

The Eye and Vision 70 percent of all sensory receptors are in the eyes Each eye has over a million nerve fibers Protection for the eye A cushion of fat

Accessory Structures of the Eye Conjunctiva Membrane that lines the eyelids Connects to the surface of the eye Secretes mucus to lubricate the eye Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Function of the Lacrimal Apparatus

- Properties of lacrimal fluid
 - Dilute salt solution (tears)
 - Contains antibodies and lysozyme
- Protects, moistens, and lubricates the eye
- Empties into the nasal cavity

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

The Fibrous Tunic

- Sclera
 - White connective tissue layer
 - the "white of the eye"
- Corne
 - Allows light to pass through
 - The only human tissue that can be transplanted without fear of rejection

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cumming

Choroid Layer

- Blood-rich nutritive layer
- Pigment prevents light from scattering
- Modified interiorly into two structures
 - Cilliary body smooth muscle
 - Iris
 - Pigmented layer that gives eye color
 - Pupil rounded opening in the iris

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cumming:

Sensory Tunic (Retina)

- Contains receptor cells (photoreceptors)
 - Rods
 - Cones
- Signals leave the retina toward the brain through the optic nerve- Cranial nerve?

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Neurons of the Retina Central artery and vein of retina Optic nerve Choroid Pigmented layer of retina Optic nerve of retina Optic n

Neurons of the Retina and Vision

- Rods
 - found towards the edges of the retina
 - Allow dim light vision and peripheral vision
 - Perception is all in gray tones

Neurons of the Retina and Vision

- Cones
 - Detailed color vision
 - Fovea centralis area of the retina with only cones
- No photoreceptor cells are at the optic disk, or blind spot

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Cone Sensitivity

- There are three types of cones (red, blue, green cones)
- Different cones are sensitive to different wavelengths
- Color blindness is the result of lack of one cone type

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

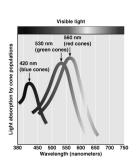
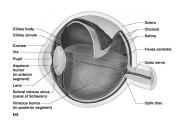



Figure 8.6

Lens

- Biconvex crystal-like structure
- Held in place by a suspensory ligament attached to the ciliary body

Ft © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Internal Eye Chamber Fluids

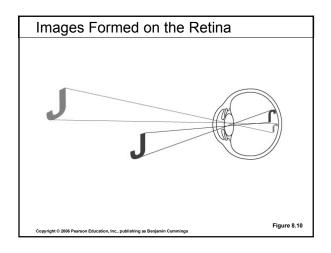
- Aqueous humor
 - Watery fluid found in chamber between the lens and cornea
 - Similar to blood plasma
 - Provides nutrients for the lens and cornea

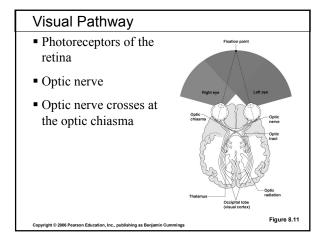
copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Internal Eye Chamber Fluids

- Vitreous humor
 - Gel-like substance behind the lens
 - Keeps the eye from collapsing
 - Lasts a lifetime and is not replaced

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cumming:


Lens Accommodation


- Light must be focused to a point on the retina for optimal vision
- The eye is set for distance vision (over 20 ft away)
- The lens must change shape to focus for closer objects

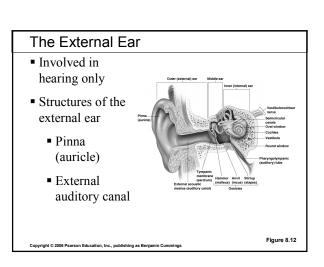
Light from near source Fo

nin Cumminas

Figure 8.9

Eye Reflexes

- Autonomic nervous system
 - Bright light causes pupils to constrict through action of radial and ciliary muscles
 - Viewing close objects causes accommodation


Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

The Ear

- Houses two senses
 - Hearing
 - Equilibrium (balance)
- Receptors are mechanoreceptors
- Different organs house receptors for each sense

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cumming:

Anatomy of the Ear The ear is divided into three areas Outer (external) ear Middle ear Inner ear Final points (currently see for the control of the con

The External Auditory Canal

- Lined with skin
- Ceruminous (wax) glands
- Ends at the tympanic membrane (Ear drum)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

The Middle Ear or Tympanic Cavity

- Air-filled cavity within the temporal bone
- Only involved in the sense of hearing

The Middle Ear or Tympanic Cavity

- Two tubes are associated with the inner ear
 - The opening from the auditory canal is covered by the tympanic membrane
 - The auditory tube connecting the middle ear with the throat
 - Allows for equalizing pressure during yawning or swallowing
 - This tube is otherwise collapsed

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Bones of the Tympanic Cavity

- Three bones span the cavity
 - Malleus (hammer)
 - Incus (anvil)
 - Stapes (stirrip)

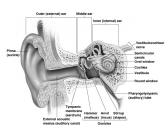
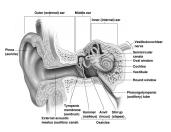
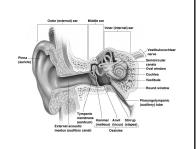
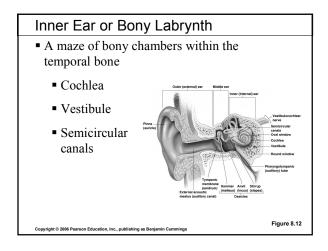



Figure 8.

