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Introduction 
 
Since inception, Databricks’ mission has been to make Big Data simple 
and accessible to everyone through the unification of data and 
analytics — for organizations of all sizes and across all industries. And 
we have not deviated from that mission. Over the last couple of years, 
we have learned how the community of developers use Spark and how 
organizations use it to build sophisticated applications. 

In this ebook, we expand, augment and curate on concepts initially 
published on KDnuggets. In addition, we augment the ebook with 
technical blogs and related assets specific to Delta Lake and Apache 
Spark 2.x, written and presented by leading Spark contributors and 
members of Spark PMC including Matei Zaharia, the creator of Spark; 
Reynold Xin, chief architect; Michael Armbrust, lead architect behind 
Spark SQL and Structured Streaming; Joseph Bradley, one of the 
drivers behind Spark MLlib and SparkR; and Tathagata Das, lead 
developer for Structured Streaming. 

Delta Lake is an open source storage layer that sits on top of your 
existing data lake file storage, such AWS S3, Azure Data Lake Storage, 
or HDFS. Delta Lake brings reliability, performance, and lifecycle 
management to data lakes. No more malformed data ingestion, 
difficulty deleting data for compliance, or issues modifying data for 
change data capture. Accelerate the velocity that high quality data can 
get into your data lake, and the rate that teams can leverage that data, 
with a secure and scalable cloud service. As an open source project 
supported by the Linux Foundation, Delta Lake allows data to be read 
by any compatible reader and is compatible with Apache Spark.

Collectively, the ebook introduces steps for a developer to understand 
Delta Lake and Apache Spark, at a deeper level. Whether you’re getting 
started with Delta Lake and Apache Spark or already an accomplished 
developer, this ebook will arm you with the knowledge to employ all of 
Delta Lake’s and Apache Spark’s benefits. 

Jules S. Damji 
Apache Spark Community Evangelist 
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Why Apache Spark? 
 
For one, Apache Spark is the most active open source data processing 
engine built for speed, ease of use, and advanced analytics, with over 
1000+ contributors from over 250 organizations and a growing 
community of developers and adopters and users. Second, as a 
general purpose fast compute engine designed for distributed data 
processing at scale, Spark supports multiple workloads through a 
unified engine comprised of Spark components as libraries accessible 
via unified APIs in popular programing languages, including Scala, 
Java, Python, and R. And finally, it can be deployed in different 
environments, read data from various data sources, and interact with 
myriad applications. 

All together, this unified compute engine makes Spark an ideal 
environment for diverse workloads—traditional and streaming ETL, 
interactive or ad-hoc queries (Spark SQL), advanced analytics 
(Machine Learning), graph processing (GraphX/GraphFrames), and 
Streaming (Structured Streaming)—all running within the same 
engine.  

In the subsequent steps, you will get an introduction to some of these 
components, from a developer’s perspective, but first let’s capture key 
concepts and key terms. 
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Apache Spark Architectural 
Concepts, Key Terms and 
Keywords 
 
In June 2016, KDnuggets published Apache Spark Key Terms Explained, 
which is a fitting introduction here. Add to this conceptual vocabulary 
the following Spark’s architectural terms, as they are referenced in this 
article.  

Spark Cluster 
A collection of machines or nodes in the public cloud or on-premise in 
a private data center on which Spark is installed. Among those 
machines are Spark workers, a Spark Master (also a cluster manager in 
a Standalone mode), and at least one Spark Driver. 

Spark Master 
As the name suggests, a Spark Master JVM acts as a cluster manager in 
a Standalone deployment mode to which Spark workers register 
themselves as part of a quorum. Depending on the deployment mode, 
it acts as a resource manager and decides where and how many 
Executors to launch, and on what Spark workers in the cluster. 

 

Spark Worker 
Upon receiving instructions from Spark Master, the Spark worker JVM 
launches Executors on the worker on behalf of the Spark Driver. Spark 
applications, decomposed into units of tasks, are executed on each 
worker’s Executor. In short, the worker’s job is to only launch an 
Executor on behalf of the master. 

Spark Executor 
A Spark Executor is a JVM container with an allocated amount of cores 
and memory on which Spark runs its tasks. Each worker node 
launches its own Spark Executor, with a configurable number of cores 
(or threads). Besides executing Spark tasks, an Executor also stores 
and caches all data partitions in its memory. 

