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A Scalable Stochastic Model for the Electricity
Demand of Electric and Plug-In Hybrid Vehicles

Mahnoosh Alizadeh, Anna Scaglione, Jamie Davies, and Kenneth S. Kurani

Abstract—In this paper we propose a stochastic model, based
on queueing theory, for electric vehicle (EV) and plug-in hybrid
electric vehicle (PHEV) charging demand. Compared to previous
studies, our model can provide 1) more accurate forecasts of the
load using real-time sub-metering data, along with the level of un-
certainty that accompanies these forecasts; 2) a mathematical de-
scription of load, along with the level of demand flexibility that
accompanies this load, at the wholesale level. This can be useful
when designing demand response and dynamic pricing schemes.
Our numerical experiments tune the proposed statistics on real
PHEV charging data and demonstrate that the forecasting method
we propose is more accurate than standard load prediction tech-
niques.
Index Terms—Electric vehicles, load forecasting, load modeling,

queueing theory, statistics.

I. INTRODUCTION

D UE TO environmental and economic factors, the use of
electric vehicles (EV) and plug-in hybrid EVs (PHEV)

is expected to rise considerably in the near future [1]. Hence,
in recent years, several researchers have examined the potential
impacts of a large-scale integration of EVs on the power grid
(for a comprehensive review see [2]). For example, in [3], PJM
ran market model simulations to determine the effects of the ad-
dition of one million EVs to its load under 3 different load man-
agement scenarios. In [4], the electricity demand of the CAISO
CAMX (California Independent System Operator for the Cal-
ifornia-Mexico Power Area) region, which accounts for 80%
of the load of California, is examined under several EV adop-
tion rates. In [5], [6], the effects of EVs on distribution network
losses and voltage levels are examined.
Mapping a given level of EV penetration into a diurnal load

pattern requires a model for customer charging behavior. The
first step in providing such a model is to answer the following
essential questions: 1) when do vehicles arrive where a charger
is available? 2) how often do customers request battery charge
when their vehicle is parked? 3) how much energy is required
per each charge event? 4) how much flexibility accompanies
each charge request?
Due to the scarcity of real-world data, and pressed by the need

to assess the effects of EV load on the grid, most of the present
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literature hypothesizes simple models of aggregate arrival rates
of EVs and their requests to charge, sometimes using internal
combustion engine vehicles (ICEVs) travel patterns. Historical
ICEV travel patterns are used in [7], [8], which propose a set
of rules to map ICEV data into synthetic EV load traces that
can then be used for Mote Carlo simulations. Attempts at math-
ematically modeling the stochastic process of battery charging
vary in sophistication. For example, in [4], EV arrival times are
modeled using a normal distribution with a mean of 6 P.M. and
a standard deviation of 30 minutes. Both [9] and [10] develop a
complete stochastic model for the load, by modeling arrivals of
charge requests as a Poisson process and using queueing theory
to derive the statistics of the load. However, neither of these
models are based on real data. In fact, [9] simulates the arrival
of vehicles as a homogeneous Poisson process and proposes to
model the length of charge requests as an exponentially dis-
tributed. These, as well as conjectures in [10], are not supported
neither by the real charging data, nor by the synthetic traces gen-
erated in [7], [8]. We showcase these discrepancies in our nu-
merical results.
Our Contribution: In this paper, we answer the essential

questions mentioned above, observing the characteristic fea-
tures of real PHEV charging data [11], and provide a stochastic
mathematical model for EV/PHEV aggregate load. Having
access to such a model has key benefits that go beyond as-
sessment of impacts of future EV load on the power grid
via dynamic simulations. The model is useful for providing
more accurate short-term load forecasting, especially when
real-time sub-metering data is available. Crisper short-term
forecasts of the volatile charging load of EVs in real-time can
help the system operator in dispatching generation with the
lowest possible costs in the electricity market and becoming
less dependent on ancillary services. Furthermore, modeling
the statistics of the load can facilitate planning and operation
for a demand response (DR) aggregator that manages battery
charging of vehicles. There is a growing literature on EV de-
mand scheduling, e.g., [12]–[15], that relies on such statistics.
Last but not least, thanks to its scalability, our model helps
describe the flexibility of EV/PHEV electricity demand to the
system operator (see [16] for a detailed explanation).
Note that our model presumes that we are looking at a large

population of vehicles (theoretically infinite), with probability
of a charging in the interval that is in the order of

. The rate function captures aggregate customer
behavioral characteristics, and can vary widely if one considers
a small population. Hence, this model is not suitable to capture
the PHEV/EV load at a feeder for a few houses, but can be used
for substations and charging stations. Also, we leave for future
work the inclusion of geographical information that would
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allow us to understand the fraction of demand supported by a
certain portion of the grid, and therefore ensure that physical
power system constraints are met (e.g., transformer capacity
limits). Either through the car global positioning system
receiver, or through smart-phones applications, the vehicle
location can be made available, and it will enrich the modeling
and prediction engine. Location data would also allow us to
estimate carbon dioxide emissions associated with the increase
in electricity generation to charge the vehicles.
The paper is organized as follows. In Section II, we provide

a queuing model to capture the load due to EV/PHEV charging
that is not centrally controlled. We showcase how this model
can be used for load forecasting in Sections II-A and II-C. Next,
in Section III, we describe how the statistical information re-
quired to use our model can be estimated from sub-metering
data. In Section IV-A, we introduce a scalable architecture for
telemetry, monitoring, and management of charging requests.
We argue that our model can fit arrival and charging data that
are influenced by DR strategies, most notably pricing and di-
rect load management (respectively in Sections II-B and IV-B).
Next, we proceed to give preliminary numerical estimates of the
model parameters using real-world PHEV home charging data
in Section V. Lastly, in Section VI, we numerically assess the
performance of our real-time forecasting algorithm.

