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Superposition

I f : Rn ! Rm means f is a function that maps n-vectors to m-vectors

I we write f (x) = (f1(x), . . . , fm(x)) to emphasize components of f (x)

I we write f (x) = f (x1, . . . ,xn) to emphasize components of x

I f satisfies superposition if for all x, y, ↵, �

f (↵x + �y) = ↵f (x) + �f (y)

(this innocent looking equation says a lot . . . )

I such an f is called linear
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Matrix-vector product function

I with A an m ⇥ n matrix, define f as f (x) = Ax

I f is linear:

f (↵x + �y) = A(↵x + �y)
= A(↵x) + A(�y)
= ↵(Ax) + �(Ay)
= ↵f (x) + �f (y)

I converse is true: if f : Rn ! Rm is linear, then

f (x) = f (x1e1 + x2e2 + · · · + xnen)
= x1f (e1) + x2f (e2) + · · · + xnf (en)
= Ax

with A =
f

f (e1) f (e2) · · · f (en)
g
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Examples

I reversal: f (x) = (xn,xn�1, . . . ,x1)

A =

26666666664

0 · · · 0 1
0 · · · 1 0
... . .

. ...
...

1 · · · 0 0

37777777775
I running sum: f (x) = (x1, x1 + x2, x1 + x2 + x3, . . . , x1 + x2 + · · · + xn)

A =

2666666666664

1 0 · · · 0 0
1 1 · · · 0 0
...
...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

3777777777775
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A�ne functions

I function f : Rn ! Rm is a�ne if it is a linear function plus a constant, i.e.,

f (x) = Ax + b

I same as:
f (↵x + �y) = ↵f (x) + �f (y)

holds for all x, y, and ↵, � with ↵ + � = 1

I can recover A and b from f using

A =
f

f (e1) � f (0) f (e2) � f (0) · · · f (en) � f (0)
g

b = f (0)

I a�ne functions sometimes (incorrectly) called linear
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Linear and a�ne functions models

I in many applications, relations between n-vectors and m vectors are
approximated as linear or a�ne

I sometimes the approximation is excellent, and holds over large ranges of
the variables (e.g., electromagnetics)

I sometimes the approximation is reasonably good over smaller ranges
(e.g., aircraft dynamics)

I in other cases it is quite approximate, but still useful (e.g., econometric
models)
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Price elasticity of demand

I n goods or services

I prices given by n-vector p, demand given as n-vector d

I �price
i
= (pnew

i
� pi)/pi is fractional changes in prices

I �dem
i
= (dnew

i
� di)/di is fractional change in demands

I price-demand elasticity model: �dem = E�price

I what do the following mean?

E11 = �0.3, E12 = +0.1, E23 = �0.05
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Taylor series approximation

I suppose f : Rn ! Rm is di�erentiable
I first order Taylor approximation f̂ of f near z:

f̂i(x) = fi(z) +
@fi

@x1
(z)(x1 � z1) + · · · + @fi

@xn

(z)(xn � zn)

= fi(z) + rfi(z)T (x � z)

I in compact notation: f̂ (x) = f (z) + Df (z)(x � z)

I Df (z) is the m ⇥ n derivative or Jacobian matrix of f at z

Df (z)ij =
@fi

@xj

(z), i = 1, . . . ,m, j = 1, . . . ,n

I f̂ (x) is a very good approximation of f (x) for x near z

I f̂ (x) is an a�ne function of x
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Regression model

I regression model: ŷ = x
T � + v

– x is n-vector of features or regressors
– � is n-vector of model parameters; v is o�set parameter
– (scalar) ŷ is our prediction of y

I now suppose we have N examples or samples x
(1) , . . . ,x(N) , and

associated responses y
(1) , . . . ,y(N)

I associated predictions are ŷ
(i) = (x(i) )T � + v

I write as ŷ
d = X

T � + v1
– X is feature matrix with columns x

(1) , . . . ,x(N)

– y
d is N-vector of responses (y(1) , . . . ,y(N) )

– ŷ
d is N-vector of predictions (ŷ(1) , . . . , ŷ(N) )

I prediction error (vector) is y
d � ŷ

d = y
d � X

T � � v1
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Systems of linear equations

I set (or system) of m linear equations in n variables x1, . . . , xn:

A11x1 + A12x2 + · · · + A1nxn = b1

A21x1 + A22x2 + · · · + A2nxn = b2
...