Spark Driver 
Once it gets information from the Spark Master of all the workers in the 
cluster and where they are, the driver program distributes Spark tasks 
to each worker’s Executor. The driver also receives computed results 
from each Executor’s tasks. 
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http://www.kdnuggets.com/2016/06/spark-key-terms-explained.html


SparkSession and SparkContext 
As shown in Fig 2., a SparkContext is a conduit to access all Spark 
functionality; only a single SparkContext exists per JVM. The Spark 
driver program uses it to connect to the cluster manager to 
communicate, and submit Spark jobs. It allows you to 
programmatically adjust Spark configuration parameters. And through 
SparkContext, the driver can instantiate other contexts such as 
SQLContext, HiveContext, and StreamingContext to program Spark. 

However, with Apache Spark 2.0, SparkSession can access all of Spark’s 
functionality through a single-unified point of entry. As well as making 
it simpler to access Spark functionality, such as DataFrames and 
Datasets, Catalogues, and Spark Configuration, it also subsumes the 
underlying contexts to manipulate data. 

A blog post on How to Use SparkSessions in Apache Spark 2.0 explains 
this in detail, and its accompanying notebooks give you examples in 
how to use SparkSession programming interface.  

Spark Deployment Modes Cheat Sheet 
Spark supports four cluster deployment modes, each with its own 
characteristics with respect to where Spark’s components run within a 
Spark cluster. Of all modes, the local mode, running on a single host, is 
by far the simplest—to learn and experiment with. 

As a beginner or intermediate developer, you don’t need to know this 
elaborate matrix right away. It’s here for your reference, and the links 
provide additional information. Furthermore, Step 3 is a deep dive into 
all aspects of Spark architecture from a devops point of view. 
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Fig 1. Spark Cluster Fig 2. SparkContext and its Interaction with Spark Components
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https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.sql.SparkSession
https://databricks.com/blog/2016/08/15/how-to-use-sparksession-in-apache-spark-2-0.html
http://dbricks.co/sswksh1
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/SparkSessionZipsExample.html
http://spark.apache.org/docs/latest/cluster-overview.html#cluster-manager-types


 
Table 1. Cheat Sheet Depicting Deployment Modes And Where Each Spark Component Runs 
 
 
 
 

Spark Apps, Jobs, Stages and Tasks  
An anatomy of a Spark application usually comprises of Spark 
operations, which can be either transformations or actions on your 
data sets using Spark’s RDDs, DataFrames or Datasets APIs. For 
example, in your Spark app, if you invoke an action, such as collect() or 
take() on your DataFrame or Dataset, the action will create a job. A job 
will then be decomposed into single or multiple stages; stages are 
further divided into individual tasks; and tasks are units of execution 
that the Spark driver’s scheduler ships to Spark Executors on the Spark 
worker nodes to execute in your cluster. Often multiple tasks will run in 
parallel on the same executor, each processing its unit of partitioned 
dataset in its memory. 

In this informative part of the video, Sameer Farooqui elaborates each 
of the distinct stages in vivid details. He illustrates how Spark jobs, 
when submitted, get broken down into stages, some multiple stages, 
followed by tasks, scheduled to be distributed among executors on 
Spark workers. 

MODE DRIVER WORKER EXECUTOR MASTER

Local Runs on a single JVM Runs on the same JVM as the driver Runs on the same JVM as the driver Runs on a single host

Standalone Can run on any node in the cluster Runs on its own JVM on each node Each worker in the cluster will launch 
its own JVM

Can be allocated arbitrarily where the 
master is started

Yarn 
(client)

On a client, not part of the cluster YARN NodeManager YARN’s NodeManager’s Container YARN’s Resource  Manager works with 
YARN’s Application Master to allocate the 
containers on NodeManagers for Executors.

YARN  
(cluster)

Runs within the YARN’s Application 
Master

Same as YARN client mode Same as YARN client mode Same as YARN client mode

Mesos  
(client)

Runs on a client machine, not part of 
Mesos cluster

Runs on Mesos Slave Container within Mesos Slave Mesos’ master

Mesos  
(cluster)

Runs within one of Mesos’ master Same as client mode Same as client mode Mesos' master
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http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-yarn.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
http://spark.apache.org/docs/latest/running-on-mesos.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
https://youtu.be/7ooZ4S7Ay6Y?t=12038


Step 3: Advanced 
Apache Spark 
Internals and Core  

Apache Spark Architectural Concepts, Key Terms and Keywords  11

Section 1: An Introduction to the Apache Spark APIs for Analytics 

Step 3:  
Advanced Apache Spark  
Internals and Core



Advanced Apache Spark 
Internals and Spark Core 
 
To understand how all of the Spark components interact—and to be  
proficient in programming Spark—it’s essential to grasp Spark’s core 
architecture in details. All the key terms and concepts defined in Step 2 
come to life when you hear them explained. No better place to see it 
explained than in this Spark Summit training video; you can immerse 
yourself and take the journey into Spark’s core. 