Bones of the Tympanic Cavity

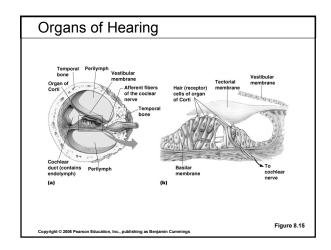

- Vibrations from eardrum move the malleus
- These bones transfer sound to the inner ear

Convigate © 2006 Pearson Education, Inc., publishing as Reniamin Cummings

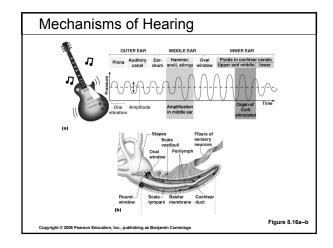

Inner Ear or Bony Labyrinth

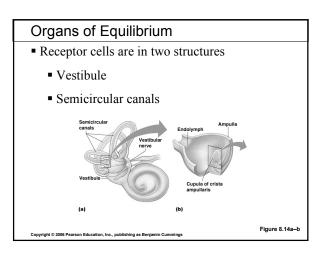
- Includes sense organs for hearing and balance
- Filled with perilymph

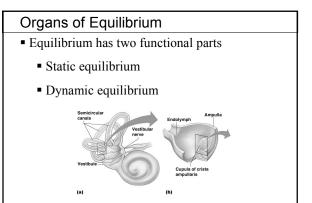
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings


Figure 8.1

Organs of Hearing

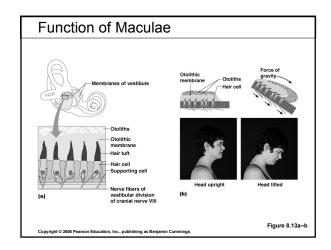

- Organ of Corti
 - Located in the cochlea
 - Receptors = hair cells on the basilar membrane
 - Gel-like membrane is capable of bending hair cells
 - Cochlear nerve attached to hair cells

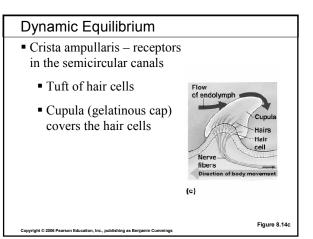

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings



Mechanisms of Hearing

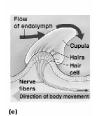
- Vibrations from sound waves move through the membrane
- Hair cells are bent by the membrane





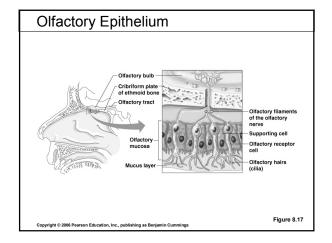
Static Equilibrium

- Maculae receptors in the vestibule
 - the position of the head
- Anatomy of the maculae
 - Hair cells are embedded in the otolithic membrane
 - Otoliths (tiny stones) float in a gel around the hair cells
 - Movements cause otoliths to bend the hair cells


Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Dynamic Equilibrium

- Action of angular head movements
 - The cupula stimulates the hair cells
 - Impulse is sent via the vestibular nerve to the cerebellum


Chemical Senses – Taste and Smell

- Both senses use chemoreceptors
 - Stimulated by chemicals in solution
 - Taste has four types of receptors
 - Smell can differentiate a large range of chemicals
- Both senses complement each other and respond to many of the same stimuli

Olfaction - The Sense of Smell

- Olfactory receptors are in the roof of the nasal cavity
 - Chemicals must be dissolved in mucus for detection
- Interpretation of smells is made in the brain

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

The Sense of Taste

- Taste buds house the receptor organs
- Locations:
- Most are on the tongue
 - Soft palate
 - Cheeks

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

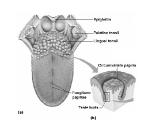
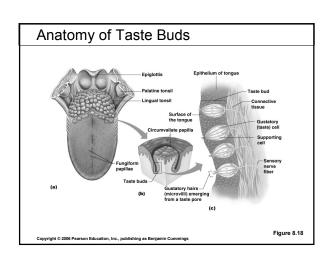


Figure 8.18a-l


The Tongue and Taste

- The tongue is covered with papillae
 - Filiform papillae sharp with no taste buds
 - Fungifiorm papillae rounded with taste buds
 - Circumvallate papillae large papillae with taste buds
- Taste buds are found on the sides of papillae

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Structure of Taste Buds

- Gustatory cells are the receptors
 - Have gustatory hairs (long microvilli)
 - Hairs are stimulated by chemicals dissolved in saliva

Taste Sensations

- Sweet receptors
 - Sugars
 - Saccharine
 - Some amino acids
- Sour receptors
 - Acids
- Bitter receptors
 - Alkaloids
- Salty receptors
 - Metal ions

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Developmental Aspects of the Special Senses

- DO NOT COPY THIS DOWN; INTERESTING INFORMATION ONLY
- Formed early in embryonic development
- Eyes are outgrowths of the brain
- All special senses are functional at birth