

Slide 3 / 156

NEW JERSEY CENTER
FOR TEACHING \& LEARNING

8th Grade
The Number System and Mathematical Operations Part 2

2015-08-31
www.njctl.org

Slide 4 / 156

Table of Contents

Squares of Numbers Greater than 20

to go to that
section.
Simplifying Perfect Square Radical Expressions
Approximating Square Roots
Rational \& Irrational Numbers
Real Numbers
Properties of Exponents
Glossary \& Standards

Squares of Numbers
 Greater than 20

Return to
Table of Contents

Square Root of Large Numbers

Think about this...
What about larger numbers?
How do you find $\sqrt{1156}$?

Square Root of Large Numbers

It helps to know the squares of larger numbers such as the multiples of tens.
$10^{2}=100$
$20^{2}=400$
$30^{2}=900$
$40^{2}=1600$
$50^{2}=2500$
$60^{2}=3600$
$70^{2}=4900$
$80^{2}=6400$
$90^{2}=8100$
$100^{2}=10000$
What pattern do you notice?

Two Roots for Even Powers

If we square 4 , we get 16 .
If we take the square root of 16 , we get two answers: -4 and +4 .
That's because, any number raised to an even power, such as 2,4 , 6 , etc., becomes positive, even if it started out being negative.

So, $(-4)^{2}=(-4)(-4)=16 \quad$ AND $\quad(4)^{2}=(4)(4)=16$
This can be written as $\sqrt{16}= \pm 4$, meaning positive or negative 4 .
This is not an issue with odd powers, just even powers

Slide 21 / 156

Slide 22 / 156

27 Evaluate $\sqrt{.0064}$	
$\begin{array}{llll}\text { OA } & 0.8 & \text { OB } & 0.08\end{array}$	
OC $\frac{4}{5} \quad$ OD \quad no real solution	
Slide 45 / 156 Slide 46 / 156	
Approximating Square Roots	Perfect Square All of the examples so far have been from perfect squares. What does it mean to be a perfect square? \square
Slide 47 / 156	Slide 48 / 156
Non-Perfect Squares	Non-Perfect Squares
You know how to find the square root of a perfect square. What happens if the number is not a perfect square? Does it have a square root? What would the square root look like?	Square Root Perfect Square 1 1 2 4 3 9 4 16 5 25 6 36 7 49 8 64 9 81 10 100 11 121 12 144 13 169 14 196 15 225 Think about the square root of 50 . Where would it be on this chart? What can you say about the square root of 50 ? 50 is between the perfect squares 49 and 64 but closer to 49 . So the square root of 50 is between 7 and 8 but closer to 7 .

29 The square root of 40 falls between which two perfect squares? A 3 and 4 B 5 and 6 C 6 and 7 D 7 and 8	30 Which integer is $\sqrt{40}$ closest to? $\begin{array}{ll} \sqrt{ }<\sqrt{ }<\sqrt{ } \text { Identify perfect squares closest to } 40 \\ - & <\sqrt{ }<\infty \end{array}$ Identify nearest integer
Slide 57 / 156	Slide 58 / 156
31 The square root of 110 falls between which two perfect squares? A 36 and 49 B 49 and 64 C 64 and 84 D 100 and 121	32 Estimate to the nearest integer. $\sqrt{110}$
Slide 59 / 156	Slide 60 / 156
33 Select the point on the number line that best approximates the location of $\sqrt{14}$.	34 Estimate to the nearest integer. $\sqrt{219}$
From PARCC EOY sample test non-calculator \#19	

| 35 Estimate to the nearest integer. | |
| :--- | :--- | :--- |
| $\sqrt{90}$ | 36 Approximate $\sqrt{29}$ to the nearest integer. |
| Slide $63 / 156$ | |
| Approximate $\sqrt{96}$ to the nearest integer. | |