Besides the core architecture, you will also learn the following:  

• How the data are partitioned, transformed, and transferred across 
Spark worker nodes within a Spark cluster during network transfers 
called “shuffle” 

• How jobs are decomposed into stages and tasks. 

• How stages are constructed as a Directed Acyclic Graph (DAGs). 

• How tasks are then scheduled for distributed execution. 
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https://www.youtube.com/watch?v=7ooZ4S7Ay6Y
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DataFrames, Datasets and 
Spark SQL Essentials 
 
In Steps 2 and 3, you might have learned about Resilient Distributed 
Datasets (RDDs)—if you watched the linked videos—because they form 
the core data abstraction concept in Spark and underpin all other 
higher-level data abstractions and APIs, including DataFrames and 
Datasets. 

In Apache Spark 2.0, DataFrames and Datasets, built upon RDDs and 
Spark SQL engine, form the core high-level and structured distributed 
data abstraction. They are merged to provide a uniform API across 
libraries and components in Spark.  

 

  

 
DataFrames are named data columns in Spark and they impose a 
structure and schema in how your data is organized. This organization 
dictates how to process data, express a computation, or issue a query. 
For example, your data may be distributed across four RDD partitions, 
each partition with three named columns: “Time,” “Site,” and “Req.” As 
such, it provides a natural and intuitive way to access data by their 
named columns. 

 

Datasets, on the other hand, go one step further to provide you strict 
compile-time type safety, so certain type of errors are caught at 
compile time rather than runtime.  
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Datasets and DataFrames 
Unified Apache Spark 2.0 API

Fig 3. Unified APIs across Apache Spark

Fig 4. A sample DataFrame with named columns

DataFrame Structure

http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes
http://spark.apache.org/docs/latest/sql-programming-guide.html#datasets-and-dataframes


 
Because of structure in your data and type of data, Spark can 
understand how you would express your computation, what particular 
typed-columns or typed-named fields you would access in your data, 
and what domain specific operations you may use. By parsing your 
high-level or compute operations on the structured and typed-specific 
data, represented as DataSets, Spark will optimize your code, through 
Spark 2.0’s Catalyst optimizer, and generate efficient bytecode through 
Project Tungsten. 

DataFrames and Datasets offer high-level domain specific language 
APIs, making your code expressive by allowing high-level operators like 
filter, sum, count, avg, min, max etc. Whether you express your 
computations in Spark SQL, Python, Java, Scala, or R Dataset/
Dataframe APIs, the underlying code generated is identical because all 
execution planning undergoes the same Catalyst optimization as 
shown in Fig 6. 

 
For example, this high-level domain specific code in Scala or its 
equivalent relational query in SQL will generate identical code. 
Consider a Dataset Scala object called Person and an SQL table 
“person.” 
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Fig 5. Spectrum of Errors Types detected for DataFrames & Datasets Fig 6. Journey undertaken by a high-level computation in DataFrame, Dataset or SQL

Spark SQL Architecture

// a dataset object Person with field names fname, lname, age, weight
// access using object notation
val seniorDS = peopleDS.filter(p=>p.age > 55)
// a dataframe with structure with named columns fname, lname, age, weight
// access using col name notation
val seniorDF = peopleDF.where(peopleDF(“age”) > 55)
// equivalent Spark SQL code
val seniorDF = spark.sql(“SELECT age from person where age > 35”)

https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html


To get a whirlwind introduction of why structuring data in Spark is 
important and why DataFrames, Datasets, and Spark SQL provide an 
efficient way to program Spark, we urge you to watch this Spark 
Summit talk by Michael Armbrust, Spark PMC and committer, in which 
he articulates the motivations and merits behind structure in Spark.  

 
In addition, these technical assets discuss DataFrames and Datasets, 
and how to use them in processing structured data like JSON files and 
issuing Spark SQL queries. 

1. Introduction to Datasets in Apache Spark 

2. A tale of Three APIS: RDDs, DataFrames, and Datasets  

3. Datasets and DataFrame Notebooks 
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https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://www.youtube.com/embed/1a4pgYzeFwE
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://databricks.com/blog/2016/07/14/a-tale-of-three-apache-spark-apis-rdds-dataframes-and-datasets.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/8599738367597028/1499152197856461/3601578643761083/latest.html
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Graph Processing with 
GraphFrames 
 
Even though Spark has a general purpose RDD-based graph processing 
library named GraphX, which is optimized for distributed computing 
and supports graph algorithms, it has some challenges. It has no Java 
or Python APIs, and it’s based on low-level RDD APIs. Because of these 
constraints, it cannot take advantage of recent performance and 
optimizations introduced in DataFrames through Project Tungsten and 
Catalyst Optimizer. 