II. UNCONTROLLED EV LOAD MODELING

Queuing theory is often used to mathematically analyze the
effects of customers randomly arriving and being served by a
system. The process of EVs being randomly plugged in and
charged by the grid fits this paradigm. To model the charging
load imposed by EVs on the grid, we assume that upon plugging
in their vehicle, customers pick from a set of possible charging
levels. The instantaneous charging power (rate) then remains
constant throughout the charge. For example, standard charging
rates for electric vehicles include level 1 (home) charging with
a 1.1 kW rate, and 3.3 kWs or 6.6 kWs for level 2 (home and
workplace) charging. To capture the temporal variations of
demand due to EV charging that is not centrally controlled, we
utilize a set of service systems, each representing a
different charging rate. For example, with the three mentioned
charging rates, the aggregate demand can be modeled as the
workload of three service systems. Scenarios that fall into
this category include unmanaged EV charging load, and EV
load under rate-based load shifting incentives such as dynamic
pricing.
Queueing service models are traditionally represented using

Kendall’s shorthand notation, in which the first term
denotes the interarrival time distribution, which is a time-

dependent Markovian (Poisson) distribution in our case, repre-
sented by the standard notation . The second term de-
notes the service time (charging duration) distribution, which is
a general time-dependent distribution here, represented by .
Note that the service times are assumed to be independent and
identically distributed. Finally, the third term is the number
of servers. The number of servers in the model is
assumed to be infinite. This is because, when no central demand
control technique is exercised, each EV is provided with energy
immediately as it arrives in the system and no queue is actually
ever formed. The number of customers receiving service from

Fig. 1. parallel service systems for vehicle battery charge.

each queue, multiplied by the associated charging rate of that
queue, provides us with the total power consumption of vehi-
cles served under that queue.
Our model is based on the following elements:
1) Assignment to queues: we assume that customers may
use one of distinct charging rates, which, as mentioned
above, translates into being assigned to one of service
systems. We denote the charging power of the vehicles
using charging rate as , and assume that this power
is constant throughout the charge cycle. Thus, if we denote
the total number of vehicles receiving service from the -th
queue at time as (see Fig. 1), we can write the ag-
gregate charging load at time as

(1)

2) Poisson arrivals: we model the events of vehicles arriving
in queues to request charge as a point process (a series of
random arrival times , with separate events indexed by
). Thus, for arrivals in each service queue, we consider a
non-homogeneous Poisson process with a random arrival
rate . We show in Section V-E why we think this
is an appropriate model for charging events. In a Poisson
process, the arrival of one customer carries no information
about the arrival of others;

3) Service times: each plugged-in vehicle has an associated
duration of charge .We denote by the cumulative
distribution function (CDF) of the duration of charge
required by each arriving vehicle using the -th charging
rate at time , considered to be independent and identically
distributed for customers in the same queue.

Next, using assumptions 2 and 3, we find the statistics of
and thus, that of the charging load in (1). As mentioned,

these statistics could be beneficial for load forecasting and de-
mand response scheduling.

A. Forecasting Load on the Previous Day or Earlier

Here we forecast the load by calculating its statistics, in-
cluding its expected value, which we denote by . Note
from (1) that we will have a full statistical description of
if we can learn the probability distribution of . Since the
arrival rate of customers in queues and their charge durations
is non-homogeneous, the statistics of are time varying.
We begin by assuming that the system started at .
Then, we can use results in [17] to find the statistics of .
This assumption is usually made for initializing non-stationary
models and is appropriate for forecasting EV charging load
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Fig. 2. Arrival rates are modified by setting load shifting rate incentives.

on the day-ahead, since EV charging cycles are limited to a
maximum of 10–12 hours. The most interesting result for a

system, proven by [18], [19], is that is a
Poisson random variable with mean given by:

(2)

which we can calculate if we are provided with estimates of
and . The integral is basically summing up the ex-

pected number of arrivals at all times which are expected
to still be receiving service at time , i.e., their service time is
expected to be longer than .
We can now combine (1) and (2) to say that the aggregate

load of the vehicles on the next day is the sum of scaled
Poisson random variables, with time varying mean

(3)

B. The Effect of Demand Response Techniques: Rate-Based
Load Shifting Incentives

It is widely believed that without proper management, the
load due to electric vehicles can cause price spikes and decrease
safety margins in the power grid [20]. In order to study the ef-
fects of rate-based charge incentives at specific times or loca-
tions on the aggregate load, we need to further expand ourmodel
to capture how these incentives can influence the arrival rates

, i.e., how customers make a decision to plug in their EV
in response to dynamic tariffs. Thus, we define a new mapping
that models these influences:

where denotes the modified customer arrival rates due to
the incentives (see Fig. 2). Themapping can in general be non-
linear, have memory, and be dependent on various parameters
such as location, grid conditions, time of day, etc. Customers
may be incentivized to change their charging behavior through
dynamic pricing or cheaper charging rates available at work or
public charging stations.
After learning the mapping , potentially from empirical

econometric studies, one can simply use (2) and (3) to map
these modified arrival rates to aggregate load:

(4)

Note that there exists another category of demand response tech-
niques where vehicle charging is directly controlled by a central
control unit. The effects of these techniques on our model and
on the forecast will be later studied in Section IV-B.
Next, we use this same model to forecast the load accurately

in real time.

