Slide 1 / 156

Slide 2 / 156

Slide 7 / 156

Slide 13 / 156

Slide 14 / 156

Slide 25 / 156	Slide 26 / 156
12 $\sqrt{400} = ?$ $\bigcirc A 20$ $\bigcirc B -20$ $\bigcirc C \text{ is not real}$	(Problem from 13 Ashley and Brandon have different methods for finding square roots. Ashley's Method To find the square root of x, find a number so that the product of the number and itself is x. For example, 2 • 2 = 4, so the square root of 4 is 2. Brandon's Method To find the square root of x, multiply x by $\frac{1}{2}$. For example, 4 • $\frac{1}{2}$ = 2, so the square root of 4 is 2. Which student's method is not correct? A Ashley's Method B Brandon's Method On your paper, explain why the method you selected is not correct.
Slide 27 / 156	Slide 28 / 156
14 $\sqrt{5^2} = ?$	15 $\sqrt{11^2} = ?$
Slide 29 / 156	Slide 30 / 156
16 $(\sqrt{5})^2 = ?$ $\bigcirc A 25$ $\bigcirc B 5$ $\bigcirc C \sqrt{5}$ $\bigcirc D \sqrt{25}$	17 $\sqrt{-9} = ?$ $\bigcirc A = 3$ $\bigcirc C$ No real roots

Slide 31 / 156

Slide 32 / 156

Slide 43 / 156

A	pproxin	nating Non-Perfect Squares	Арр	proximati	ng Non-Perfect Squares
Square <u>Root</u> 1 2 3 4 5 6 7 8 9 10 11	Perfect Square 1 4 9 16 25 36 49 64 81 100 121	 When approximating square roots of numbers, you need to determine: Between which two perfect squares it lies (and therefore which 2 square roots). Which perfect square it is closer to (and therefore which square root). Example: \square 110 	Square <u>Root</u> 1 2 3 4 5 6 7 8 9 10	Perfect Square 1 4 9 16 25 36 49 64 81 100 121	Approximate the following: $\sqrt{30}$ $\sqrt{200}$
12 13	144 169	Lies between 100 & 121, closer to 100.	12 13	144 169	$\sqrt{215}$
14 15	196 225	So $\sqrt{110}$ is between 10 & 11, closer to 10.	14 15	196 225	

Slide 51 / 156

 $\sqrt{36}$ < $\sqrt{38}$ < $\sqrt{49}$ Identify perfect squares closest to 38

Approximate $\sqrt{38}$ to the nearest integer

6 < $\sqrt{38}$ < 7 Take square root

Slide 52 / 156

Approximating Non-Perfect Squares

Approximate $\sqrt{70}$ to the nearest integer

 $\sqrt{}$ < $\sqrt{70}$ < $\sqrt{}$ Identify perfect squares closest to 70

 $----- < \sqrt{70} < ----- Take square root$

Identify nearest integer

Slide 53 / 156

Answer: Because 38 is closer to 36 than to $49,\sqrt{38}$ is closer to 6 than to 7. So, to the nearest integer, $= 6\sqrt{38}$

 29 The square root of 40 falls between which two perfect squares? A 3 and 4 B 5 and 6 C 6 and 7 D 7 and 8 	30 Which integer is $\sqrt{40}$ closest to? $\frac{\sqrt{2}}{\sqrt{2}} < \sqrt{2} < \frac{\sqrt{2}}{\sqrt{2}}$ Identify perfect squares closest to 40 $\frac{\sqrt{2}}{\sqrt{2}} < \frac{\sqrt{2}}{\sqrt{2}}$ Take square root Identify nearest integer
Slide 57 / 156	Slide 58 / 156
 31 The square root of 110 falls between which two perfect squares? A 36 and 49 B 49 and 64 C 64 and 84 D 100 and 121 	32 Estimate to the nearest integer. $\sqrt{110}$
Slide 59 / 156	Slide 60 / 156
33 Select the point on the number line that best approximates the location of √14. ○BCCEOG 0 1 20A 30D 0F0H5 6 7 8	34 Estimate to the nearest integer. $\sqrt{219}$
From PARCC EOY sample test non-calculator #19	