By contrast, the DataFrame-based GraphFrames address all these 
constraints: It provides an analogous library to GraphX but with high-
level, expressive and declarative APIs, in Java, Scala and Python; an 
ability to issue powerful SQL like queries using DataFrames APIs; 
saving and loading graphs; and takes advantage of underlying 
performance and query optimizations in Apache Spark 2.0. Moreover, it 
integrates well with GraphX. That is, you can seamlessly convert a 
GraphFrame into an equivalent GraphX representation. 

Consider a simple example of cities and airports. In the Graph diagram 
in Fig 7, representing airport codes in their cities, all of the vertices can 
be represented as rows of DataFrames; and all of the edges can be 
represented as rows of DataFrames, with their respective named and 
typed columns.  

 
Collectively, these DataFrames of vertices and edges comprise  
a GraphFrame.  
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Graphs

Fig 7. A Graph Of Cities Represented As Graphframe

http://spark.apache.org/graphx/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/13/deep-dive-into-spark-sqls-catalyst-optimizer.html
http://graphframes.github.io/user-guide.html


If you were to represent this above picture programmatically, you 
would write as follows: 

With GraphFrames you can express three kinds of powerful queries. 
First, simple SQL-type queries on vertices and edges such as what trips 
are likely to have major delays. Second, graph-type queries such as 
how many vertices have incoming and outgoing edges. And finally, 
motif queries, by providing a structural pattern or path of vertices and 
edges and then finding those patterns in your graph’s dataset.  

Additionally, GraphFrames easily support all of the graph algorithms 
supported in GraphX. For example, find important vertices using 
PageRank, determine the shortest path from source to destination, or 
perform a Breadth First Search (BFS). You can also determine strongly 
connected vertices for exploring social connections. 

In the webinar GraphFrames: DataFrame-based graphs for Apache 

Spark, Joseph Bradley, Spark Committer, gives an illuminative 
introduction to graph processing with GraphFrames, its motivations 
and ease of use, and the benefits of its DataFrame-based API. And 
through a demonstrated notebook as part of the webinar, you’ll learn 
the ease with which you can use GraphFrames and issue all of the 
aforementioned types of queries and types of algorithms. 

 

Complementing the above webinar, the two instructive blogs with 
accompanying notebooks below offer an introductory and hands-on 
experience with DataFrame-based GraphFrames.  

1. Introduction to GraphFrames 

2. On-time Flight Performance with GraphFrames for Apache Spark 
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// create a Vertices DataFrame
val vertices = spark.createDataFrame(List(("JFK", "New York", 
"NY"))).toDF("id", "city", "state")
// create a Edges DataFrame
val edges = spark.createDataFrame(List(("JFK", "SEA", 45, 
1058923))).toDF("src", "dst", "delay", "tripID”)
// create a GraphFrame and use its APIs
val airportGF = GraphFrame(vertices, edges)
// filter all vertices from the GraphFrame with delays greater an 30 mins
val delayDF = airportGF.edges.filter(“delay > 30”)
// Using PageRank algorithm, determine the Airport ranking of importance 
val pageRanksGF = 
airportGF.pageRank.resetProbability(0.15).maxIter(5).run()
display(pageRanksGF.vertices.orderBy(desc("pagerank")))

http://go.databricks.com/graphframes-dataframe-based-graphs-for-apache-spark
http://go.databricks.com/graphframes-dataframe-based-graphs-for-apache-spark
https://databricks.com/blog/2016/03/03/introducing-graphframes.html
https://databricks.com/blog/2016/03/16/on-time-flight-performance-with-graphframes-for-apache-spark.html


With Apache Spark 2.0 and beyond, many Spark components, 
including Machine Learning MLlib and Streaming, are increasingly 
moving towards offering equivalent DataFrames APIs, because of  
performance gains, ease of use, and high-level abstraction and 
structure. Where necessary or appropriate for your use case, you may 
elect to use GraphFrames instead of GraphX. Below is a succinct 
summary and comparison between GraphX and GraphFrames. 

Finally, GraphFrames continues to get faster, and a Spark Summit talk 
by Ankur Dave shows specific optimizations. A newer version of the 
GraphFrames package compatible with Spark 2.0 is available as a  
Spark package.  
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GraphFrames vs. GraphX

Fig 8. Comparison Cheat Sheet Chart

https://spark-summit.org/east-2016/events/graphframes-graph-queries-in-spark-sql/
https://spark-summit.org/east-2016/events/graphframes-graph-queries-in-spark-sql/
https://spark-packages.org/package/graphframes/graphframes
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Continuous Applications  
with Structured Streaming 
 
For much of Spark’s short history, Spark streaming has continued to 
evolve, to simplify writing streaming applications. Today, developers 
need more than just a streaming programming model to transform 
elements in a stream. Instead, they need a streaming model that 
supports end-to-end applications that continuously react to data in 
real-time. We call them continuous applications that react to data in 
real-time. 