C. Real-Time Load Forecasting

During real-time operations, the forecast unit can use a me-
tering infrastructure to harness side information about the exact
duration and rate of charge requested by vehicles once they are
plugged in. Thus, to provide an accurate load forecast, the dis-
tribution of shall no longer be initialized at .
Rather, the forecast unit can use the latest information available
on . Here we assume that the information on the queue
index and the charge length for each charge event is revealed
through sub-metering when the car is plugged in, since the ini-
tial battery level allows to establish beforehand how much time
is needed for a full charge.When a full charge is not possible, we
assume that the amount of charge that can be delivered before
the customers depart is explicitly revealed using sub-metering
data.1 This is important because there is no uncertainty about
the service time of each vehicle. Hence, through telemetry, it is
possible to determine exactly how many cars, among the ones
that have previously started charging, will remain active at a fu-
ture time . Thus, the only uncertainty in load forecasting will
be represented by the incoming new requests between the cur-
rent time and future time .
This approach is what we call the Observable Arrival Infor-

mation (OAI) predictor. Specifically, let the present time be ,
and be the customers present in the -th queue. Then the
OAI predictor models the number of cars present in the system
at time as:

(5)

where is the number of vehicles that arrived in the
queue after and are actively charging at time . is
a random variable and the problem of determining its distribu-
tion is similar to the one we looked at in Section II-A. Thus,

is a Poisson random variable with the mean given in 2,
with set to zero for . The term , on the other
hand, is deterministic and equal to minus the number
of cars that departed (i.e., completed their charge) before time
. We need to calculate this term using sub-metering informa-
tion. Let us denote the set of cars that arrived in the -th queue
before time by , and the arrival time and charge duration
associated with the -th charge request as . Ignoring the
communication network delay, we can write as,

(6)

1If the departure time of the customer is considered random, this technique
will still work but yet another level of uncertainty should bemodeled (jobs drop-
ping out of the queue, before they are fully served).



ALIZADEH et al.: A SCALABLE STOCHASTIC MODEL FOR THE ELECTRICITY DEMAND OF ELECTRIC AND PLUG-IN HYBRID VEHICLES 851

with as the unit step function. Given this, the real-time fore-
cast of load due to battery charging is given by

(7)

Notice that in order to use (3) and (7) to provide day-ahead
and real-time load forecasts, the following information is re-
quired:
1) The PDF of charge lengths for each charging rate (queue),

;
2) Forecasts of future arrival rates of vehicles to request
charge at different charging rates (queues), ;

3) The triplet for each vehicle already plugged in,
acquired from sub-metering. This information is specifi-
cally required to calculate .

In the next section, we address how a load forecast unit can
acquire the required statistics mentioned above, namely
and , from real-world data. These estimates should be up-
dated adaptively to account for temporal and geographical vari-
ations in customer behavior. Besides and , one can
also look at the statistics of laxity (flexibility) of charge requests,
which is not directly used by the forecast unit but is relevant for
demand response purposes. After addressing these in Section, in
Section IV-A, we propose scalable model to capture and aggre-
gate the triplets with low communication and storage
requirements.

III. LEARNING THE STATISTICS

Given a large sample set of submetered data on vehicle charge
requests, estimating is a straightforward task. We can
either provide rescaled histograms, or find analytical distribu-
tions that fit the data well enough. In order to provide non-ho-
mogeneous distributions, we can assign different distributions
to different hours of the day or week.
However, the real challenge lies in estimating future values

of the arrival rates . The complexity is twofold: 1) cur-
rent values of are not observable. The information we can
gather from the metering infrastructure provides the number of
vehicles that actually plugged in and requested charge from a
certain queue , which is a specific realization of the random
Poisson arrival process with mean ; 2) future values of

are random and correlated with its historical values. For-
tunately, the same problem is faced in researching techniques to
forecast future call volumes for call centers with stochastic in-
homogeneous demand [21]–[24]. The most popular model for
the call arrivals is an inhomogeneous (or piece-wise constant)
Poisson process with a random arrival rate [23]. We show in
Section V-E why we think this model is also appropriate for EV
charging events.
Thus, next, given historical information about the number of

vehicles plugged in at each charging rate, we wish to estimate
the arrival rate for a future time . For brevity and ease
of notation, in the rest of this section, we drop the superscript
and estimate for only one charging rate.

A. Estimating and Forecating From Historical Data

We wish to estimate the inhomogeneous rate function
that fully specifies the statistics of the EV Poisson arrival
process. Since the customer behavior depends on many un-
derlying factors, surely this rate is not best modeled as a
deterministic function of the day of the week. It will have
a random evolution that we need to predict on a daily basis,
similar to classical load forecasting techniques. The assumption
that this rate is random, on top of the random nature of Poisson
arrivals, leads to a doubly stochastic model for the arrivals.
Here, we approximate the arrival rate as being piecewise
constant for intervals lasting (24 hours)/ (e.g., quarter or
half hours) and we divide the day into discrete epochs.
Consequently, we denote the arrival rates on day by a vector

.
The goal of this section is to provide a method to forecast

the vector for a future day. Successive values of the arrival
rate are not independent and give valuable information for pre-
dicting future values of the series. One important tool to pre-
dict future values of such sequences is time series analysis [25].
However, since the rate profiles are unobservable, we need to
build our forecasting model on the corresponding count pro-
files, which for day are in our model given by the vector

.
Note that our ultimate goal in observing the count profiles is
to estimate the rate vectors of our statistical model.
Since the counts are realizations of Poisson random

variables with different means , their associated variances,
which is identical to the mean values, is time-varying as well.
In order to solve numerical issues that arise from this, we can
use a simple variance-stabilizing transformation. For example,
we can follow the suggestion in [23] and use a slightly modified
version of the Anscombe square-root transform [26], which
transforms Poisson distributed data like to approximately
normally distributed data with a constant variance of 1/4. The
transformation is as follows:

(8)

where . Following our previous notation, we also
denote the vectors containing transformed counts and their
means for day as and .
Now, there are two types of forecasts that have to be per-

formed: 1) predict the arrival rates for the next day from histor-
ical data. This is referred to as inter-day forecasting; 2) dynam-
ically update the forecasts during the day as new data becomes
available in real-time. We call this intra-day forecast updating.
Next, we address how we can provide such forecasts from his-
torical and real-time data.
1) Interday Forecasting: Transformed count vectors

and representing different days are statistically dependent
random variables. However, we consider them conditionally
independent given the latent transformed rate vectors and
. As we saw, ’s are unobservable (latent) variables and

need to be estimated. The first step in addressing this problem
is to adopt a model that can describe the correlation between
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successive values of ’s. Time series models are a popular
choice here. However, due to the large dimension of the vectors
, multivariate time series models may not be the best way

forward. Thus, to model inter-day dependencies among the
’s, we adopt a model similar to what is proposed in [24] and

we first reduce their dimension, using a low dimensional factor
model to describe the correlation between the arrival rates on
different days. Specifically, we assume:

(9)

with and for . To minimize the residual
mean squared error associated with a given ’s can be
chosen to be the principal components of the variables . The
’s are assumed time-invariant in (9) and have a much slower

dynamics than . Alternatively, if we define the vector
and the matrix ,

(9) can be written as

(10)

This approach maps the latent vector variable into scalar
latent variables . The correlation between successive
values of is modeled through the . Due to the charac-
teristics of singular value decompositions, a vector containing
consecutive values of ’s for different days would be
orthogonal to that of for . Thus, it is reasonable
to assume that and are uncorrelated and the series

can be modeled using separate univariate time series
models. Denote by the index the day of the week
corresponding to day . In our model we assume that ’s
will have a periodic mean of , corresponding to the day
of the week. Then, if we adopt an AR(1) model for each ,
we can write

(11)

where is white noise and is uncorrelated for
different ’s. Higher degree models can be adopted if proven
to be necessary by real-world data. In an AR(1) model, the
transformed daily count vector is conditionally independent
of all other count vectors in the historical dataset given for
day and the previous day’s transformed count vector .
Rewriting (11) for all in vector form gives

(12)

where , and
.

With (11), our model is complete. For given values of the pa-
rameters , we can estimate the ’s from the
transformed count vectors and use these estimates to fore-
cast future arrival rates. By assigning normal diffuse priors to

, this estimation would be straightforward
using classical Bayesian techniques such as maximum a poste-
riori (MAP) or minimummean square error (MMSE) estimators
[27]. In fact, with an AR(1) model, this can be easily done adap-
tively on a day-to-day basis, using standard Kalman filtering it-
erations [28]. Define as the transformed count

vector with the average weekly trend removed. Then, (8), (10),
and (12) can be combined to write the dynamics of as

(13)

(14)

where ’s are the observations, is zero mean Gaussian white
noise and is independent from , and

. The dynamical model in (13) is in accordance with the
framework of the Kalman filter.
In summary, in order to forecast arrival days for the next day

(or later) on day , one must perform the following steps:
1) Transform the observed count vector to via (8);
2) Remove the weekly trend from to get ;
3) Apply the Kalman filter update step to estimate ;
4) Apply the Kalman filter predict step the predict ;
5) Add the weekly component to forecast
6) Map this forecast of into a forecast of the transformed
rate using (10);

7) Apply the inverse Anscombe transform to the forecast of
to get a forecast of the actual rate vector

However, note that we are not provided with the model pa-
rameters . We have to learn them from his-
torical data. Due to the presence of latent variables , and be-
cause of the non-linear nature of the model as a function of
the unknown parameters, this is not a straightforward problem
to solve analytically. Several approaches exist for calculating
maximum likelihood (ML) estimates of the parameters (equiv-
alent to a MAP estimate with a uniform prior). We initialize the
model by assigning the first singular vectors of the historical
transformed count matrix to the vectors . The rest of the pa-
rameters can then be estimated using iterative parameter esti-
mation techniques with latent variables (an expectation maxi-
mization framework [29]). Note that the eigen-structure of the
rate profiles can be better estimated as well once our estimates
of the model parameters improve. Thus, the vectors
are also updated dynamically using recursive subspace tracking
methods [30].
2) Intraday Updates: Now we have a forecast of the arrival

rates for the next day (indexed by ). During real-time op-
erations, the aggregator in charge of the vehicles will gradually
observe the realized values of the random daily arrival counts,
transformed to , through the metering infrastructure. At
hour of day , the first elements of is available,
which we denote by . As these entries become available,
the load forecast unit can update its forecast of . The up-
date can be carried out in two steps:
1) Direct estimation: if we denote by the first rows
of and by the first elements of , then

(15)

can be used to directly estimate estimates of from

and thus, using steps (5), (6) and (7) mentioned

above. Denote this estimate by .
2) Penalized updating: With low amounts of arrival count
data, the direct estimation step is not accurate. Thus, we

can use a weighted sum of and the day ahead fore-
cast as our estimate of .
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IV. DIGITAL (QUANTIZED) SUBMETERING AND DISPATCH

A. Classification of Charge Requests

In Section II-C, we proposed a real-time forecasting tech-
nique in which forecast errors were reduced by incorporating
submetering data. We divided the charging load at the future
time into two parts: load due to vehicles that arrived before
the current time (denoted by set ), and load due to vehi-
cles that will arrive between and (denoted by set ).
Thus, the load at a future time is given by

(16)

where is deterministic and completely observable from
submetering data. To track its value and improve the forecasts
of as described in Section II-C, we need the analog triplets

for each charge request.
But high telemetry and storage costs and modeling com-

plexity are two faces of the same coin. Thus, it is desirable
to reduce the burden of communicating and storing the triplet

for every single vehicle. Similar to the basic princi-
ples of all digital communication systems, in [31] we proposed
to quantize the tuple . This is carried out through a set
of classifiers that quantize the charging durations of
vehicles using the -th charging rate onto a set of possible
values . The effect of this clustering is
twofold: 1) it obviously provides a digital representation of the
charging load that can be communicated; 2) it separates the
charge requests into classes of service. We denote
the class of all vehicles that use a charging rate and charge
duration by a tuple . This classification of demand
highly reduces out storage costs, as well as computational costs
when using demand response techniques later in Section IV-B.
We also choose to discretize time since forecast updates are not
carried out continuously and, thus, we do not need to store the
state of the queues at every time instant. Hence, from this point
on, is used to denote the index of discrete time epochs equally
distanced by .
With this quantized charge description, at each epoch , the

new information that needs to be stored is the number of new
arrivals in each class since the previous epoch, which we
denote by . Consequently, can now be written as,

(17)

where denotes a unit pulse function between [0,1]. Simi-
larly, if we expand the summation over time beyond the current
time , we can model as,

(18)

where the arrival counts beyond are not known yet but
can be forecasted.
There are many benefits in using (18) over (16), the most

notable of which is scalability. No matter how large the vehicle
population is, we only need to store numbers per time index
to keep track of the sub-metered load. Also, when simulating
EV load, we only need to generate Poisson random variables
per time index to generate random vehicle arrivals, which is
extremely simple.