35 Estimate to the nearest integer. $\sqrt{90}$	36 Approximate $\sqrt{29}$ to the nearest integer.
Slide 63 / 156	Slide 64 / 156
37 Approximate $\sqrt{96}$ to the nearest integer.	38 Approximate $\sqrt{167}$ to the nearest integer.
Slide 65 / 156	Slide 66 / 156
39 Approximate $\sqrt{140}$ to the nearest integer.	40 Approximate $\sqrt{40}$ to the nearest integer.

 41 The expression √93 is a number between: ○ A 3 and 9 ○ B 8 and 9 ○ C 9 and 10 ○ D 46 and 47 	42 For what integer x is \sqrt{x} closest to 6.25?
From the New York State Education Department. Office of Assessment Pokcy, Development and Administration. Internet. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.	Derived from engage ^{ny}
Slide 69 / 156	Slide 70 / 156
43 For what integer y is \sqrt{y} closest to 4.5?	44 Between which two positive integers does $\sqrt{56}$ lie?
	□ 1 □ 6
	□ 4 □9
	□ 5 □ 10
Derived from engage ^{ny}	Derived from engage ^{ny}
Slide 71 / 156	Slide 72 / 156
45 Between which two positive integers does $\sqrt{80}$ lie?	46 Between which two labeled points on the
	number line would $\sqrt{10}$ be located?
□ 2 □ 7	∢ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
	A B C D E F G H I J
4 9	
□ 5	
Derived from Engage ^{ny}	Derived from engage ^{ny}

Slide 73 / 156

Rational & Irrational Numbers

> Return to Table of Contents

Irrational Numbers

Just as subtraction led us to zero and negative numbers.

And division led us to fractions.

Finding the root leads us to irrational numbers.

Irrational numbers complete the set of Real Numbers.

Real numbers are the numbers that exist on the number line.

Slide 75 / 156

Irrational Numbers

Irrational Numbers are real numbers that cannot be expressed as a ratio of two integers.

In decimal form, they extend forever and never repeat.

There are an infinite number of irrational numbers between any two integers (think of all the square roots, cube roots, etc. that don't come out evenly).

Then realize you can multiply them by an other number or add any number to them and the result will still be irrational. Slide 76 / 156

Rational & Irrational Numbers

 $\sqrt{9}$ is **rational**.

This is because the **radicand** (number under the radical) is a perfect square. $(3^2 = 9)$

If a radicand is not a perfect square, the root is said to be irrational. Ex: $\sqrt{12}$

Slide 77 / 156

Irrational Numbers

Irrational numbers were first discovered by Hippasus about the about 2500 years ago.

He was a Pythagorean, and the discovery was considered a problem since Pythagoreans believed that "All was Number," by which they meant the natural numbers (1, 2, 3...) and their ratios.

Hippasus was trying to find the length of the diagonal of a square with sides of length 1. Instead, he proved, that the answer was not a natural or rational number.

For a while this discovery was suppressed since it violated the beliefs of the Pythagorean school.

Hippasus had proved that $\sqrt{2}$ is an irrational number.

Slide 78 / 156

Irrational Numbers

An infinity of irrational numbers emerge from trying to find the root of a rational number.

Hippasus proved that $\sqrt{2}$ is irrational goes on forever without repeating.

Some of its digits are shown on the next slide.

Slide 79 / 156

Square Root of 2

Here are the first 1000 digits, but you can find the first 10 million digits on the Internet. The numbers go on forever, and never repeat in a pattern:

1.414213562373095048801688724209698078569671875376948073176679 7379907324784621070388503875343276415727350138462309122970249 2483605585073721264412149709993583141322266592750559275579995 0501152782060571470109559971605970274534596862014728517418640 8891986095523292304843087143214508397626036279952514079896872 5339654633180882964062061525835239505474575028775996172983557 5220337531857011354374603408498847160386899970699004815030544 0277903164542478230684929369186215805784631115966687130130156 1856898723723528850926486124949771542183342042856860601468247 2077143585487415565706967765372022648544701585880162075847492 2657226002085584466521458398893944370926591800311388246468157 0826301005948587040031864803421948972782906410450726368813137 3985525611732204024509122770022694112757362728049573810896750 4018369868368450725799364729060762996941380475654823728997180 3268024744206292691248590521810044598421505911202494413417285 3147810580360337107730918286931471017111168391658172688941975 871658215212822951848847208969...

