
 1

8 Steps for a Developer
to Learn Apache Spark
with Delta Lake
From the original creators of Apache Spark and Delta Lake

™

Data without limits

8 Steps for a Developer to
Learn Apache Spark™ with Delta Lake

From the original creators of Apache Spark and Delta Lake
© Databricks 2020. All rights reserved. Apache, Apache Spark, Spark and the Spark logo are trademarks of the Apache Software Foundation.
Copyright © 2020 Delta Lake, a Series of LF Projects, LLC. For website terms of use, trademark policy and other project policies please see
https://lfprojects.org.

Databricks
160 Spear Street, 13th Floor
San Francisco, CA 94105
Contact Us

 2

About Databricks
Databricks’ mission is to accelerate innovation for its customers by unifying Data Science, Engineering and Business. Founded by the team who
created Apache Spark™, Databricks provides a Unified Analytics Platform for data science teams to collaborate with data engineering and lines of
business to build data products. Users achieve faster time-to-value with Databricks by creating analytic workflows that go from ETL and interactive
exploration to production. The company also makes it easier for its users to focus on their data by providing a fully managed, scalable, and secure
cloud infrastructure that reduces operational complexity and total cost of ownership. Databricks, venture-backed by Andreessen Horowitz and
NEA, has a global customer base that includes CapitalOne, Salesforce, Viacom, Amgen, Shell and HP. For more information, visit
www.databricks.com.

http://www.databricks.com
https://lfprojects.org/
http://databricks.com
http://go.databricks.com/contact-databricks
http://www.databricks.com

Table of Contents

Introduction 4

Step 1: Why Apache Spark 5

Step 2: Apache Spark Concepts, Key Terms and Keywords 7

Step 3: Advanced Apache Spark Internals and Core 11

Step 4: DataFames, Datasets and Spark SQL Essentials 13

Step 5: Graph Processing with GraphFrames 17

Step 6: Continuous Applications with Structured Streaming 21

Step 7: Machine Learning for Humans 27

Step 8: Reliable Data Lakes & Data Pipelines 30

Conclusion 35

 3

Introduction

Since inception, Databricks’ mission has been to make Big Data simple
and accessible to everyone through the unification of data and
analytics — for organizations of all sizes and across all industries. And
we have not deviated from that mission. Over the last couple of years,
we have learned how the community of developers use Spark and how
organizations use it to build sophisticated applications.

In this ebook, we expand, augment and curate on concepts initially
published on KDnuggets. In addition, we augment the ebook with
technical blogs and related assets specific to Delta Lake and Apache
Spark 2.x, written and presented by leading Spark contributors and
members of Spark PMC including Matei Zaharia, the creator of Spark;
Reynold Xin, chief architect; Michael Armbrust, lead architect behind
Spark SQL and Structured Streaming; Joseph Bradley, one of the
drivers behind Spark MLlib and SparkR; and Tathagata Das, lead
developer for Structured Streaming.

Delta Lake is an open source storage layer that sits on top of your
existing data lake file storage, such AWS S3, Azure Data Lake Storage,
or HDFS. Delta Lake brings reliability, performance, and lifecycle
management to data lakes. No more malformed data ingestion,
difficulty deleting data for compliance, or issues modifying data for
change data capture. Accelerate the velocity that high quality data can
get into your data lake, and the rate that teams can leverage that data,
with a secure and scalable cloud service. As an open source project
supported by the Linux Foundation, Delta Lake allows data to be read
by any compatible reader and is compatible with Apache Spark.

Collectively, the ebook introduces steps for a developer to understand
Delta Lake and Apache Spark, at a deeper level. Whether you’re getting
started with Delta Lake and Apache Spark or already an accomplished
developer, this ebook will arm you with the knowledge to employ all of
Delta Lake’s and Apache Spark’s benefits.

Jules S. Damji
Apache Spark Community Evangelist

Introduction 4

Step 1: Why
Apache Spark

Why Apache Spark? 5

Section 1: An Introduction to the Apache Spark APIs for Analytics
Step 1:
Why Apache Spark?

Why Apache Spark?

For one, Apache Spark is the most active open source data processing
engine built for speed, ease of use, and advanced analytics, with over
1000+ contributors from over 250 organizations and a growing
community of developers and adopters and users. Second, as a
general purpose fast compute engine designed for distributed data
processing at scale, Spark supports multiple workloads through a
unified engine comprised of Spark components as libraries accessible
via unified APIs in popular programing languages, including Scala,
Java, Python, and R. And finally, it can be deployed in different
environments, read data from various data sources, and interact with
myriad applications.

All together, this unified compute engine makes Spark an ideal
environment for diverse workloads—traditional and streaming ETL,
interactive or ad-hoc queries (Spark SQL), advanced analytics
(Machine Learning), graph processing (GraphX/GraphFrames), and
Streaming (Structured Streaming)—all running within the same
engine.

In the subsequent steps, you will get an introduction to some of these
components, from a developer’s perspective, but first let’s capture key
concepts and key terms.