42 For what integer x is \sqrt{x} closest to 6.25 ?

Derived from engage ${ }^{\text {ny }}$

Slide 70 / 156

44 Between which two positive integers does $\sqrt{56}$ lie?167
$\square 4$10

Derived from engage ${ }^{\text {ny }}$

Slide 71 / 156

45 Between which two positive integers does $\sqrt{80}$ lie?78
310
5元

Slide 72 / 156

46 Between which two labeled points on the number line would $\sqrt{10}$ be located?

Rational \& Irrational Numbers

Return to
Table of Contents

Slide 75 / 156

There are an infinite number of irrational numbers between any two integers (think of all the square roots, cube roots, etc. that don't come out evenly)

Then realize you can multiply them by an other number or add any number to them and the result will still be irrational.
Slide $75 / 156$

Irrational Numbers

Irrational Numbers are real numbers that cannot be expressed as a ratio of two integers. In decimal form, they extend forever and never repeat.

Irrational Numbers

Just as subtraction led us to zero and negative numbers.
And division led us to fractions.

Finding the root leads us to irrational numbers
Irrational numbers complete the set of Real Numbers.

Real numbers are the numbers that exist on the number line.

Rational \& Irrational Numbers

$\sqrt{9}$ is rational.

This is because the radicand (number under the radical) is a perfect square. $\left(3^{2}=9\right)$

If a radicand is not a perfect square, the root is said to be irrational.
Ex: $\sqrt{12}$

Slide 77 / 156

Irrational Numbers

Irrational numbers were first discovered by Hippasus about the about 2500 years ago.

He was a Pythagorean, and the discovery was considered a problem since Pythagoreans believed that "All was Number," by which they meant the natural numbers (1, 2, 3...) and their ratios.

Hippasus was trying to find the length of the diagonal of a square with sides of length 1 . Instead, he proved, that the answer was not a natural or rational number.

For a while this discovery was suppressed since it violated the beliefs of the Pythagorean school.

Hippasus had proved that $\sqrt{ } 2$ is an irrational number.

Slide 78 / 156

Irrational Numbers

An infinity of irrational numbers emerge from trying to find the root of a rational number.

Hippasus proved that $\sqrt{2}$ is irrational goes on forever without repeating.

Some of its digits are shown on the next slide.

Square Root of 2

Here are the first 1000 digits, but you can find the first 10 million digits on the Internet. The numbers go on forever, and never repeat in a pattern:
1.414213562373095048801688724209698078569671875376948073176679 7379907324784621070388503875343276415727350138462309122970249 2483605585073721264412149709993583141322266592750559275579995 0501152782060571470109559971605970274534596862014728517418640 8891986095523292304843087143214508397626036279952514079896872 5339654633180882964062061525835239505474575028775996172983557 5220337531857011354374603408498847160386899970699004815030544 0277903164542478230684929369186215805784631115966687130130156 1856898723723528850926486124949771542183342042856860601468247 2077143585487415565706967765372022648544701585880162075847492 2657226002085584466521458398893944370926591800311388246468157 0826301005948587040031864803421948972782906410450726368813137 3985525611732204024509122770022694112757362728049573810896750 4018369868368450725799364729060762996941380475654823728997180 3268024744206292691248590521810044598421505911202494413417285 3147810580360337107730918286931471017111168391658172688941975 871658215212822951848847208969..

Roots of Numbers are Often Irrational

Soon, thereafter, it was proved that many numbers have irrational roots.

We now know that the roots of most numbers to most powers are irrational.

These are called algebraic irrational numbers.
In fact, there are many more irrational numbers that rational numbers.

Slide 81 / 156

Principal Roots

Since you can't write out all the digits of $\sqrt{2}$, or use a bar to indicate a pattern, the simplest way to write that number is $\sqrt{2}$.

But when solving for the square root of 2 , there are two answers: $+\sqrt{2}$ or $-\sqrt{2}$.

These are in two different places on the number line.
To avoid confusion, it was agreed that the positive value would be called the principal root and would be written $\sqrt{2}$.

The negative value would be written as $-\sqrt{2}$.

Slide 83 / 156

Slide 84 / 156

Transcendental Numbers

The other set of irrational numbers are the transcendental numbers

These are also irrational. No matter how many decimals you look at, they never repeat.