Slide 81 / 156

Principal Roots

Since you can't write out all the digits of $\sqrt{2}$, or use a bar to indicate a pattern, the simplest way to write that number is $\sqrt{2}$.

But when solving for the square root of 2, there are two answers: $+\sqrt{2}$ or $-\sqrt{2}$.

These are in two different places on the number line.

To avoid confusion, it was agreed that the positive value would be called the principal root and would be written $\sqrt{2}$.

The negative value would be written as $-\sqrt{2}$.

Roots of Numbers are Often Irrational

Soon, thereafter, it was proved that many numbers have irrational roots.

We now know that the roots of most numbers to most powers are irrational.

These are called algebraic irrational numbers.

In fact, there are many more irrational numbers that rational numbers.

Slide 82 / 156

Algebraic Irrational Numbers

There are an infinite number of irrational numbers.

Here are just a few that fall between -10 and +10.

Slide 83 / 156

Transcendental Numbers

The other set of irrational numbers are the transcendental numbers.

These are also irrational. No matter how many decimals you look at, they never repeat.

But these are not the result of solving a polynomial equation with rational coefficients, so they are not due to an inverse operation.

Some of these numbers are real, and some are complex.

But, this year, we will only be working with the real transcendental numbers.

Pi

We have learned about Pi in Geometry. It is the ratio of a circle's circumference to its diameter. It is represented by the symbol $~{\cal R}$

 $\pi \approx 3.14$

Discuss why this is an approximation at your table. Is this number rational or irrational? Slide 85 / 156

is a Transcendental Number The most famous of the transcendental numbers is #. B # is the ratio of the circumference to the diameter of a circle. People tried to find the value of that ratio for millennia.

http://bobchoat.files.wordpress.com/ 2013/06/pi-day004.jpg Since **#** is irrational (it's decimals never repeat) and it is not a solution to a equation...it is transcendental.

there was no rational solution.

Only in the mid 1800's was it proven that

Some of its digits are on the next page.

Slide 87 / 156

Other Transcendental Numbers

There are many more transcendental numbers.

Another famous one is "e", which you will study in Algebra II as the base of natural logarithms.

In the 1800's Georg Cantor proved there are as many transcendental numbers as real numbers.

And, there are more algebraic irrational numbers than there are rational numbers.

The integers and rational numbers with which we feel more comfortable are like islands in a vast ocean of irrational numbers.

3.11159265358979323846264338237950288419716039937510682097484502

Slide 88 / 156

Sorry, this element requires Flash, which is not currently supported in PDFs.

Please refer to the original Notebook file.

Sort by the square root being rational or irrational.

Slide 89 / 156

47 Rational or Irrational?

○A Rational

○ B Irrational

Slide 90 / 156

48 Rational or Irrational?

 $\sqrt{27}$

OA Rational OB Irrational

Slide 86 / 156

Slide 91 / 156

49 Rational or Irrational? 0.141414 ○ A Rational	50 Rational or Irrational? √81 ○ A Rational
Slide 93 / 156	Slide 94 / 156
51 Rational or Irrational? 1.222 A Rational OB Irrational	52 Rational or Irrational? 5π ⊙A Rational ⊙B Irrational
Slide 95 / 156	Slide 96 / 156
53 Which is a rational number? $\bigcirc A \sqrt{8}$ $\bigcirc B \pi$ $\bigcirc C 5\sqrt{9}$ $\bigcirc D 6\sqrt{2}$	 54 Given the statement: "If x is a rational number, then √x is irrational." Which value of x makes the statement false? ○A 3/2 ○B 2 ○C 3 ○D 4
From the New York State Education Department. Office of Assessment Policy, Development and Administration. Internet. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.	From the New York State Education Department. Office of Assessment Policy, Development and Administration. Internet. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.