B. The Effect of Demand Response Techniques: Controlled
Activations

The proposed load classification can also be used to charac-
terize the dispatchability of the EV/PHEV load by an aggre-
gator. An aggregator that wants to apply a demand management
technique needs to model how its control signals will affect the
load. In Section II-B, we saw that the effects of dynamic pricing
techniques can be captured throughmodeling their effects on the
aggregate arrival rates . Another scenario is that vehicle
charge requests can be managed by a central unit that directly
controls the exact times at which vehicles charge their batteries.
Under a direct demand management program, the number of

requests that start being served by each queue at every time in-
stant is controlled and customers that arrive in the grid to receive
charge need towait to receive an authentication from the control
unit. This can be captured by denoting the number of vehicles
that start charging at time from the -th service class by

, while a number of vehicles are held in the queue (see
Fig. 3). With this new definition, we can rewrite the aggregate
charging load in (16), under a central demand control program,
as

(19)

Consequently, studying the effects of different demand manage-
ment techniques on the load would translate into understanding
how the customer’s initial arrival pattern is affected by
the control signal and yields . We denote the function that
describes this relationship as . The arguments of this func-
tion can be as simple as just , in the case of, for example, a
heuristic threshold based demandmanagement program holding
back demand if it exceeds a certain value. At the other extreme,
the control algorithm, described by , can have many input
arguments and may not be an analytical function, but an opti-
mization problem that should be solved numerically (see e.g.,
[31]).
The description in (19) can be generalized to also account

for vehicle-to-grid (V2G) scenarios. To do so, we can assume
that appliances waiting to receive service from each queue can
choose between various service options. For example, a vehicle



854 IEEE TRANSACTIONS ON SMART GRID, VOL. 5, NO. 2, MARCH 2014

Fig. 3. Quantized sub-metering can help facilitate real-time forecasting and
demand response. Each charging rate is mapped into queues.

Fig. 4. Smart load forecasting with DR.

requiring charge for one hour can be charged and leave, or it
can discharge the battery now and receive a longer charge after-
wards. The details of how this can be achieved are beyond the
scope of this paper and will be addressed in future work.
Note that, in the case where a DR aggregator is manipulating

the access rate of vehicles to receive charge, the OAI predictor,
which merely used estimates of the arrival rates to pre-
dict the future load, now needs to forecast the values of
instead. There are two possible cases: 1) the load forecast unit
has an analytical description of how the ’s will be deter-
mined in response to an arrival rate of , due to ; 2) the
forecast unit needs to learn the behavior of each aggregator’s de-
mand control scheme from historical data available on the
and ’s, i.e., estimate the function . The required inter-
actions to forecast load in these cases is shown in Fig. 4. Again,
this can be easily extended to include multiple charging rates or
general charging pulses .

V. NUMERICAL EXPERIMENTS—PART I: TUNING MODEL
PARAMETERS TO HISTORICAL DATA

Now that we have described how the system operator or an
aggregator of electric vehicles can use sub-metering data to
model the full statistics of charging demand for load forecasting
or demand response purposes, we wish to numerically calibrate
the parameters of our model to historical data. We provide these
initial estimates with the caveat that they can be further im-
proved when more data is available, considering that they might

prove useful as a reference for research purposes. Due to the lim-
itations of the real-world data we have access to, here we only
look at level-1 home charging of PHEVs ( is equal to 1 since
we only have one charging level). Hence, for brevity, we elimi-
nate the subscript from our notation from this point on.

A. Data Set Description

We will compute the parameters of our model as follows.
The probability density function (PDF) of charge durations and
laxity (slack time) of PHEV charging is based on data from
PHEVs driven and charged by households [11], provided by the
UC Davis PH&EV center. These data confirm that the random
number of vehicles being plugged in per unit of time, which
we refer to as vehicle arrival process, has time-varying statis-
tics. However, these statistics cannot be accurately learned from
the PHEV database, due to its small size. Thus, we propose a
new methodology to derive the parameters of the arrival model
using ICEV data. More specifically, we infer a second distri-
bution of charging events using the 2009 National Household
Travel Survey (NHTS) [32], emulating the example of [7] in
building synthetic traces.
The NHTS gathers information about daily travel patterns of

different types of households. The available data include mode
of transportation, duration, distance, and purpose of travel for
ICEV owners. The specific parameters found for this portion
of the model may be unrealistic for PHEVs and EVs in three
ways. First, as [11] and [33] discuss, the probability that a PHEV
or EV is charged upon its arrival at a charging location (taken
to be home in this instance) 1) decreases with a longer driving
range per battery charge; 2) increases with the distance the ve-
hicle has been driven since its last charge; 3) increases with the
time duration the vehicle is parked before it is driven again; and
4) increases as a function of how far the vehicle is expected
to be driven subsequent to the charge. Because the entries in
the NHTS travel data each cover only one day, the last point in
particular cannot be incorporated into any charging probability
distribution derived from [32], if charging is based on an expec-
tation of the next day’s travel. Second, we are not as sanguine
as [7] that deviations between the observed travel in [32] and
travel by PHEVs and EVs will decline in the future. Observa-
tions from [11] and [33] indicate that households change driver
assignments to vehicles, trips, and activities, choose new loca-
tions, and buy different vehicles in response to the new driving
and charging characteristics of PHEVs and EVs. That is, we
view it as more likely that any future NHTS containing large
numbers of PHEVs and EVs will be different from, not similar
to, any data consisting primarily of ICEVs. Third, the amount
of charged required by the vehicle is a function of several pa-
rameters such as driving/road conditions, driving habits, vehicle
model, battery condition, dynamic prices, climate control set-
tings, and user selected modes (charge depleting, blended, or
charge sustaining). We cannot account of all of these parameters
when mapping NHTS to PHEV charge requests. Although all of
these issues will affect the statistics for PHEV charging events
derived here, this does not limit our model from being re-pa-
rameterized when new larger data sets of PHEV or EV charging
become available.
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Fig. 5. The PDF of charging durations obtained from PH&EV center data. The
noisiness is due to the rather small size of the dataset from UC.

