of mass is

$$
\left[\begin{array}{ll}
R & -P
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=0
$$

- simple solution is $a=b=0$
- to find a nonzero solution, set any coefficient (say, a_{1}) to be 1
- balancing chemical equations can be expressed as solving a set of $m+1$ linear equations in $p+q$ variables

$$
\left[\begin{array}{cc}
R & -P \\
e_{1}^{T} & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]=e_{m+1}
$$

(we ignore here that a_{i} and b_{i} should be nonnegative integers)

Conservation of charge

- can extend to include charge, e.g., $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ has charge -2
- conservation of charge: total charge on each side of reaction must balance
- we can simply treat charge as another type of atom to balance

Example

$$
a_{1} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+a_{2} \mathrm{Fe}^{2+}+a_{3} \mathrm{H}^{+} \longrightarrow b_{1} \mathrm{Cr}^{3+}+b_{2} \mathrm{Fe}^{3+}+b_{3} \mathrm{H}_{2} \mathrm{O}
$$

- 5 atoms/charge: $\mathrm{Cr}, \mathrm{O}, \mathrm{Fe}, \mathrm{H}$, charge
- reactant and product matrix:

$$
R=\left[\begin{array}{rrr}
2 & 0 & 0 \\
7 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 2 & 1
\end{array}\right], \quad P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 2 \\
3 & 3 & 0
\end{array}\right]
$$

- balancing equations (including $a_{1}=1$ constraint)

$$
\left[\begin{array}{rrrrrr}
2 & 0 & 0 & -1 & 0 & 0 \\
7 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -2 \\
-2 & 2 & 1 & -3 & -3 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Balancing equations example

- solving the system yields

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
6 \\
14 \\
2 \\
6 \\
7
\end{array}\right]
$$

- the balanced equation is

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