But these are not the result of solving a polynomial equation with rational coefficients, so they are not due to an inverse operation.

Some of these numbers are real, and some are complex.
But, this year, we will only be working with the real transcendental numbers.

Pi

We have learned about Pi in Geometry. It is the ratio of a circle's circumference to its diameter. It is represented by the symbol π

$\pi \approx 3.14$
Discuss why this is an approximation at your table.
Is this number rational or irrational?
\# is a Transcendental Number
The most famous of the transcendental numbers is \#.

B \# is the ratio of the circumference to the diameter of a circle.

People tried to find the value of that ratio for millennia.

Only in the mid 1800's was it proven that there was no rational solution.
http://bobchoat.files.wordpress.com/ 2013/066/pi-day0004.jpg

3. 1415926535897932384626433832795028841971693393751058820974944592	
30781640628620899862803482534211706798214808651328230664709384460	
955058223172535940812848111745028410270193852110555964462294895549	
30381964428810975665933446128475648233786783165271201909145648566	
92346034861045432664821339360726024914127372458700660631558817488	
152092096282925409171	

Slide 88 / 156

Other Transcendental Numbers

There are many more transcendental numbers.
Another famous one is "e", which you will study in Algebra II as the base of natural logarithms.

In the 1800's Georg Cantor proved there are as many transcendental numbers as real numbers.

And, there are more algebraic irrational numbers than there are rational numbers.

The integers and rational numbers with which we feel more comfortable are like islands in a vast ocean of irrational numbers.

Slide 89 / 156

Slide 90 / 156

47 Rational or Irrational?

$\frac{4}{5}$
OA Rational OB Irrational

> Sorryy this element requires Flash, which
> le గot cucrentily suppofted in PDFs。

Please refer to the original Notebook fille
Sort by the square root being rational or irrational.

48 Rational or Irrational?
$\sqrt{27}$
OA Rational
OB Irrational

55 A student made this conjecture and found two examples to support the conjecture.

If a rational number is not an integer, then the square root of the rational number is irrational.
For example, $\sqrt{3.6}$ is irrational and $\sqrt{\frac{1}{2}}$ is irrational.
Provide an example of a non-integer rational number that shows that the conjecture is false.

Real Numbers

Return to
Table of Contents

Slide 99 / 156

Real Numbers

Real numbers are numbers that exist on a number line.

Slide 101 / 156

56 What type of number is 25 ? Select all that apply.IrrationalRationalIntegerWhole NumberNatural NumberReal Number

Slide 100 / 156

Real Numbers

The Real Numbers are all the numbers that can be found on a number line.

That may seem like all numbers, but later in Algebra II we'll be talking about numbers which are not real numbers, and cannot be found on a number line.

As you look at the below number line, you'll see certain numbers indicated that are used to label the line.

Those are not all the numbers on the line, they just help us find all the other numbers as well...numbers not shown below.

Slide 102 / 156

57 What type of number is - ? Select all that apply.IrrationalRationalIntegerWhole NumberNatural NumberReal Number

58 What type of number is $\sqrt{8}$? Select all that apply.IrrationalRationalIntegerWhole NumberNatural NumberReal Number

59 What type of number is $-\sqrt{64}$? Select all that apply.IrrationalRationalIntegerWhole NumberNatural NumberReal Number

Slide 105 / 156

60 What type of number is $\sqrt{2.25}$? Select all that apply.IrrationalRationalIntegerWhole NumberNatural NumberReal Number

Properties of Exponents

Return to Table of Contents

Slide 107 / 156

Slide 108 / 156

Powers of Integers

Just as multiplication is repeated addition,
Exponents is repeated multiplication.
For example, 3^{5} read as " 3 to the fifth power" $=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$
In this case " 3 " is the base and " 5 " is the exponent.
The base, 3 , is multiplied by itself 5 times.

Powers of Integers

Make sure when you are evaluating exponents of negative numbers, you keep in mind the meaning of the exponent and the rules of multiplication.