Am1x1 + Am2x2 + · · · + Amnxn = bm

I n-vector x is called the variable or unknowns

I Aij are the coe�cients; A is the coe�cient matrix

I b is called the right-hand side

I can express very compactly as Ax = b
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Systems of linear equations

I systems of linear equations classified as
– under-determined if m < n (A wide)
– square if m = n (A square)
– over-determined if m > n (A tall)

I x is called a solution if Ax = b

I depending on A and b, there can be
– no solution
– one solution
– many solutions

I we’ll see how to solve linear equations later
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Chemical equations

I a chemical reaction involves p reactants, q products (molecules)

I expressed as

a1R1 + · · · + apRp �! b1P1 + · · · + bqPq

I R1, . . . ,Rp are reactants

I P1, . . . ,Pq are products

I a1, . . . ,ap,b1, . . . ,bq are positive coe�cients

I coe�cients usually integers, but can be scaled
– e.g., multiplying all coe�cients by 1/2 doesn’t change the reaction
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Example: electrolysis of water

2H2O �! 2H2 + O2

I one reactant: water (H2O)

I two products: hydrogen (H2) and oxygen (O2)

I reaction consumes 2 water molecules and produces 2 hydrogen molecules
and 1 oxygen molecule
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Balancing equations

I each molecule (reactant/product) contains specific numbers of (types of)
atoms, given in its formula

– e.g., H2O contains two H and one O

I conservation of mass: total number of each type of atom in a chemical
equation must balance

I for each atom, total number on LHS must equal total on RHS

I e.g., electrolysis reaction is balanced:
– 4 units of H on LHS and RHS
– 2 units of O on LHS and RHS

I finding (nonzero) coe�cients to achieve balance is called balancing

equations
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Reactant and product matrices

I consider reaction with m types of atoms, p reactants, q products

I m ⇥ p reactant matrix R is defined by

Rij = number of atoms of type i in reactant Rj,

for i = 1, . . . ,m and j = 1, . . . ,p

I with a = (a1, . . . ,ap) (vector of reactant coe�cients)

Ra = (vector of) total numbers of atoms of each type in reactants

I define product m ⇥ q matrix P in similar way

I m-vector Pb is total numbers of atoms of each type in products

I conservation of mass is Ra = Pb
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Balancing equations via linear equations

I conservation of mass is
f

R �P

g " a

b

#
= 0

I simple solution is a = b = 0

I to find a nonzero solution, set any coe�cient (say, a1) to be 1

I balancing chemical equations can be expressed as solving a set of m + 1
linear equations in p + q variables

"
R �P

e
T

1 0

# "
a

b

#
= em+1

(we ignore here that ai and bi should be nonnegative integers)
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Conservation of charge

I can extend to include charge, e.g., Cr2O2�
7 has charge �2

I conservation of charge: total charge on each side of reaction must balance

I we can simply treat charge as another type of atom to balance
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Example

a1Cr2O2�
7 + a2Fe2+ + a3H+ �! b1Cr3+ + b2Fe3+ + b3H2O

I 5 atoms/charge: Cr, O, Fe, H, charge
I reactant and product matrix:

R =

266666666664

2 0 0
7 0 0
0 1 0
0 0 1
�2 2 1

377777777775
, P =

266666666664

1 0 0
0 0 1
0 1 0
0 0 2
3 3 0

377777777775
I balancing equations (including a1 = 1 constraint)

26666666666664

2 0 0 �1 0 0
7 0 0 0 0 �1
0 1 0 0 �1 0
0 0 1 0 0 �2
�2 2 1 �3 �3 0

1 0 0 0 0 0

37777777777775

26666666666664

a1
a2
a3
b1
b2
b3

37777777777775
=

26666666666664

0
0
0
0
0
1

37777777777775
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Balancing equations example

I solving the system yields 26666666666664

a1
a2
a3
b1
b2
b3

37777777777775
=

26666666666664

1
6

14
2
6
7

37777777777775
I the balanced equation is

Cr2O2�
7 + 6Fe2+ + 14H+ �! 2Cr3+ + 6Fe3+ + 7H2O
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