B. Statistics of Charge Duration

Remember that in this work, the charging period of each
vehicle is modeled as an independent identiacally distributed
random variable for vehicles plugged in at the same charging
level and time. In this section we provide an appropriate PDF
for for the case of PHEV level-1 home charging. This answers
the third essential question posed in the introduction: how much
energy is required per each charge event?
Using level 1 charging, the full charging time of our studied

PHEVs would be between four and five hours (four to six
kWh of battery capacity). The actual power to charge typically
starts at higher than the average rate and tapers off as the
battery approaches a full charge. We ignore this change (as it
has little impact on the duration of charging) and assume the
PHEV charging power is equal to an average of kW,
consistent with our real-world data.
Fig. 5 shows the probability distribution function of charge

durations derived from the PH&EV center data (
minutes). We tested numerous distribution functions that seem
to fit the charge duration data. We found that a lognormal distri-
bution best fits the data. Thus, we conclude
that a suitable PDF to model the charge duration of PHEVs
under level-1 home charging is

(20)

where the unit of is minutes. The expected value of this
random variable is 207 minutes. The q-q plot in Fig. 6 com-
pares the distribution to the samples. Another step to further
improve this fit is to clip the above PDF at a maximum of
300–350 minutes. To see how much this improves the fit, we
cut the PDF at 320 minutes and distributed the samples that
were above this value uniformly in [280, 320] min (see Fig. 6).
Here, we cut off the distribution at a specific charge duration,

which translates into a specific battery size. In the case of dif-
ferent battery sizes we expect that either a mixture of lognormal

Fig. 6. q-q plot of PHEV charge estimates versus the traditional and the clipped
lognormal distributions.

RVs or a single distribution with a tail that combines the cutoff
effects of different battery capacities will fit the data.
One important issue that wewish to bring forward is that most

of the home charging events in this dataset happen after 4 P.M.
and continue throughout the evening and night hours. Thus, we
do not have a large enough number of samples from charging
events that happened during morning hours and the ones we
have are shorter than the charges at night hours. Hence, the
PDF in (20) is most appropriate to fit night charging events and
the distribution may not be stationary and could be
a function of time. However, when we studied the distribution
of mileage driven before returning home from NHTS entries,
and divided the night and day hours data, we observe very sim-
ilar statistics. This suggests that any method converting travel
miles into home charges will lead to a stationary distribution
for the charge PDF, which at moment is neither confirmed nor
denied by the real data. For the sake of illustrating our model,
we proceed to use a stationary PDF of the charge requests for
home charging, even though our model in Section II is compat-
ible with a non-stationary charge request distribution.

C. Statistics of Laxity of Charge Requests

Next, we look at one parameter that may be interesting to
DR aggregators in charge of managing EV charging load. We
answer the fourth essential question mentioned in the introduc-
tion about the amount of flexibility accompanying each charge
request. Fig. 7(a) shows the PDF of the laxity (slack time) of
the charging requests gathered by UC Davis [11]. The PDF has
two distinct peaks, one at 1–2 hours and the next at 8–10 hours.
As seen in Fig. 7(b), we can confirm from the data that day-
time requests contribute mostly to the first peak, while night-
time requests mostly belong to the second peak. Consequently,
we fit two different probability density functions to represent
the laxity offered by daytime and nighttime charge requests. We
found that an exponential distribution with a mean of 1.089 best
fits the daytime data, while the nighttime laxity is best repre-
sented by a lognormal distribution . Due to a
lack of enough samples, we refrain from finding a joint density
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Fig. 7. (a) PDF of laxity of charge requests. (b) PDF of laxity separated for
nighttime and daytime requests. Two distinct peak are observed.

for the charge laxity and length. However, we acknowledge that
these two variables are most likely correlated.

D. Mapping NHTS Entries into Charge Durations

As mentioned, the size of the real-world data set available
to us is rather small (620 samples). While this is a reasonable
amount of data to derive the charge duration and laxity PDF,
one cannot learn vehicle arrival statistics (the rate ) from
this data set. One possible way to have more statistics on PHEV
travel patterns, and thus arrivals, is to expand our sample set by
using a methodology similar to [7], [8] and convert the NHTS
mileage records traveled by ICEVs into PHEV arrival and
charge durations [32]. Since NHTS entries only record one day
worth of travel patterns per household for ICEVs, a common
assumption made to convert miles to kWhs is that vehicles are
charged at least once a day. If we adopt this assumption, we
end up mapping at least one arrival of the customer at home per
day into a battery charge request. To showcase why we think
this is possibly inaccurate, we will introduce a simple miles to
kWhs conversion next.
We assume that, on average, the energy required per each

traveled mile is uniformly distributed as in Table I [34]. Also,
we assume that the PHEVs are in a charge depleting mode until
they run out of charge, when they switch to consuming gas.
Therefore, if we denote the mileage traveled by vehicle as ,