For example, $(-3)^{2}=(-3) \cdot(-3)=9$, which is the same as 3^{2}.
However, $(-3)^{2}=(-3)(-3)=9$, and $-3^{2}=-(3)(3)=-9$
which are not the same.
Similarly, $3^{3}=3 \cdot 3 \cdot 3=27$
and $(-3)^{3}=(-3) \cdot(-3) \cdot(-3)=-27$,
which are not the same.

69 Simplify: $4^{3}\left(4^{5}\right)$	70 Simplify: $5^{7} \div 5^{3}$
OA 4^{15}	
OB 4^{8}	
$\text { OC } 4^{2}$	$\text { OC } \quad 5^{21}$
OD 4^{7}	OD 5^{4}
Slide 123 / 156	Slide 124 / 156
An Exponent of Zero Any base raised to the power of zero is equal to 1 . $a^{(0)}=1$ Based on the multiplication rule: $\begin{array}{r} \left(3^{(0)}\right)\left(3^{(3)}\right)=\left(3^{(3+0)}\right) \\ \left(3^{(0)}\right)\left(3^{(3)}\right)=\left(3^{(3)}\right) \end{array}$ Any number times 1 is equal to itself $\begin{gathered} (1)\left(3^{(3)}\right)=\left(3^{(3)}\right) \\ \left(3^{(0)}\right)\left(3^{(3)}\right)=\left(3^{(3)}\right) \end{gathered}$ Comparing these two equations, we see that $\left(3^{(0)}\right)=1$ This is not just true for base 3, it's true for all bases.	71 Simplify: $5^{0}=$
Slide 125 / 156	Slide 126 / 156
72 Simplify: $8^{0}+1=$	73 Simplify: $(7)\left(30^{\circ}\right)=$

Negative Exponents A negative exponent moves the number from the numerator to denominator, and vice versa. $\left(a^{(-b)}\right)=\frac{1}{a^{b}} \quad a^{b}=\frac{1}{\left(a^{(-b)}\right)}$ Based on the multiplication rule and zero exponent rules: $\begin{gathered} \left(3^{(-1)}\right)\left(3^{(1)}\right)=\left(3^{(-1+1)}\right) \\ \left(3^{(-1)}\right)\left(3^{(1)}\right)=\left(3^{(0)}\right) \\ \left(3^{(-1)}\right)\left(3^{(1)}\right)=1 \end{gathered}$ But, any number multiplied by its inverse is 1 , so $\begin{aligned} & \frac{1}{3^{1}}\left(3^{(1)}\right)=1 \\ & \left(3^{(-1)}\right)\left(3^{(1)}\right)=1 \end{aligned}$ Comparing these two equations, we see that $\left(3^{(-1)}\right)=\frac{1}{3^{1}}$	Negative Exponents By definition: $\mathbf{x}^{-1}=\frac{1}{x}, \quad \mathbf{x} \neq \mathbf{0}$
Slide 129 / 156	Slide 130 / 156
74 4^{2} OB $\frac{1}{4^{2}}$	75 4^{2} B $\frac{1}{4^{2}}$
Slide 131 / 156	Slide 132 / 156
76 \bigcirc B - - C \underline{x}. D 1	77 0 OB $\frac{b}{a}$ - OC $\frac{a}{b}$ - OD $\frac{1}{a}$

78 Which expression is equivalent to x^{-4} ?
○A $\frac{1}{x^{4}}$
OB x^{4}
OC $-4 x$
OD 0

From the New York S Sate Education Department. Office of Assessment Policy, De ve lopment and
Administration. Intemet. Available from www.nysedre gents.org/Inte gratedAlgebra; accessed 17,
Administration. Inte met. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17,
June, 2011.
June, 2011.

79 What is the value of 2^{-3} ?
OA $\frac{1}{6}$
OB $\frac{1}{8}$
OC -6
OD -8

From the New York State Education Department. Office of Assessment Policy, Development and Administration. Internet. Available from
www.nysedregents.org/lntegratedAlgebra; accessed 17, June, 2011.