Why Apache Spark? 6

Spark Core Engine

Spark
SQL

Spark
Streaming

Streaming

MLlib
Machine
 Learning

GraphX
Graph

Computation

Spark R
R on Spark

Spark Core Engine

Spark
SQL

Spark
Streaming

Streaming

MLlib
Machine
 Learning

GraphX
Graph

Computation

Spark R
R on Spark

Environments

Applications

Data Sources

DataFrames / SQL / Datasets APIs

RDD API

Spark Core

Spark SQL Spark Streaming MLlib GraphX

S3

{JSON}

Sparkling

http://spark.apache.org/
https://github.com/apache/spark/graphs/contributors
http://cacm.acm.org/magazines/2016/11/209116-apache-spark/fulltext

Step 2: Apache
Spark Concepts,
Key Terms and
Keywords

Why Apache Spark? 7

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 2:
Apache Spark Concepts, Key Terms
and Keywords

Apache Spark Architectural
Concepts, Key Terms and
Keywords

In June 2016, KDnuggets published Apache Spark Key Terms Explained,
which is a fitting introduction here. Add to this conceptual vocabulary
the following Spark’s architectural terms, as they are referenced in this
article.

Spark Cluster
A collection of machines or nodes in the public cloud or on-premise in
a private data center on which Spark is installed. Among those
machines are Spark workers, a Spark Master (also a cluster manager in
a Standalone mode), and at least one Spark Driver.

Spark Master
As the name suggests, a Spark Master JVM acts as a cluster manager in
a Standalone deployment mode to which Spark workers register
themselves as part of a quorum. Depending on the deployment mode,
it acts as a resource manager and decides where and how many
Executors to launch, and on what Spark workers in the cluster.

Spark Worker
Upon receiving instructions from Spark Master, the Spark worker JVM
launches Executors on the worker on behalf of the Spark Driver. Spark
applications, decomposed into units of tasks, are executed on each
worker’s Executor. In short, the worker’s job is to only launch an
Executor on behalf of the master.

Spark Executor
A Spark Executor is a JVM container with an allocated amount of cores
and memory on which Spark runs its tasks. Each worker node
launches its own Spark Executor, with a configurable number of cores
(or threads). Besides executing Spark tasks, an Executor also stores
and caches all data partitions in its memory.

Spark Driver
Once it gets information from the Spark Master of all the workers in the
cluster and where they are, the driver program distributes Spark tasks
to each worker’s Executor. The driver also receives computed results
from each Executor’s tasks.

Apache Spark Architectural Concepts, Key Terms and Keywords 8

http://www.kdnuggets.com/2016/06/spark-key-terms-explained.html

SparkSession and SparkContext
As shown in Fig 2., a SparkContext is a conduit to access all Spark
functionality; only a single SparkContext exists per JVM. The Spark
driver program uses it to connect to the cluster manager to
communicate, and submit Spark jobs. It allows you to
programmatically adjust Spark configuration parameters. And through
SparkContext, the driver can instantiate other contexts such as
SQLContext, HiveContext, and StreamingContext to program Spark.

However, with Apache Spark 2.0, SparkSession can access all of Spark’s
functionality through a single-unified point of entry. As well as making
it simpler to access Spark functionality, such as DataFrames and
Datasets, Catalogues, and Spark Configuration, it also subsumes the
underlying contexts to manipulate data.

A blog post on How to Use SparkSessions in Apache Spark 2.0 explains
this in detail, and its accompanying notebooks give you examples in
how to use SparkSession programming interface.

Spark Deployment Modes Cheat Sheet
Spark supports four cluster deployment modes, each with its own
characteristics with respect to where Spark’s components run within a
Spark cluster. Of all modes, the local mode, running on a single host, is
by far the simplest—to learn and experiment with.

As a beginner or intermediate developer, you don’t need to know this
elaborate matrix right away. It’s here for your reference, and the links
provide additional information. Furthermore, Step 3 is a deep dive into
all aspects of Spark architecture from a devops point of view.

Apache Spark Architectural Concepts, Key Terms and Keywords 9

Fig 1. Spark Cluster Fig 2. SparkContext and its Interaction with Spark Components

Driver Program

SparkContext Cluster Manager

Worker Node

Executor Cache

TaskTask

Worker Node

Executor Cache

TaskTask

SparkSessions Subsumes
• SparkContext
• SQLContext
• HiveContext
• StreamingContext
• SparkConf

SparkSession vs.
SparkContext

Spark
Physical Cluster

https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SparkSession
https://databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html
http://dbricks.co/sswksh1
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/SparkSessionZipsExample.html
http://spark.apache.org/docs/latest/cluster-overview.html#cluster-manager-types

Table 1. Cheat Sheet Depicting Deployment Modes And Where Each Spark Component Runs

Spark Apps, Jobs, Stages and Tasks
An anatomy of a Spark application usually comprises of Spark
operations, which can be either transformations or actions on your
data sets using Spark’s RDDs, DataFrames or Datasets APIs. For
example, in your Spark app, if you invoke an action, such as collect() or
take() on your DataFrame or Dataset, the action will create a job. A job
will then be decomposed into single or multiple stages; stages are
further divided into individual tasks; and tasks are units of execution
that the Spark driver’s scheduler ships to Spark Executors on the Spark
worker nodes to execute in your cluster. Often multiple tasks will run in
parallel on the same executor, each processing its unit of partitioned
dataset in its memory.