Continuous applications have many facets. Examples include 
interacting with both batch and real-time data; performing streaming 
ETL; serving data to a dashboard from batch and stream; and doing 
online machine learning by combining static datasets with real-time 
data. Currently, such facets are handled by separate applications 
rather than a single one. 

Apache Spark 2.0 laid the foundational steps for a new higher-level 
API, Structured Streaming, for building continuous applications. 
Apache Spark 2.1 extended support for data sources and data sinks, 
and buttressed streaming operations, including event-time processing 
watermarking, and checkpointing.  

When Is a Stream not a Stream  
Central to Structured Streaming is the notion that you treat a stream of 
data not as a stream but as an unbounded table. As new data arrives 
from the stream, new rows of DataFrames are appended to an 
unbounded table: 
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Fig 9. Traditional Streaming Vs Structured Streaming Fig 10. Stream as an Unbounded Table of DataFrames 

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/12/29/introducing-apache-spark-2-1.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#data-sources
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#output-sinks
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#operations-on-streaming-dataframesdatasets


You can then perform computations or issue SQL-type query 
operations on your unbounded table as you would on a static table. In 
this scenario, developers can express their streaming computations 
just like batch computations, and Spark will automatically execute it 
incrementally as data arrives in the stream. This is powerful! 

 
Based on the DataFrames/Datasets API, a benefit of using the 
Structured Streaming API is that your DataFrame/SQL based query for 
a batch DataFrame is similar to a streaming query, as you can see in 
the code in Fig 11., with a minor change. In the batch version, we read 
a static bounded log file, whereas in the streaming version, we read off 
an unbounded stream. Though the code looks deceptively simple, all 
the complexity is hidden from a developer and handled by the 
underlying model and execution engine, which undertakes the burden 
of fault-tolerance, incremental query execution, idempotency, end-to-
end guarantees of exactly-once semantics, out-of-order data, and 
watermarking events. All of this orchestration under the cover is 

explained in this technical talk by Tathagata Das at Spark Summit. 
More importantly, he makes the case by demonstrating how streaming 
ETL, with Structured Streaming, obviates traditional ETL. 

 
 
Data Sources  
Data sources within the Structure Streaming nomenclature refer to 
entities from which data can emerge or read. Spark 2.x supports three 
built-in data sources.  

File Source 
Directories or files serve as data streams on a local drive, HDFS, or S3 
bucket. Implementing the DataStreamReader interface, this source 
supports popular data formats such as avro, JSON, text, or CSV. Since 
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Fig 11. Similar Code for Streaming and Batch 
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https://www.youtube.com/watch?v=UQiuyov4J-4
https://www.youtube.com/watch?v=UQiuyov4J-4
https://databricks.com/blog/2016/01/04/introducing-apache-spark-datasets.html
https://www.youtube.com/watch?v=UQiuyov4J-4


the sources continue to evolve with each release, check the most 
recent docs for additional data formats and options. 

Apache Kafka Source 
Compliant with Apache Kafka 0.10.0 and higher, this source allows 
structured streaming APIs to poll or read data from subscribed topics, 
adhering to all Kafka semantics. This Kafka integration guide offers 
further details in how to use this source with structured streaming 
APIs. 

Network Socket Source 
An extremely useful source for debugging and testing, you can read 
UTF-8 text data from a socket connection. Because it’s used for testing 
only, this source does not guarantee any end-to-end fault-tolerance as 
the other two sources do. 

To see a simple code example, check the Structured Streaming guide 
section for Data Sources and Sinks. 

Data Sinks 
Data Sinks are destinations where your processed and transformed 
data can be written to. Since Spark 2.1, three built-in sinks are 
supported, while a user defined sink can be implemented using a 
foreach interface. 

File Sinks 
File Sinks, as the name suggests, are directories or files within a 
specified directory on a local file system, HDFS or S3 bucket can serve 
as repositories where your processed or transformed data can land. 

Foreach Sinks 
Implemented by the application developer, a ForeachWriter interface 
allows you to write your processed or transformed data to the 
destination of your choice. For example, you may wish to write to a 
NoSQL or JDBC sink, or to write to a listening socket or invoke a REST 
call to an external service. As a developer you implement its three 
methods: open(), process() and close(). 

