8th Grade Math

Guided Notes

Solutions to Equations in One Variable

One Solution, Infinite Many Solutions, No Solution

Two Guided Color-coded Interactive Math \mathfrak{N} Note 60 o , Pages

Solutions to Linear Equations in One Variable

\qquad

Solutions to Linear Equations in One Variable

The \qquad of an equation is the value(s) of the variable(s) that make the equation a true statement.

- Equations in one variable can have \qquad solution, \qquad solutions or \qquad solution.

	One Solution	Infinite Solutions	No Solution
Reasoning: What the type of solution means.	Only \qquad value will make the equation true.	\qquad value will make the equation true	\qquad values will make the equation true.
True Solution? Always, Sometimes, Never	A conditional equation is true for some values of x. \qquad \qquad	An identity is always true, for any value of x. \qquad \qquad	A contradiction is never true for any value of x. \qquad \qquad
Example:	$4 x+6=18$ \qquad \qquad is the only number that makes the equation true.	$5 x+15=5 x+15$ \qquad \qquad \qquad for x will make the equation true.	$4 x+8=4 x+3$ \qquad for x will make the equation true.
Hints: Look at both sides of the equation.	End result still has a and a \qquad	Variables cancel each other out and both sides of the equation \qquad	Variables cancel each other out and both sides of the equation \qquad \qquad

Determining the Type of Solution

	One Solution	Infinite Many Solutions	No Solution
Simplified Equation	$3 x-5=7 x+3$	$2+4 x=4 x+2$	$8 x+9=8 x-5$
Look at the Variable Terms.	The variable terms are	Variable terms are the Both sides	Variable terms are the__. Both sides

Example One:

$$
2(4 x+5)=5(2 x+4)
$$

\qquad
$\leftarrow \underline{\text { Variable terms }}$ are .
\star Equation can be \qquad . \star

The equation has \qquad . The solution means \qquad

Example Two:

$2(5 x+4)-11=4 x+3(2 x-1)$
\qquad both sides of the equation.
\qquad $\leftarrow \underline{\text { Variable terms }}$ are \qquad .
and both sides are \qquad .

The equation has \qquad . The solution means \qquad

Example Three:

$-4 x+3(5 x+6)=7(2 x+1)-3 x$ \qquad both sides of the equation.
\qquad
\qquad $\leftarrow \underline{\text { Variable terms }}$ are \qquad . and both sides are \qquad .

The equation has \qquad The solution means \qquad

Solutions to Linear Equations in One Variable

The Solution of an equation is the values) of the variables) that make the equation a true statement.

- Equations in one variable can have \qquad one solution, \qquad infinite solutions or \qquad no solution.

Determining the Type of Solution

	One Solution	Infinite Many Solutions	No Solution
Simplified Equation	$\boxed{3 x}-5=\sqrt{7 x}+3$	$2+4 x=4 x+2$	$(8 x+9=8 x-5$
Look at the Variable Terms.	The Variable terms are different	Variable terms are the sane. Both sides are equal	Variable terms are the Same. Both sides are not equal

Example One:

$$
\begin{aligned}
2(4 x+5) & =5(2 x+4) \\
\frac{8 x+10}{-10 x} & =10 x+20 \\
\frac{-10 x}{-2} & =\frac{10}{-2} \quad x=-5
\end{aligned}
$$

Simplify both sides of the equation.
\leftarrow variable terms are different
\qquad \star Equation can be solved

The equation has one Solution
\qquad The solution means that -5 is the onlyualve tor x that will mile the equation tie.
Example Two:

$$
\begin{aligned}
& 2(5 x+4)-11=4 x+3(2 x-1) \\
& \frac{10 x+8-11=4 x+6 x-3}{6+-3-10 x-3}
\end{aligned}
$$

Simplifig both sides of the equation.
\leftarrow variable terms are the sane
\qquad en sam and both sides are \qquad equal
The equation has infinite many solutions. The solution means. that any undue for x will mile the equator toe.

Example Three:

$$
\begin{aligned}
& \frac{-4 x+3(5 x+6)=7(2 x+1)-3 x}{-4 x+15 x+18=14 x+7-3 x} \\
& \frac{11 x+18 \neq 11 x+7}{\text { fat se }}
\end{aligned}
$$

Simplify both sides of the equation.

* variable terms are the sane and both sides are not equal not equal
The equation has no solution The solution means that no value for x will male the equation tree.

Thank you for downloading

RoxyGirl Teacher's Rockstar Teaching Resources.

I hope this resource makes your math lesson "Rock".

I would love for you to follow me at my TPT store, my math blog, Twitter, or Instagram. :o)
^ http://www.teacherspayteachers.com/Store/RoxyGirl-Teacher ^ http://rockstarmathteacher.blogspot.com/

* @RoxyGirlTeacher

Contact me at:

roxygirlteacher@gmail.com

Copyright © 2011 RoxyGirl Teacher: Rockstar Teaching Resources All rights reserved by author. Permission to copy for single classroom use only. Not for public display.

Putting any part of this product on

 the internet in any form is strictly forbidden.