In this informative part of the video, Sameer Farooqui elaborates each
of the distinct stages in vivid details. He illustrates how Spark jobs,
when submitted, get broken down into stages, some multiple stages,
followed by tasks, scheduled to be distributed among executors on
Spark workers.

MODE DRIVER WORKER EXECUTOR MASTER

Local Runs on a single JVM Runs on the same JVM as the driver Runs on the same JVM as the driver Runs on a single host

Standalone Can run on any node in the cluster Runs on its own JVM on each node Each worker in the cluster will launch
its own JVM

Can be allocated arbitrarily where the
master is started

Yarn
(client)

On a client, not part of the cluster YARN NodeManager YARN’s NodeManager’s Container YARN’s Resource Manager works with
YARN’s Application Master to allocate the
containers on NodeManagers for Executors.

YARN
(cluster)

Runs within the YARN’s Application
Master

Same as YARN client mode Same as YARN client mode Same as YARN client mode

Mesos
(client)

Runs on a client machine, not part of
Mesos cluster

Runs on Mesos Slave Container within Mesos Slave Mesos’ master

Mesos
(cluster)

Runs within one of Mesos’ master Same as client mode Same as client mode Mesos' master

Apache Spark Architectural Concepts, Key Terms and Keywords 10

.collect()

JOB #1

STAGE 1 TASK #1
TASK #2
TASK #3

STAGE 2

STAGE 3 STAGE 4

STAGE 5

Fig 3.
Anatomy of a
Spark Application

http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://youtu.be/7ooZ4S7Ay6Y?t=12038

Step 3: Advanced
Apache Spark
Internals and Core

Apache Spark Architectural Concepts, Key Terms and Keywords 11

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 3:
Advanced Apache Spark
Internals and Core

Advanced Apache Spark
Internals and Spark Core

To understand how all of the Spark components interact—and to be
proficient in programming Spark—it’s essential to grasp Spark’s core
architecture in details. All the key terms and concepts defined in Step 2
come to life when you hear them explained. No better place to see it
explained than in this Spark Summit training video; you can immerse
yourself and take the journey into Spark’s core.

Besides the core architecture, you will also learn the following:

• How the data are partitioned, transformed, and transferred across
Spark worker nodes within a Spark cluster during network transfers
called “shuffle”

• How jobs are decomposed into stages and tasks.

• How stages are constructed as a Directed Acyclic Graph (DAGs).

• How tasks are then scheduled for distributed execution.

Advanced Apache Spark Internals and Spark Core 12

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

https://www.youtube.com/watch?v=7ooZ4S7Ay6Y
https://www.youtube.com/watch?v=7ooZ4S7Ay6Y
https://www.youtube.com/watch?v=7ooZ4S7Ay6Y

Step 4: DataFames,
Datasets and Spark
SQL Essentials

Advanced Apache Spark Internals and Spark Core 13

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 4:
DataFrames, Datasets,
and Spark SQL Essentials

DataFrames, Datasets and
Spark SQL Essentials

In Steps 2 and 3, you might have learned about Resilient Distributed
Datasets (RDDs)—if you watched the linked videos—because they form
the core data abstraction concept in Spark and underpin all other
higher-level data abstractions and APIs, including DataFrames and
Datasets.

In Apache Spark 2.0, DataFrames and Datasets, built upon RDDs and
Spark SQL engine, form the core high-level and structured distributed
data abstraction. They are merged to provide a uniform API across
libraries and components in Spark.

DataFrames are named data columns in Spark and they impose a
structure and schema in how your data is organized. This organization
dictates how to process data, express a computation, or issue a query.
For example, your data may be distributed across four RDD partitions,
each partition with three named columns: “Time,” “Site,” and “Req.” As
such, it provides a natural and intuitive way to access data by their
named columns.

Datasets, on the other hand, go one step further to provide you strict
compile-time type safety, so certain type of errors are caught at
compile time rather than runtime.

 14

Datasets and DataFrames
Unified Apache Spark 2.0 API

Fig 3. Unified APIs across Apache Spark

Fig 4. A sample DataFrame with named columns

DataFrame Structure

http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes

Because of structure in your data and type of data, Spark can
understand how you would express your computation, what particular
typed-columns or typed-named fields you would access in your data,
and what domain specific operations you may use. By parsing your
high-level or compute operations on the structured and typed-specific
data, represented as DataSets, Spark will optimize your code, through
Spark 2.0’s Catalyst optimizer, and generate efficient bytecode through
Project Tungsten.

DataFrames and Datasets offer high-level domain specific language
APIs, making your code expressive by allowing high-level operators like
filter, sum, count, avg, min, max etc. Whether you express your
computations in Spark SQL, Python, Java, Scala, or R Dataset/
Dataframe APIs, the underlying code generated is identical because all
execution planning undergoes the same Catalyst optimization as
shown in Fig 6.