Console Sink 
Used mainly for debugging purposes, it dumps the output to console/
stdout, each time a trigger in your streaming application is invoked. 
Use it only for debugging purposes on low data volumes, as it incurs 
heavy memory usage on the driver side.  

Memory Sink 
Like Console Sinks, it serves solely for debugging purposes, where data 
is stored as an in-memory table. Where possible use this sink only on 
low data volumes. 

Continuous Applications with Structured Streaming  24

http://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#data-sources
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#using-foreach


Streaming Operations on DataFrames  
and Datasets 
Most operations with respect to selection, projection, and aggregation 
on DataFrames and Datasets are supported by the Structured 
Streaming API, except for few unsupported ones. 

For example, a simple Python code performing these operations, after 
reading a stream of device data into a DataFrame, may look as follows: 

 
Event Time Aggregations and WaterMarking 
An important operation that did not exist in DStreams is now available 
in Structured Streaming. Windowing operations over time line allows 
you to process data not by the time data record was received by the 
system, but by the time the event occurred inside its data record. As 
such, you can perform windowing operations just as you would 
perform groupBy operations, since windowing is classified just as 
another groupBy operation. A short excerpt from the guide illustrates 
this: 

An ability to handle out-of-order or late data is a vital functionality, 
especially with streaming data and its associated latencies, because 
data not always arrives serially. What if data records arrive too late or 
out of order, or what if they continue to accumulate past a certain time 
threshold? 

Watermarking is a scheme whereby you can mark or specify a 
threshold in your processing timeline interval beyond which any data’s 
event time is deemed useless. Even better, it can be discarded, without 
ramifications. As such, the streaming engine can effectively and 
efficiently retain only late data within that time threshold or interval. 
To read the mechanics and how the Structured Streaming API can be 
expressed, read the watermarking section of the programming guide. 
It’s as simple as this short snippet API call: 
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devicesDF = ...  # streaming DataFrame with IOT device data with schema 
{ device: string, type: string, signal: double, time: DateType }
# Select the devices which have signal more than 10
devicesDF.select("device").where("signal > 10")                              
# Running count of the number of updates for each device type
devicesDF.groupBy("type").count()

import spark.implicits._
val words = ... // streaming DataFrame of schema { timestamp: Timestamp, 
word: String }
// Group the data by window and word and compute the count of each group
val deviceCounts = devices.groupBy( window($"timestamp", "10 minutes", "5 
minutes"), $"type"
).count()

val deviceCounts = devices
    .withWatermark("timestamp", "15 minutes")
    .groupBy(window($"timestamp", "10 minutes", "5 minutes"),
        $"type")
    .count()

http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#unsupported-operations
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#window-operations-on-event-time
http://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#handling-late-data-and-watermarking


What’s Next 
After you take a deep dive into Structured Streaming, read the 
Structure Streaming Programming Model, which elaborates all the 
under-the-hood complexity of data integrity, fault tolerance, exactly-
once semantics, window-based and event-time aggregations, 
watermarking, and out-of-order data. As a developer or user, you need 
not worry about these complexities; the underlying streaming engine 
takes the onus of fault-tolerance, end-to-end reliability, and 
correctness guarantees. 

Learn more about Structured Streaming directly from Spark committer 
Tathagata Das, and try the accompanying notebook to get some 
hands-on experience on your first Structured Streaming continuous 
application. An additional workshop notebook illustrates how to 
process IoT devices' streaming data using Structured Streaming APIs. 
Structured Streaming API in Apache Spark 2.0: A new high-level API for 
streaming 

Similarly, the Structured Streaming Programming Guide offers short 
examples on how to use supported sinks and sources: 

Structured Streaming Programming Guide 
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https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
http://cdn2.hubspot.net/hubfs/438089/notebooks/spark2.0/Structured%20Streaming%20using%20Scala%20DataFrames%20API.html
http://dbricks.co/sswksh4
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html


Step 7: Machine 
Learning for 
Humans 
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Section 1: An Introduction to the Apache Spark APIs for Analytics 

Step 7: 
Machine Learning for Humans



Machine Learning for Humans 
 
At a human level, machine learning is all about applying statistical 
learning techniques and algorithms to a large dataset to identify 
patterns, and from these patterns probabilistic predictions. A 
simplified view of a model is a mathematical function f(x); with a large 
dataset as the input, the function f(x) is repeatedly applied to the 
dataset to produce an output with a prediction. A model function, for 
example, could be any of the various machine learning algorithms: a 
Linear Regression or Decision Tree. 

As the core component library in Apache Spark, MLlib offers numerous 
supervised and unsupervised learning algorithms, from Logistic 
Regression to k-means and clustering, from which you can construct 
these mathematical models. 