Slide 136 / 156

81 a) Write an exponential expression for the area of a rectangle with a length of 7^{-2} meters and a width of 7^{-5} meters.
b) Evaluate the expression to find the area of the rectangle.

When you finish answering both parts, enter your answer to Part b) in your responder.

From the New York State Education Department. Office of Assessment Policy, Development and
Administration. Inte met. Available from www.nysedre gents.ory/Inte gratedAleebra; accessed 17,
dime 2011 .
June, 2011.

Slide 137 / 156

82 Which expressions are equivalent to $\frac{3^{-8}}{3^{-4}}$?
$\square \quad 3^{-12}$
$\square \quad 3-4$
$\square \quad 3^{2}$
\square D $\frac{1}{3^{2}}$
\square E $\quad \frac{1}{3^{4}}$
\square F $\quad \frac{1}{3^{12}}$
From PARCC EOY sample test non-calculator \#13

Slide 138 / 156
83 Which expressions are equivalent to $3^{2} \cdot 3^{-5}$?
$\square \quad 3-3$
$\square \quad 3^{-10}$
\square D $\frac{1}{27}$
\square E $\quad \frac{1}{3^{3}}$

Raising Exponents to Higher Powers When raising a number with an exponent to a power, multiply the exponents. $\begin{gathered} \left(a^{b}\right)^{c}=a^{(b c)} \\ \left(3^{2}\right)^{3}=3^{6} \\ \left(3^{2}\right)\left(3^{2}\right)\left(3^{2}\right)=3^{(2+2+2)} \end{gathered}$ $\begin{gathered} (3 \cdot 3)(3 \cdot 3)(3 \cdot 3)=(3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3) \\ \left(3^{2}\right)^{3}=3^{6} \end{gathered}$	84 $2^{1.75}$ 2^{3} 2^{11} 2^{28}
Slide 141 / 156	Slide 142 / 156
85 $0 \mathrm{~g}^{27}$ g^{12} g^{6} g^{3}	86 \bigcirc 0 o 0

\square

88 The expression $\left(x^{2} z^{3}\right)\left(x y^{2} z\right)$ is equivalent to:
OA $x^{2} y^{2} z^{3}$
OB $x^{3} y^{2} z^{4}$
OC $x^{3} y^{3} z^{4}$
OD $x^{4} y^{2} z^{5}$

90 When $-9 x^{5}$ is divided by $-3 x^{3}, x \neq 0$, the quotient is

OA $3 x^{2}$
OB $-3 x^{2}$
OC $-27 x^{15}$
OD $27 x^{8}$

From the New York State Education Department. Office of Assessment Policy, Development and
Administration. Internet. Available from www.nysedregents.org/lntegratedAlgebra; accessed 17, Administratio
June, 2011.

Slide 147 / 156

91 Lenny the Lizard's tank has the dimensions b^{5} by $3 c^{2}$ by $2 c^{3}$. What is the volume of Larry's tank?
. $6 b^{7} c^{3}$

- $6 b^{5} c^{5}$

O $5 b^{5} c^{5}$
D $5 b^{5} c^{6}$

Slide 148 / 156

92 A food company which sells beverages likes to use exponents to show the sales of the beverage in a^{2} days. If the daily sales of the beverage is $5 a^{4}$, what is the total sales in a^{2} days?
$O \mathrm{a}^{6}$
(0) $5 a^{8}$

O $5 a^{6}$
D $5 a^{3}$

Slide 149 / 156

93 A rectangular backyard is 5^{5} inches long and 5^{3} inches wide. Write an expression for the area of the backyard as a power of 5 .

A $5^{15} \mathrm{in}^{2}$
OB $8^{5} \mathrm{in}^{2}$
OC $25^{8} \mathrm{in}^{2}$
OD $5^{8} \mathrm{in}^{2}$

94 Express the volume of a cube with a length of 4^{3} units as a power of 4 .

OA $4{ }^{9}$ units 3
OB 4^{6} units 3
OC 12^{6} units 3
OD 12^{9} units 3