- _
- Rational
- Integer
- □ Whole Number
- Natural Number
- Real Number

- Rational
- □ Integer
- □ Whole Number
- Natural Number
- Real Number

Slide 103 / 156

58 What type of number is $\sqrt{8}$? Select all that apply.	59 What type of number is $-\sqrt{64}$? Select all that apply.
□ Rational	□ Rational
Whole Number	Whole Number
Natural Number	Natural Number
Real Number	Real Number
Slide 105 / 156	Slide 106 / 156
60 What type of number is $\sqrt{2.25}$? Select all that apply.	
□ Rational	Properties of
	Exponents
Whole Number	
Natural Number	
Real Number	Return to Table of
	Contents

Slide 107 / 156

Powers of Integers

Just as multiplication is repeated addition,

Exponents is repeated multiplication.

For example, 3^5 read as "3 to the fifth power" = $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3$

In this case "3" is the base and "5" is the exponent.

The base, 3, is multiplied by itself 5 times.

Slide 108 / 156

Powers of Integers

Make sure when you are evaluating exponents of negative numbers, you keep in mind the meaning of the exponent and the rules of multiplication.

For example, $(-3)^2 = (-3) \cdot (-3) = 9$, which is the same as 3^2 .

However, $(-3)^2 = (-3)(-3) = 9$, and $-3^2 = -(3)(3) = -9$

which are not the same.

Similarly, $3^3 = 3 \cdot 3 \cdot 3 = 27$

and $(-3)^3 = (-3) \cdot (-3) \cdot (-3) = -27$,

which are not the same.

61 Evaluate: 4 ³	62 Evaluate: (-2) ⁷
Slide 111 / 156	Slide 112 / 156
Slide 111/150	Slide 112 / 130
63 Evaluate: (-3)⁴	Properties of Exponents
	The properties of exponents follow directly from expanding them to look at the repeated multiplication they represent.
	Don't memorize properties, just work to understand the process by which we find these properties and if you can't recall what to do, just repeat these steps to confirm the property.
	We'll use 3 as the base in our examples, but the properties hold for any base. We show that with base a and powers b and c.
	We'll use the facts that:

We'll use the facts that:

 $(3^2)=(3\cdot 3)$ $(3^3)=(3\cdot 3\cdot 3)$ $(3^5)=(3\cdot 3\cdot 3\cdot 3\cdot 3)$

Slide 113 / 156

Properties of Exponents

We need to develop all the properties of exponents so we can discover one of the inverse operations of raising a number to a power...finding the root of a number to that power.

That will emerge from the final property we'll explore.

But, getting to that property requires understanding the others first.

Slide 114 / 156

Multiplying with Exponents

When multiplying numbers with the same base, add the exponents.