For example, this high-level domain specific code in Scala or its
equivalent relational query in SQL will generate identical code.
Consider a Dataset Scala object called Person and an SQL table
“person.”

 15

Fig 5. Spectrum of Errors Types detected for DataFrames & Datasets Fig 6. Journey undertaken by a high-level computation in DataFrame, Dataset or SQL

Spark SQL Architecture

// a dataset object Person with field names fname, lname, age, weight
// access using object notation
val seniorDS = peopleDS.filter(p=>p.age > 55)
// a dataframe with structure with named columns fname, lname, age, weight
// access using col name notation
val seniorDF = peopleDF.where(peopleDF(“age”) > 55)
// equivalent Spark SQL code
val seniorDF = spark.sql(“SELECT age from person where age > 35”)

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html

To get a whirlwind introduction of why structuring data in Spark is
important and why DataFrames, Datasets, and Spark SQL provide an
efficient way to program Spark, we urge you to watch this Spark
Summit talk by Michael Armbrust, Spark PMC and committer, in which
he articulates the motivations and merits behind structure in Spark.

In addition, these technical assets discuss DataFrames and Datasets,
and how to use them in processing structured data like JSON files and
issuing Spark SQL queries.

1. Introduction to Datasets in Apache Spark

2. A tale of Three APIS: RDDs, DataFrames, and Datasets

3. Datasets and DataFrame Notebooks

 16

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/1499152197856461/3601578643761083/latest.html

Step 5: Graph
Processing with
GraphFrames

Advanced Apache Spark Internals and Spark Core 17

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 5:
Graph Processing with GraphFrames

Graph Processing with
GraphFrames

Even though Spark has a general purpose RDD-based graph processing
library named GraphX, which is optimized for distributed computing
and supports graph algorithms, it has some challenges. It has no Java
or Python APIs, and it’s based on low-level RDD APIs. Because of these
constraints, it cannot take advantage of recent performance and
optimizations introduced in DataFrames through Project Tungsten and
Catalyst Optimizer.

By contrast, the DataFrame-based GraphFrames address all these
constraints: It provides an analogous library to GraphX but with high-
level, expressive and declarative APIs, in Java, Scala and Python; an
ability to issue powerful SQL like queries using DataFrames APIs;
saving and loading graphs; and takes advantage of underlying
performance and query optimizations in Apache Spark 2.0. Moreover, it
integrates well with GraphX. That is, you can seamlessly convert a
GraphFrame into an equivalent GraphX representation.

Consider a simple example of cities and airports. In the Graph diagram
in Fig 7, representing airport codes in their cities, all of the vertices can
be represented as rows of DataFrames; and all of the edges can be
represented as rows of DataFrames, with their respective named and
typed columns.

Collectively, these DataFrames of vertices and edges comprise
a GraphFrame.

Graph Processing with GraphFrames 18

Graphs

Fig 7. A Graph Of Cities Represented As Graphframe

http://spark.apache.org/graphx/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
http://graphframes.github.io/user-guide.html

If you were to represent this above picture programmatically, you
would write as follows:

With GraphFrames you can express three kinds of powerful queries.
First, simple SQL-type queries on vertices and edges such as what trips
are likely to have major delays. Second, graph-type queries such as
how many vertices have incoming and outgoing edges. And finally,
motif queries, by providing a structural pattern or path of vertices and
edges and then finding those patterns in your graph’s dataset.

Additionally, GraphFrames easily support all of the graph algorithms
supported in GraphX. For example, find important vertices using
PageRank, determine the shortest path from source to destination, or
perform a Breadth First Search (BFS). You can also determine strongly
connected vertices for exploring social connections.

In the webinar GraphFrames: DataFrame-based graphs for Apache

Spark, Joseph Bradley, Spark Committer, gives an illuminative
introduction to graph processing with GraphFrames, its motivations
and ease of use, and the benefits of its DataFrame-based API. And
through a demonstrated notebook as part of the webinar, you’ll learn
the ease with which you can use GraphFrames and issue all of the
aforementioned types of queries and types of algorithms.

Complementing the above webinar, the two instructive blogs with
accompanying notebooks below offer an introductory and hands-on
experience with DataFrame-based GraphFrames.

1. Introduction to GraphFrames

2. On-time Flight Performance with GraphFrames for Apache Spark

Graph Processing with GraphFrames 19

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

// create a Vertices DataFrame
val vertices = spark.createDataFrame(List(("JFK", "New York",
"NY"))).toDF("id", "city", "state")
// create a Edges DataFrame
val edges = spark.createDataFrame(List(("JFK", "SEA", 45,
1058923))).toDF("src", "dst", "delay", "tripID”)
// create a GraphFrame and use its APIs
val airportGF = GraphFrame(vertices, edges)
// filter all vertices from the GraphFrame with delays greater an 30 mins
val delayDF = airportGF.edges.filter(“delay > 30”)
// Using PageRank algorithm, determine the Airport ranking of importance
val pageRanksGF =
airportGF.pageRank.resetProbability(0.15).maxIter(5).run()
display(pageRanksGF.vertices.orderBy(desc("pagerank")))

http://go.databricks.com/graphframes-dataframe-based-graphs-for-apache-spark
http://go.databricks.com/graphframes-dataframe-based-graphs-for-apache-spark
https://databricks.com/blog/2016/03/03/introducing-graphframes.html
https://databricks.com/blog/2016/03/16/on-time-flight-performance-with-graphframes-for-apache-spark.html