TABLE I
ENERGY PER TRAVELED MILE

Fig. 8. The PDF of home charging durations obtained from NHTS is clearly
not similar to that of the real-world data. We envision that this is because NHTS
alone cannot account for the random nature of plug-in events.

the average energy required permile by , the charge rate by ,
the battery capacity by , and the amount of time the vehicle
is parked at home as , we can write the mapping from NHTS
entries into charge durations as

(21)

Fig. 8 displays the probability density function of the home
charging durations in minutes derived from the mileage
entries based on (21). We can see that a large percentage of
charge requests have a rather short duration, which is neither
consistent with the real-world data (cf. Fig. 4) nor intuitive
( minutes). We envision that this problem will
be eliminated if we account for the random nature of plug-in
events. In fact, drivers are unlikely to charge at the end of every
single day if they have only traveled a rather short distance
and their battery is not depleted. The data from the UC Davis
PH&EV center confirm that charging usually happens when the
battery is nearly empty. Consequently, lacking sufficient arrival
data in the PH&EV center dataset, we propose to account for
this random plug-in behavior so as to transform NHTS entries
to realistic PHEV arrival time data. The NHTS entries, unlike
the PHEV data set, are abundant and expand our sample set
sufficiently to denoise the estimate.
If customers do not plug in their vehicles every night, the total

mileage driven by vehicle in (21), , will be the sum of daily
traveled mileages over the days following the previous charge
event. Thus, denoting the miles traveled by vehicle on the -th
day since its last battery charge by , we have

(22)



ALIZADEH et al.: A SCALABLE STOCHASTIC MODEL FOR THE ELECTRICITY DEMAND OF ELECTRIC AND PLUG-IN HYBRID VEHICLES 857

Fig. 9. Distribution of miles driven before returning home, derived from
NHTS.

where is the number of days since the customer has last
charged the battery. Note that is a random number. We as-
sume a simple Bernoulli model to capture the customers deci-
sions to charge their vehicles, with a few possible options on
how to model the success probability. Picking different options
would affect the statistics of . Since the NHTS only gives us
information on a single day of travel per vehicle , i.e., one
per household , we propose two strategies to model .
The first strategy is to assume that the plug-in probability is

only a function of the last day’s mileage, . We found that
by choosing

(23)

a two-sample Kolmogorov-Smirnov test does not reject the
hypothesis that the 620 real-world samples and the 150 000
charging amounts derived from the NHTS database come from
the same probability distribution (at a 5% significance level).
However, note that this may not be the optimal way of capturing
the customer’s decision, which will most probably depend on

instead of .
In the second strategy, instead, we assume that there is a con-

stant probability of plugging in, no matter the miles, equal to
. Hence, will be a geometric random variable with a

success probability of , i.e.,

(24)

Next, we need to estimate the parameter based on the
real-world data. We can learn the PDF of the miles driven on a
single day, , from the NHTS data (see Fig. 9). If we assume
that the mileage driven on consecutive days are independent
random variables,2 we can numerically calculate the PDF of
for different values of . Next, we record the log-likelihood
that the 620 samples available from the PH&EV center data
originated from each of these PDFs. The results indicate that
our optimal estimate is .

2It is likely this is not the case, and that one would have to account for serial
correlation in travel across days for individual drivers, but we are avoiding the
complexities associated with making these distinctions.

A further improvement would be to make the probability of
plug-in a function of , the number of miles driven since the
last charge. This would mean that, if the battery is nearly empty,
the customer will charge it with a higher probability. A simple
model for this case would be

(25)

If we choose the threshold in (25) to be equal to 5 miles, we can
estimate and by performing a likelihood
ratio test on the real-data.
With this, we have answered the second essential question

posed in the introduction: how often do customers request
battery charge when their vehicle is parked? Here, we choose
to proceed with the plug-in probability (23) to map the event
of an ICEV arriving at home in the NHTS database to a PHEV
plug-in event for our numerical experiments. Now we assume
that we have an abundant amount of historical data on PHEV
arrivals. Next, we show why we think a non-homogeneous
Poisson process is an appropriate choice for modeling arrivals,
as promised previously.

E. Uniform Conditional Test for a Poisson Process

In order to show that an inhomogeneous Poisson arrival
model is a reasonable model for PHEVs, we construct a test of
null hypothesis based on vehicle travel patterns from the NHTS
data. The null hypothesis is that vehicle arrivals for charging
follow a constant rate Poisson process in short intervals of time
(the length of this interval is chosen to be 30 minutes in our
case). To be consistent with our charging model, we assumed
that vehicles request charge only when they arrive at home.
The decision of customers to plug-in was assumed to be a
Bernoulli random variable with a success probability given by
(23). It is worth noting that, no matter the choice of plug-in
probability, random selections of Poisson processes are still
Poisson processes.
Before explaining how we carry out this test, we need to ad-

dress an issue emerging from the NHTS trip start and end times.
These times are almost always rounded to the nearest 5 min-
utes. Also, we observed that 1/2 hour intervals appear much
more often than expected. Therefore, following [23], we added
a random dithering to the data by adding normally distributed
noise with a variance of 2 minutes to trip end and start times that
were multiples of 5 and, with a variance of 15 to recorded times
that were multiples of 30 minutes.
The idea behind the test of the Poisson hypothesis was ex-

plained first in [35]. Assume that there are a total of arrival
events in an interval , occurring at times . Then,
if we condition on , the variables are independent and uni-
formly distributed between . Thus, to test the conditional
uniformity of the arrival times, standard tests of uniformity can
be applied to this data (for example, a Chi-squared test of uni-
formity) [36]. We used a one-sample Kolmogorov-Smirnov test
to compare the distributions of the normalized arrival times
with the distribution. The test was repeated for different
hours of the day and the null hypothesis was never rejected.
Fig. 10 shows a q-q plot for arrivals between 13:30 to 14:00 on
Mondays. Quantile-quantile (q-q) plots are used to check, in a
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Fig. 10. q-q plot comparing conditionally normalized EV arrival times between
13:30–14:00 on a Monday to a uniform distribution.

non-parametric fashion, whether two sample set originated from
the same probability distribution. If the two sets come from sim-
ilar distributions, the points in the q-q plot will approximately
lie on the line . These tests have been run with standard
Matlab functions. Obviously none of these tests can prove that
the model is truthful, but they can at least not reject it.