 $(a^{b})(a^{c}) = a^{(b+c)}$

 $(3^2)(3^3) = 3^5$

 $(3 \cdot 3)(3 \cdot 3 \cdot 3) = (3 \cdot 3 \cdot 3 \cdot 3 \cdot 3)$

 $(3^2)(3^3) = 3^5$

 $(3^2)(3^3) = 3^{(2+3)}$

Slida 115 / 156

Slida 116 / 156

Dividing with Exponents64When dividing numbers with the same base, subtract the exponent of the denominator from that of the numerator. $\bigcirc 5^2$ $(a^b) \div (a^c) = a^{(b \cdot c)}$ $\bigcirc 5^3$ $\frac{(3^3)}{(3^2)} = 3^1$ $\bigcirc 5^6$ $\frac{(3 \cdot 3 \cdot 3)}{(3 \cdot 3)} = 3$ $\bigcirc 5^8$ $(3^3) \div (3^2) = 3^{(3 \cdot 2)}$ $\bigcirc 5^8$
$(a^{b}) \div (a^{c}) = a^{(b-c)} \qquad \bigcirc 5^{3} \\ \frac{(3^{3})}{(3^{2})} = 3^{1} \qquad \bigcirc 5^{6} \\ \frac{(\frac{8}{3} \cdot \frac{8}{3})}{(\frac{3}{3}) \div (3^{2})} = 3 \qquad \bigcirc 5^{8} \\ (3^{3}) \div (3^{2}) = 3^{(3\cdot2)} \qquad \bigcirc 5^{8} \\ (3^{3}) \div (3^{2}) = 3^{(3\cdot2)} \\ (3^{3}) \div (3^{2}) = 3^{(3)} \\ (3^{3}) \div (3^{2}) \\ (3^{3}) \div (3^{2}) \\ (3^{3}) \div (3^{2}) \\ (3^{3}) \div (3^{3}) \div (3^{2}) \\ (3^{3}) \div (3^{3}) \\ (3^{3}) \div (3^{3}) \\ (3^{3}$
$(a^{b}) \div (a^{c}) = a^{(b-c)} \qquad \bigcirc 5^{3} \\ \frac{(3^{3})}{(3^{2})} = 3^{1} \qquad \bigcirc 5^{6} \\ \frac{(3 \cdot 3)}{(3 \cdot 3)} = 3 \qquad \bigcirc 5^{8} \\ (3^{3}) \div (3^{2}) = 3^{(3 \cdot 2)} \qquad \bigcirc 5^{8}$
$\frac{(3^{3})}{(3^{2})} = 3^{1}$ $\frac{(3 \cdot 3)}{(3 \cdot 3)} = 3$ $(3^{3}) \div (3^{2}) = 3^{(3 \cdot 2)}$ $\bigcirc 5^{8}$
$\frac{(3 \cdot 3)}{(3 \cdot 3)} = 3$ $(3^3) \div (3^2) = 3^{(3 \cdot 2)}$
$(3^3) \div (3^2) = 3^{(3-2)}$
(23) + (22) - 21
$(3^3) \div (3^2) = 3^1$
Slide 117 / 156 Slide 118 / 156
65
Q 7 ^{1.5}
Q 7 ²
Q 7 ¹⁰
○ 7 ²⁴
Slide 119 / 156 Slide 120 / 156
67 68
Q 8 ² Q 5 ²
○ 8 ³ ○ 5 ³
○ 8 ⁹ ○ 5 ⁶
○ 8 ¹⁸ ○ 5 ⁸

69 Simplify: 4 ³ (4 ⁵)	70 Simplify: $5^7 \div 5^3$
QA 4 ¹⁵	$\bigcirc A = 5^2$
⊖ B 4 ⁸	⊖B 5 ¹⁰
QC 4 ²	OC 5 ²¹
$OD 4^7$	OD 5⁴
Slide 123 / 156	Slide 124 / 156
An Exponent of Zero Any base raised to the power of zero is equal to 1.	71 Simplify: 5 ^o =
a ⁽⁰⁾ = 1	
Based on the multiplication rule:	
$\begin{aligned} (3^{(0)})(3^{(3)}) &= (3^{(3+0)})\\ (3^{(0)})(3^{(3)}) &= (3^{(3)}) \end{aligned}$	
Any number times 1 is equal to itself	
$\begin{aligned} (1)(3^{(3)}) &= (3^{(3)})\\ (3^{(0)})(3^{(3)}) &= (3^{(3)}) \end{aligned}$	
Comparing these two equations, we see that	
(3 ⁽⁰⁾)= 1	
This is not just true for base 3, it's true for all bases.	
Slide 125 / 156	Slide 126 / 156
72 Simplify: 8 ⁰ + 1 =	73 Simplify: (7)(30°) =