With Apache Spark 2.0 and beyond, many Spark components,
including Machine Learning MLlib and Streaming, are increasingly
moving towards offering equivalent DataFrames APIs, because of
performance gains, ease of use, and high-level abstraction and
structure. Where necessary or appropriate for your use case, you may
elect to use GraphFrames instead of GraphX. Below is a succinct
summary and comparison between GraphX and GraphFrames.

Finally, GraphFrames continues to get faster, and a Spark Summit talk
by Ankur Dave shows specific optimizations. A newer version of the
GraphFrames package compatible with Spark 2.0 is available as a
Spark package.

Graph Processing with GraphFrames 20

GraphFrames vs. GraphX

Fig 8. Comparison Cheat Sheet Chart

https://spark-summit.org/east-2016/events/graphframes-graph-queries-in-spark-sql/
https://spark-summit.org/east-2016/events/graphframes-graph-queries-in-spark-sql/
https://spark-packages.org/package/graphframes/graphframes

Step 6: Continuous
Applications with
Structured
Streaming

Graph Processing with GraphFrames 21

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 6:
Continuous Applications
with Structured Streaming

Continuous Applications
with Structured Streaming

For much of Spark’s short history, Spark streaming has continued to
evolve, to simplify writing streaming applications. Today, developers
need more than just a streaming programming model to transform
elements in a stream. Instead, they need a streaming model that
supports end-to-end applications that continuously react to data in
real-time. We call them continuous applications that react to data in
real-time.

Continuous applications have many facets. Examples include
interacting with both batch and real-time data; performing streaming
ETL; serving data to a dashboard from batch and stream; and doing
online machine learning by combining static datasets with real-time
data. Currently, such facets are handled by separate applications
rather than a single one.

Apache Spark 2.0 laid the foundational steps for a new higher-level
API, Structured Streaming, for building continuous applications.
Apache Spark 2.1 extended support for data sources and data sinks,
and buttressed streaming operations, including event-time processing
watermarking, and checkpointing.

When Is a Stream not a Stream
Central to Structured Streaming is the notion that you treat a stream of
data not as a stream but as an unbounded table. As new data arrives
from the stream, new rows of DataFrames are appended to an
unbounded table:

Continuous Applications with Structured Streaming 22

Fig 9. Traditional Streaming Vs Structured Streaming Fig 10. Stream as an Unbounded Table of DataFrames

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/12/29/introducing-apache-spark-2-1.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#data-sources
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-sinks
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets

You can then perform computations or issue SQL-type query
operations on your unbounded table as you would on a static table. In
this scenario, developers can express their streaming computations
just like batch computations, and Spark will automatically execute it
incrementally as data arrives in the stream. This is powerful!

Based on the DataFrames/Datasets API, a benefit of using the
Structured Streaming API is that your DataFrame/SQL based query for
a batch DataFrame is similar to a streaming query, as you can see in
the code in Fig 11., with a minor change. In the batch version, we read
a static bounded log file, whereas in the streaming version, we read off
an unbounded stream. Though the code looks deceptively simple, all
the complexity is hidden from a developer and handled by the
underlying model and execution engine, which undertakes the burden
of fault-tolerance, incremental query execution, idempotency, end-to-
end guarantees of exactly-once semantics, out-of-order data, and
watermarking events. All of this orchestration under the cover is

explained in this technical talk by Tathagata Das at Spark Summit.
More importantly, he makes the case by demonstrating how streaming
ETL, with Structured Streaming, obviates traditional ETL.

Data Sources
Data sources within the Structure Streaming nomenclature refer to
entities from which data can emerge or read. Spark 2.x supports three
built-in data sources.

File Source
Directories or files serve as data streams on a local drive, HDFS, or S3
bucket. Implementing the DataStreamReader interface, this source
supports popular data formats such as avro, JSON, text, or CSV. Since

Continuous Applications with Structured Streaming 23

Fig 11. Similar Code for Streaming and Batch

XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX
XXX

https://www.youtube.com/watch?v=UQiuyov4J-4
https://www.youtube.com/watch?v=UQiuyov4J-4
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://www.youtube.com/watch?v=UQiuyov4J-4

the sources continue to evolve with each release, check the most
recent docs for additional data formats and options.

Apache Kafka Source
Compliant with Apache Kafka 0.10.0 and higher, this source allows
structured streaming APIs to poll or read data from subscribed topics,
adhering to all Kafka semantics. This Kafka integration guide offers
further details in how to use this source with structured streaming
APIs.