Key Terms and Machine Learning Algorithms 
For introductory key terms of machine learning, Matthew Mayo’s 
Machine Learning Key Terms, Explained is a valuable reference for 
understanding some concepts discussed in the Databricks webinar on 
the following page. Also, a hands-on getting started guide, included as 
a link here, along with documentation on Machine Learning 
algorithms, buttress the concepts that underpin machine learning, 
with accompanying code examples in Databricks notebooks. 

Machine Learning Pipelines 
Apache Spark’s DataFrame-based MLlib provides a set of algorithms as 
models and utilities, allowing data scientists to build machine learning 
pipelines easily. Borrowed from the scikit-learn project, MLlib pipelines 
allow developers to combine multiple algorithms into a single pipeline 
or workflow. Typically, running machine learning algorithms involves a 
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Fig 12. Model as a Mathematical Function

http://spark.apache.org/mllib/
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://www.kdnuggets.com/2016/05/machine-learning-key-terms-explained.html
http://go.databricks.com/spark-mllib-from-quick-start-to-scikit-learn
https://docs.databricks.com/spark/latest/mllib/index.html
https://docs.databricks.com/spark/latest/mllib/index.html
http://spark.apache.org/mllib/
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
https://databricks.com/blog/2015/01/07/ml-pipelines-a-new-high-level-api-for-mllib.html
http://scikit-learn.org/
http://spark.apache.org/docs/latest/ml-pipeline.html


sequence of tasks, including pre-processing, feature extraction, model 
fitting, and validation stages. In Spark 2.0, this pipeline can be 
persisted and reloaded again, across languages Spark supports (see 
the blog link below). 

In the webinar on Apache Spark MLlib, you will get a quick primer on 
machine learning, Spark MLlib, and an overview of some Spark 
machine learning use cases, along with how other common data 
science tools such as Python, pandas, scikit-learn and R integrate with 
MLlib. 

Moreover, two accompanying notebooks for some hands-on 
experience and a blog on persisting machine learning models will give 
you insight into why, what and how machine learning plays a crucial 
role in advanced analytics. 

1. Auto-scaling scikit-learn with Apache Spark 

2. 2015 Median Home Price by State 

3. Population vs. Median Home Prices: Linear Regression with Single 
Variable 

4. Saving and Loading Machine Learning Models in Apache Spark 2.0 

If you follow each of these guided steps, watch all the videos, read the 
blogs, and try out the accompanying notebooks, we believe that you 
will be on your way as a developer to learn Apache Spark 2.x. 
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Fig 13.. Machine Learning Pipeline
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Step 8: Reliable 
Data Lakes & 
Data Pipelines 
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Section 1: An Introduction to the Apache Spark APIs for Analytics 

Step 8: 
Reliable Data Lakes & Data Pipelines



Data Reliability Challenges with 
Data Lakes  
 

Failed Writes  

If a production job that is writing data experiences failures which 
are inevitable in large distributed environments, it can result in 
data corruption through partial or multiple writes. What is needed 
is a mechanism that is able to ensure that either a write takes 
place completely or not at all (and not multiple times, adding 
spurious data). Failed jobs can impose a considerable burden to 
recover to a clean state 

Lack of Consistency  

In a complex big data environment one may be interested in 
considering a mix of both batch and streaming data. Trying to read 
data while it is being appended to provides a challenge since on the 
one hand there is a desire to keep ingesting new data while on the  

other hand anyone reading the data prefers a consistent view. This is 
especially an issue when there are multiple readers and writers at 
work. It is undesirable and impractical, of course, to stop read access 
while writes complete or stop write access while a reads are in 
progress.    

 

Schema Mismatch  

When ingesting content from multiple sources, typical of large, modern 
big data environments, it can be difficult to ensure that the same data 
is encoded in the same way i.e. the schema matches. A similar 
challenge arises when the formats for  data elements are changed 
without informing the data engineering team.  Both can result in low 
quality, inconsistent data that requires  cleaning up to improve its 
usability.  The ability to observe and enforce schema would serve to 
mitigate this. 
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Delta Lake: A New Storage Layer 
 

ACID Transactions  

Data lakes typically have multiple data pipelines reading and writing 
data concurrently, and data engineers have to go through a tedious 
process to ensure data integrity, due to the lack of transactions. Delta 
Lake brings ACID transactions to your data lakes. It provides 
serializability, the strongest level of isolation level. 