Slide 127 / 156

 78 Which expression is equivalent to x⁴? ○ A 1/x⁴ ○ B x⁴ ○ C -4x ○ D 0 	79 What is the value of 2 ⁻³ ? $\bigcirc A = \frac{1}{6}$ $\bigcirc B = \frac{1}{8}$ $\bigcirc C = -6$ $\oslash D = -8$ From the New York State Education Department. Office of Assessment Policy. Development and Administration. Internet. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.
Slide 135 / 156	Slide 136 / 156
80 Which expression is equivalent to $x^{-1} \cdot y^2$? $\bigcirc A xy^2 \bigcirc C \frac{y^2}{x}$ $\bigcirc B \frac{x}{y^2} \bigcirc D xy^2$	 81 a) Write an exponential expression for the area of a rectangle with a length of 7⁻² meters and a width of 7⁻⁵ meters. b) Evaluate the expression to find the area of the rectangle. When you finish answering both parts, enter your answer to Part b) in your responder.
Slide 137 / 156	Slide 138 / 156
82 Which expressions are equivalent to $\frac{3^{-8}}{3^{-4}}$?	83 Which expressions are equivalent to $3^2 \cdot 3^{-5}$?
3 -12	□ 3 ³
3 -4	3 -3
□ 3 ²	3 -10
$\Box \mathbf{D} \frac{1}{3^2}$	$\Box \mathbf{D} = \frac{1}{27}$
$\Box E \frac{1}{3^4}$	$\Box E \frac{1}{3^3}$
$\Box \mathbf{F} \frac{1}{3^{12}}$	$\Box \mathbf{F} \frac{1}{3^{\cdot 10}}$
From PARCC EOY sample test non-calculator #13	

Slide 139 / 156	Slide 140 / 156
Raising Exponents to Higher Powers	84
When raising a number with an exponent to a power, multiply the exponents. (a ^b) ^c = a ^(bc)	Q 2 ^{1.75}
	$\bigcirc 2^3$
$(3^2)^3 = 3^6$	Q 2 ¹¹
$(3^2)(3^2)(3^2) = 3^{(2+2+2)}$	Q 2 ²⁸
$(3 \cdot 3)(3 \cdot 3)(3 \cdot 3) = (3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3)$	
$(3^2)^3 = 3^6$	
Slide 141 / 156	Slide 142 / 156
85	86
$\bigcirc g^{27}$	Q
$\bigcirc g^{12}$	0
◯ g ⁶	0
\bigcirc g ³	0
Slide 143 / 156	Slide 144 / 156
	 88 The expression (x²z³)(xy ²z) is equivalent to: QA x²y²z³
	⊖B x³y²z⁴
	From the New York State Education Department. Office of Assessment Policy, Development and
	From the New York state Education Lepartment. Office of Assessment Poley, Levelopment and Administration. Internet. Available from www.nysedregents.org/IntegratedAlgebra; accessed 17, June, 2011.

Slide 145 / 156

89 The expression $\frac{(10w^3)^2}{5w}$ is equivalent to: $\bigcirc A 2w^5$ $\bigcirc B 2w^8$ $\bigcirc C 20w^8$ $\bigcirc D 20w^5$	 90 When -9 x⁶ is divided by -3x⁶, x ≠ 0, the quotient is A 3x² B -3x² C -27x¹⁵ D 27x⁸
Slide 147 / 156	Slide 148 / 156
 91 Lenny the Lizard's tank has the dimensions b⁵ by 3c² by 2c³. What is the volume of Larry's tank? 6b⁷c³ 6b⁵c⁵ 5b⁵c⁶ 	 92 A food company which sells beverages likes to use exponents to show the sales of the beverage in a² days. If the daily sales of the beverage is 5a⁴, what is the total sales in a² days? Q a⁶ Q 5a⁸ Q 5a⁶ D 5a³
Slide 149 / 156	Slide 150 / 156
 93 A rectangular backyard is 5⁵ inches long and 5³ inches wide. Write an expression for the area of the backyard as a power of 5. A 5¹⁵ in² B 8⁵ in² C 25⁸ in² D 5⁸ in² 	 94 Express the volume of a cube with a length of 4³ units as a power of 4. A 4⁹ units³ B 4⁶ units³ C 12⁶ units³ D 12⁹ units³

Slide 151 / 156