Network Socket Source
An extremely useful source for debugging and testing, you can read
UTF-8 text data from a socket connection. Because it’s used for testing
only, this source does not guarantee any end-to-end fault-tolerance as
the other two sources do.

To see a simple code example, check the Structured Streaming guide
section for Data Sources and Sinks.

Data Sinks
Data Sinks are destinations where your processed and transformed
data can be written to. Since Spark 2.1, three built-in sinks are
supported, while a user defined sink can be implemented using a
foreach interface.

File Sinks
File Sinks, as the name suggests, are directories or files within a
specified directory on a local file system, HDFS or S3 bucket can serve
as repositories where your processed or transformed data can land.

Foreach Sinks
Implemented by the application developer, a ForeachWriter interface
allows you to write your processed or transformed data to the
destination of your choice. For example, you may wish to write to a
NoSQL or JDBC sink, or to write to a listening socket or invoke a REST
call to an external service. As a developer you implement its three
methods: open(), process() and close().

Console Sink
Used mainly for debugging purposes, it dumps the output to console/
stdout, each time a trigger in your streaming application is invoked.
Use it only for debugging purposes on low data volumes, as it incurs
heavy memory usage on the driver side.

Memory Sink
Like Console Sinks, it serves solely for debugging purposes, where data
is stored as an in-memory table. Where possible use this sink only on
low data volumes.

Continuous Applications with Structured Streaming 24

http://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#data-sources
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach

Streaming Operations on DataFrames
and Datasets
Most operations with respect to selection, projection, and aggregation
on DataFrames and Datasets are supported by the Structured
Streaming API, except for few unsupported ones.

For example, a simple Python code performing these operations, after
reading a stream of device data into a DataFrame, may look as follows:

Event Time Aggregations and WaterMarking
An important operation that did not exist in DStreams is now available
in Structured Streaming. Windowing operations over time line allows
you to process data not by the time data record was received by the
system, but by the time the event occurred inside its data record. As
such, you can perform windowing operations just as you would
perform groupBy operations, since windowing is classified just as
another groupBy operation. A short excerpt from the guide illustrates
this:

An ability to handle out-of-order or late data is a vital functionality,
especially with streaming data and its associated latencies, because
data not always arrives serially. What if data records arrive too late or
out of order, or what if they continue to accumulate past a certain time
threshold?

Watermarking is a scheme whereby you can mark or specify a
threshold in your processing timeline interval beyond which any data’s
event time is deemed useless. Even better, it can be discarded, without
ramifications. As such, the streaming engine can effectively and
efficiently retain only late data within that time threshold or interval.
To read the mechanics and how the Structured Streaming API can be
expressed, read the watermarking section of the programming guide.
It’s as simple as this short snippet API call:

Continuous Applications with Structured Streaming 25

devicesDF = ... # streaming DataFrame with IOT device data with schema
{ device: string, type: string, signal: double, time: DateType }
Select the devices which have signal more than 10
devicesDF.select("device").where("signal > 10")
Running count of the number of updates for each device type
devicesDF.groupBy("type").count()

import spark.implicits._
val words = ... // streaming DataFrame of schema { timestamp: Timestamp,
word: String }
// Group the data by window and word and compute the count of each group
val deviceCounts = devices.groupBy(window($"timestamp", "10 minutes", "5
minutes"), $"type"
).count()

val deviceCounts = devices
 .withWatermark("timestamp", "15 minutes")
 .groupBy(window($"timestamp", "10 minutes", "5 minutes"),
 $"type")
 .count()

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#unsupported-operations
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#handling-late-data-and-watermarking

What’s Next
After you take a deep dive into Structured Streaming, read the
Structure Streaming Programming Model, which elaborates all the
under-the-hood complexity of data integrity, fault tolerance, exactly-
once semantics, window-based and event-time aggregations,
watermarking, and out-of-order data. As a developer or user, you need
not worry about these complexities; the underlying streaming engine
takes the onus of fault-tolerance, end-to-end reliability, and
correctness guarantees.

Learn more about Structured Streaming directly from Spark committer
Tathagata Das, and try the accompanying notebook to get some
hands-on experience on your first Structured Streaming continuous
application. An additional workshop notebook illustrates how to
process IoT devices' streaming data using Structured Streaming APIs.
Structured Streaming API in Apache Spark 2.0: A new high-level API for
streaming

Similarly, the Structured Streaming Programming Guide offers short
examples on how to use supported sinks and sources:

Structured Streaming Programming Guide

Continuous Applications with Structured Streaming 26

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://dbricks.co/sswksh4
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

Step 7: Machine
Learning for
Humans

Continuous Applications with Structured Streaming 27

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 7:
Machine Learning for Humans

Machine Learning for Humans

At a human level, machine learning is all about applying statistical
learning techniques and algorithms to a large dataset to identify
patterns, and from these patterns probabilistic predictions. A
simplified view of a model is a mathematical function f(x); with a large
dataset as the input, the function f(x) is repeatedly applied to the
dataset to produce an output with a prediction. A model function, for
example, could be any of the various machine learning algorithms: a
Linear Regression or Decision Tree.