 
 

 

 

Scalable Metadata Handling  

In big data, even the metadata itself can be “big data”. Delta Lake 
treats metadata just like data, leveraging Spark’s distributed 
processing power to handle all its metadata. As a result, Delta Lake can 
handle petabyte-scale tables with billions of partitions and files at 
ease. 
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Analytics 
and Machine 
Learning

Streaming

Batch
Ingestion Tables

(Bronze)
Refined Tables

(Silver)

Your Existing Data Lake

Feature/Agg Data Store
(Gold)

Azure Data Lake Storage

Delta Lake
Enabling Reliable Data Lakes at Scale

An open-source storage layer that brings data reliability  to Apache Spark™ 
and big data workloads.

Data lakes face challenges as a result of failed writes, schema mismatches and data inconsistency, 
especially when it comes to mixing batch and streaming data.

Delta Lake provides high quality and reliable data that is always ready for analytics through a range of 
features for ingesting, managing, and cleaning data. It provides consistent views while supporting multiple 
simultaneous readers and writers even in a mixed batch and streaming data environment. Delta Lake runs 
on top of  your existing data lake and is fully compatible with Apache Spark APIs.

Instead of parquet... ...simply say delta



Delta Lake: A New Storage Layer 
 
 
 
 

Time Travel (data versioning) 
Delta Lake provides snapshots of data enabling developers to access 
and revert to earlier versions of data for audits, rollbacks or to 
reproduce experiments. For more details on versioning please read this 
blog Introducing Delta Time Travel for Large Scale Data Lakes. 

 

Open Format  
All data in Delta Lake is stored in Apache Parquet format enabling 
Delta Lake to leverage the efficient compression and encoding 
schemes that are native to Parquet. 

 

Unified Batch and Streaming Source and Sink  
A table in Delta Lake is both a batch table, as well as a streaming 
source and sink. Streaming data ingest, batch historic backfill, and 
interactive queries all just work out of the box. 

 

Schema Enforcement  

Delta Lake provides the ability to specify your schema and enforce it. 
This helps ensure that the data types are correct and required columns 
are present, preventing bad data from causing data corruption. 

Schema Evolution  

Big data is continuously changing. Delta Lake enables you to make 
changes to a table schema that can be applied automatically, without 
the need for cumbersome DDL 

 

100% Compatible with Apache Spark API 
Developers can use Delta Lake with their existing data pipelines with 
minimal change as it is fully compatible with Spark, the commonly 
used big data processing engine. 
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Parquet



Getting Started with Delta Lake 
 
 
Getting started with Delta is easy. Specifically, to create a Delta table 
simply specify Delta instead of using Parquet. 
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Instead of parquet...

dataframe

.write

.format(“parquet”)

.save(“/data”)

dataframe

.write

.format(“delta”)

.save(“/data”)

… simply say delta

YOU CAN TRY DELTA LAKE TODAY USING THE QUICKSTART AND EXAMPLE NOTEBOOKS. 

The following blogs share examples and news about Delta: 
 
• Introducing Delta Time Travel for Large Scale Data Lakes 
• Building a Real-Time Attribution Pipeline with Databricks Delta 
• Simplifying Streaming Stock Data Analysis Using Databricks Delta 

For more information, please refer to the documentation. 

https://docs.databricks.com/delta/quick-start.html
https://docs.databricks.com/delta/intro-notebooks.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2018/08/09/building-a-real-time-attribution-pipeline-with-databricks-delta.html
http://Simplifying%20Streaming%20Stock%20Data%20Analysis%20Using%20Databricks%20Delta
https://docs.databricks.com/delta/index.html?_ga=2.167579070.1800620055.1551064217-123464363.1547676312#
https://docs.databricks.com/delta/quick-start.html
https://docs.databricks.com/delta/intro-notebooks.html
https://databricks.com/blog/2019/02/04/introducing-delta-time-travel-for-large-scale-data-lakes.html
https://databricks.com/blog/2018/08/09/building-a-real-time-attribution-pipeline-with-databricks-delta.html
http://Simplifying%20Streaming%20Stock%20Data%20Analysis%20Using%20Databricks%20Delta
https://docs.databricks.com/delta/index.html?_ga=2.167579070.1800620055.1551064217-123464363.1547676312#


Conclusion  
 
Our mission at Databricks is to unify data analytics so organizations 
can immediately start working on their data problems, in an 
environment accessible to data scientists, engineers, and business 
users alike. We hope the collection of blog posts, notebooks, and video 
tech-talks in this ebook will provide you with the insights and tools to 
help you solve your biggest data problems and accelerate the velocity 
that your teams can leverage high quality data. If you enjoyed the 
technical content in this ebook, check out the previous books in the 
series and visit the Databricks Blog for more technical tips, best 
practices, and case studies from the Delta Lake and Apache Spark 
experts at Databricks.  

To try Databricks yourself, start your  
free trial today!   
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http://dbricks.co/2gDhXSP
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