F. Principal Components of Vehicle Arrival Counts

The NHTS gives us an ample amount of arrival count data for
vehicle plug-ins, sorted by the day of the week. Unfortunately,
since we do not know the exact date of each event, we cannot nu-
merically demonstrate the principles described in Section III-A
to calculate ML estimates of the coefficients of a time series
model describing the ’s, e.g., the AR coefficient and
the noise variance in (11). However, due the large size of the
dataset, the principal components of the weekly arrival data give
us a reliable estimate of the factors in (9). We
perform an SVD on the transformed cumulative arrival count
matrix , with each count vector describing
the arrival counts at different hours of a specific the week of
the day . It is interesting to mention that the six most important
’s, shown in Fig. 11(a), account for 96% of the variance. Thus,

the model in (9) reduces the size of the data (in our case from
96 to 6 elements per day) and make the next steps of predicting
future arrival rates more tractable. One noteworthy observation
is that is very similar to the weekday travel patterns while
compensates for the different trends observed in weekend

travel patterns. The next step is to estimate the periodic mean of
the principal component coefficients, i.e., for

and . Fig. 11(b) displays this periodic mean
for the first sixth principal component coefficients.

VI. NUMERICAL EXPERIMENTS PART II: REAL-TIME LOAD
FORECASTING

Our experiments in this section will showcase the advan-
tages of sub-metering PHEVs separately through real-time
smart meter data, just for forecasting purposes. We refer to the
technique, presented in Sections II-C and IV-A, as the OAI

Fig. 11. (a) The first sixth principal components (index 1 on the x axis is the
principal component with the highest variance). (b) Periodic mean of the six
principal component coefficients (the x axis represents day of the week and the
y axis is the principal component index).

predictor (prediction that uses Observable Arrival Information)
and compare it to what we refer to as the classical prediction,
which models the load as an ARMA process [37]. Univariate
methods are frequently used for short-term load forecasting
because exogenous variables such as the weather are assumed
to change very smoothly over shorter time scales [38].
As explained in Section II-C, an OAI predictor needs to esti-

mate the number of vehicles that will be receiving charge from
each queue at a future time . This load is proportional to the
sum of a deterministic term and a random term
with mean in (2). To evaluate , we use two separate
methods and compare their performances. In the first method,
we forecast the arrival rate of the cars using the weekly compo-
nent of the vehicle count vector and then evaluate the integral
(2) numerically. We refer to this method as OAI1 predictor. In
the second method, we use the results presented in [9], which
we refer to as OAI2 predictor. This model assumes a homoge-
neous arrival process for the charging requests. Accordingly, we
picked the average arrival rate we used for OAI1 as the arrival
rate for OAI2, which was equal to 12 vehicles per every half
hour.
The methods were tested on the simulated load for a substa-

tion serving a population of around 1000 PHEVs. The simula-
tion covers 60 days, 30 of which are used for training the clas-
sical ARMA model and the forecast errors are averaged over
the remaining 30 days. For fairness, we set the base load to be
zero so that forecasting the base load does not contribute to the
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Fig. 12. Absolute error of half hour ahead prediction (a) arrivals based on
NHTS data (b) arrivals based on UC Davis PH&EV center data.

error. We assume that the entire population of PHEVs uses level
1 charging (1.1 kW). We assume that: 1) the residents arrive to
receive charge based on arrival rates derived from the NHTS
data; 2) the charging time of each car has the same distribu-
tion (20). Our results, displayed in Fig. 11(a), show the average
absolute error (in kWs) of half-hour ahead prediction using the
OAI1, OAI2, and the classical methods. In our simulations, the
daily load due to battery charging of the 1000 PHEVs had a peak
of around 250 kWs. One can clearly observe that the classical
prediction technique has an absolute error that is up to 3–4 times
worse than the OAI1 method. Also, the results clearly showcase
that a non-homogeneous arrival model is necessary to capture
EV charging load. Thus, a useful extension to the model pro-
posed in [9] would be to incorporate non-homogeneous arrivals.
Furthermore, to showcase the benefits of individual energy

requests being observable even if the statistics are incorrect, we
simulate the performance of both predictors when the arrival
events are taken from the PH&EV center data set, with all events
assumed to happen on the same day. Due to the small size of this
data, we refrain from training the ARMA model or predicting
the arrival rates for the OAI predictor. Consequently, we used
the same model developed on the NHTS data for the classic pre-
dictor and used a persistence predictor (i.e.,
for the OAI predictor. This clearly degrades the performance of

both predictors. However, as seen in Fig. 12, lowering the pre-
diction accuracy of , which is consistent with the scenario
where the arrivals are more volatile and unpredictable, will hurt
the classic predictor much more than the OAI predictor. This is
simply due to the fact that, even if prediction of is inaccu-
rate, the OAI predictor still has zero forecast error on the load
due to previous charge requests.

VII. CONCLUSION

This paper provides a stochastic model useful to simulate
and predict the electricity demand resulting from a general ar-
rival and charging pattern for EVs/PHEVs. It also proposes a
methodology to gather and fuse information online to perform
future predictions that is useful both for the generation and de-
mand side management of EVs. The model is validated using
traces extracted from mapping NHTS data and via real PHEV
measurements from the UC Davis PH&EV center. We would
like to reiterate that the numerical values presented for the pa-
rameters of our model can and should be re-evaluated as new
data (and in particular, multi-day charing data) become avail-
able, charging infrastructure develops, and business plans for
demand side management/dynamic pricing techniques emerge.
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