As the core component library in Apache Spark, MLlib offers numerous
supervised and unsupervised learning algorithms, from Logistic
Regression to k-means and clustering, from which you can construct
these mathematical models.

Key Terms and Machine Learning Algorithms
For introductory key terms of machine learning, Matthew Mayo’s
Machine Learning Key Terms, Explained is a valuable reference for
understanding some concepts discussed in the Databricks webinar on
the following page. Also, a hands-on getting started guide, included as
a link here, along with documentation on Machine Learning
algorithms, buttress the concepts that underpin machine learning,
with accompanying code examples in Databricks notebooks.

Machine Learning Pipelines
Apache Spark’s DataFrame-based MLlib provides a set of algorithms as
models and utilities, allowing data scientists to build machine learning
pipelines easily. Borrowed from the scikit-learn project, MLlib pipelines
allow developers to combine multiple algorithms into a single pipeline
or workflow. Typically, running machine learning algorithms involves a

Machine Learning for Humans 28

Fig 12. Model as a Mathematical Function

http://spark.apache.org/mllib/
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://go.databricks.com/spark-mllib-from-quick-start-to-scikit-learn
https://docs.databricks.com/spark/latest/mllib/index.html
https://docs.databricks.com/spark/latest/mllib/index.html
http://spark.apache.org/mllib/
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
http://scikit-learn.org/
http://spark.apache.org/docs/latest/ml-pipeline.html

sequence of tasks, including pre-processing, feature extraction, model
fitting, and validation stages. In Spark 2.0, this pipeline can be
persisted and reloaded again, across languages Spark supports (see
the blog link below).

In the webinar on Apache Spark MLlib, you will get a quick primer on
machine learning, Spark MLlib, and an overview of some Spark
machine learning use cases, along with how other common data
science tools such as Python, pandas, scikit-learn and R integrate with
MLlib.

Moreover, two accompanying notebooks for some hands-on
experience and a blog on persisting machine learning models will give
you insight into why, what and how machine learning plays a crucial
role in advanced analytics.

1. Auto-scaling scikit-learn with Apache Spark

2. 2015 Median Home Price by State

3. Population vs. Median Home Prices: Linear Regression with Single
Variable

4. Saving and Loading Machine Learning Models in Apache Spark 2.0

If you follow each of these guided steps, watch all the videos, read the
blogs, and try out the accompanying notebooks, we believe that you
will be on your way as a developer to learn Apache Spark 2.x.

Machine Learning for Humans 29

Fig 13.. Machine Learning Pipeline

XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX
XX

http://go.databricks.com/spark-mllib-from-quick-start-to-scikit-learn
http://go.databricks.com/spark-mllib-from-quick-start-to-scikit-learn
https://databricks.com/blog/2016/02/08/auto-scaling-scikit-learn-with-apache-spark.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/Pop._vs._Price_Multi-Chart.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/Pop._vs._Price_LR.html?t=1456365856466
http://cdn2.hubspot.net/hubfs/438089/notebooks/Pop._vs._Price_LR.html?t=1456365856466
https://databricks.com/blog/2016/05/31/apache-spark-2-0-preview-machine-learning-model-persistence.html
http://go.databricks.com/spark-mllib-from-quick-start-to-scikit-learn

Step 8: Reliable
Data Lakes &
Data Pipelines

Continuous Applications with Structured Streaming 30

Section 1: An Introduction to the Apache Spark APIs for Analytics

Step 8:
Reliable Data Lakes & Data Pipelines

Data Reliability Challenges with
Data Lakes

Failed Writes

If a production job that is writing data experiences failures which
are inevitable in large distributed environments, it can result in
data corruption through partial or multiple writes. What is needed
is a mechanism that is able to ensure that either a write takes
place completely or not at all (and not multiple times, adding
spurious data). Failed jobs can impose a considerable burden to
recover to a clean state

Lack of Consistency

In a complex big data environment one may be interested in
considering a mix of both batch and streaming data. Trying to read
data while it is being appended to provides a challenge since on the
one hand there is a desire to keep ingesting new data while on the

other hand anyone reading the data prefers a consistent view. This is
especially an issue when there are multiple readers and writers at
work. It is undesirable and impractical, of course, to stop read access
while writes complete or stop write access while a reads are in
progress.

Schema Mismatch

When ingesting content from multiple sources, typical of large, modern
big data environments, it can be difficult to ensure that the same data
is encoded in the same way i.e. the schema matches. A similar
challenge arises when the formats for data elements are changed
without informing the data engineering team. Both can result in low
quality, inconsistent data that requires cleaning up to improve its
usability. The ability to observe and enforce schema would serve to
mitigate this.

 31

Delta Lake: A New Storage Layer

ACID Transactions

Data lakes typically have multiple data pipelines reading and writing
data concurrently, and data engineers have to go through a tedious
process to ensure data integrity, due to the lack of transactions. Delta
Lake brings ACID transactions to your data lakes. It provides
serializability, the strongest level of isolation level.

Scalable Metadata Handling

In big data, even the metadata itself can be “big data”. Delta Lake
treats metadata just like data, leveraging Spark’s distributed
processing power to handle all its metadata. As a result, Delta Lake can
handle petabyte-scale tables with billions of partitions and files at
ease.

Reliable Data Lakes & Data Pipelines 32

Analytics
and Machine
Learning

Streaming

Batch
Ingestion Tables

(Bronze)
Refined Tables

(Silver)

Your Existing Data Lake

Feature/Agg Data Store
(Gold)

Azure Data Lake Storage

Delta Lake
Enabling Reliable Data Lakes at Scale

An open-source storage layer that brings data reliability to Apache Spark™
and big data workloads.

Data lakes face challenges as a result of failed writes, schema mismatches and data inconsistency,
especially when it comes to mixing batch and streaming data.

Delta Lake provides high quality and reliable data that is always ready for analytics through a range of
features for ingesting, managing, and cleaning data. It provides consistent views while supporting multiple
simultaneous readers and writers even in a mixed batch and streaming data environment. Delta Lake runs
on top of your existing data lake and is fully compatible with Apache Spark APIs.

Instead of parquet... ...simply say delta

Delta Lake: A New Storage Layer

Time Travel (data versioning)
Delta Lake provides snapshots of data enabling developers to access
and revert to earlier versions of data for audits, rollbacks or to
reproduce experiments. For more details on versioning please read this
blog Introducing Delta Time Travel for Large Scale Data Lakes.

Open Format
All data in Delta Lake is stored in Apache Parquet format enabling
Delta Lake to leverage the efficient compression and encoding
schemes that are native to Parquet.

Unified Batch and Streaming Source and Sink
A table in Delta Lake is both a batch table, as well as a streaming
source and sink. Streaming data ingest, batch historic backfill, and
interactive queries all just work out of the box.

Schema Enforcement

Delta Lake provides the ability to specify your schema and enforce it.
This helps ensure that the data types are correct and required columns
are present, preventing bad data from causing data corruption.

Schema Evolution

Big data is continuously changing. Delta Lake enables you to make
changes to a table schema that can be applied automatically, without
the need for cumbersome DDL

100% Compatible with Apache Spark API
Developers can use Delta Lake with their existing data pipelines with
minimal change as it is fully compatible with Spark, the commonly
used big data processing engine.

Reliable Data Lakes & Data Pipelines 33

Parquet

Getting Started with Delta Lake

Getting started with Delta is easy. Specifically, to create a Delta table
simply specify Delta instead of using Parquet.

Reliable Data Lakes & Data Pipelines 34

Instead of parquet...

dataframe

.write

.format(“parquet”)

.save(“/data”)

dataframe

.write

.format(“delta”)

.save(“/data”)

… simply say delta

YOU CAN TRY DELTA LAKE TODAY USING THE QUICKSTART AND EXAMPLE NOTEBOOKS.

The following blogs share examples and news about Delta:

• Introducing Delta Time Travel for Large Scale Data Lakes
• Building a Real-Time Attribution Pipeline with Databricks Delta
• Simplifying Streaming Stock Data Analysis Using Databricks Delta

For more information, please refer to the documentation.

https://docs.databricks.com/delta/quick-start.html
https://docs.databricks.com/delta/intro-notebooks.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2018/08/09/building-a-real-time-attribution-pipeline-with-databricks-delta.html
http://Simplifying%20Streaming%20Stock%20Data%20Analysis%20Using%20Databricks%20Delta
https://docs.databricks.com/delta/index.html?_ga=2.167579070.1800620055.1551064217-123464363.1547676312#
https://docs.databricks.com/delta/quick-start.html
https://docs.databricks.com/delta/intro-notebooks.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2018/08/09/building-a-real-time-attribution-pipeline-with-databricks-delta.html
http://Simplifying%20Streaming%20Stock%20Data%20Analysis%20Using%20Databricks%20Delta
https://docs.databricks.com/delta/index.html?_ga=2.167579070.1800620055.1551064217-123464363.1547676312#

Conclusion

Our mission at Databricks is to unify data analytics so organizations
can immediately start working on their data problems, in an
environment accessible to data scientists, engineers, and business
users alike. We hope the collection of blog posts, notebooks, and video
tech-talks in this ebook will provide you with the insights and tools to
help you solve your biggest data problems and accelerate the velocity
that your teams can leverage high quality data. If you enjoyed the
technical content in this ebook, check out the previous books in the
series and visit the Databricks Blog for more technical tips, best
practices, and case studies from the Delta Lake and Apache Spark
experts at Databricks.

To try Databricks yourself, start your
free trial today!

Conclusion 35

http://dbricks.co/2gDhXSP

	Introduction
	Step 1: Why Apache Spark
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Step 2: Apache Spark Concepts, Key Terms and Keywords
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Step 3: Advanced Apache Spark Internals and Core
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Step 4: DataFames, Datasets and Spark SQL Essentials
	Step 5: Graph Processing with GraphFrames
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Step 6: Continuous Applications with Structured Streaming
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Step 7: Machine Learning for Humans
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Section 1: An Introduction to the Apache Spark APIs for Analytics
	Conclusion

