9-1 GCSE Maths Foundation \& Higher Help \& Revision Booklet

The topics in italics are those on the Higher Tier only.
Formulae in shaded text are those NOT given in the exam formula booklet. You need to learn them!
Name \qquad Class \qquad

Number

Topic/Skill	Tips/Facts	Example
Integers	An integer is a whole number. It can be positive or negative.	Integers: 2, 5,100, 6345 ... Non Integers: $1 / 4,12.3,0.76$
Square Number	When you \times a number by itself you get a square number. This number has to be an integer. Squaring a number is NOT the same as multiplying a number by 2 .	The first 6 square numbers are: $1,4,9,16,25,36 \ldots$ (a) $3^{2}=3 \times 3=9($ NOT 6$)$ (b) $5^{2}=5 \times 5=25$
Square Roots	This is the inverse (reverse process) of squaring a number. $\sqrt{ }$ is used. (a) $6^{2}=36$ so $\sqrt{ } 36=6$ (b) $9^{2}=81 \quad$ so $\quad \sqrt{ } 81=9$.	(a) $\sqrt{49}=7$ (b) $\sqrt{121}=11$ (c) $\sqrt{\frac{25}{4}}=\frac{\sqrt{25}}{\sqrt{4}}=\frac{5}{2}$
Cube Number/Roots	A number multiplied by itself three times. (The cube root $\sqrt[3]{ }$ is the inverse).	(a) $4^{3}=4 \times 4 \times 4=64$ (NOT 12) ${ }^{\text {(b) }} 2^{3}=8$ (NOT 6)
A Prime Number	A number that has only $\mathbf{2}$ factors, itself \& 1. 2 is the only even prime number.	$2,3,5,7,11,13,17,19 \ldots$ (1 is not a prime number!)
Rational and Irrational Numbers	Rational numbers can be written in the form $\frac{a}{b}$ where a and b are integers and Irrational numbers can't! Surds, and π are examples of irrational numbers.	$\begin{aligned} & \text { Rational: } 2,0.4, \frac{1}{3}, 0 . \dot{7}, \sqrt{36},-1.2,4 \frac{1}{5} \\ & \text { Irrational: } \sqrt{3}, \pi, 5 \sqrt{7}, e \end{aligned}$
Reciprocal	The reciprocal of a number is 1 divided by that number. Often it's easier to think about turning the fraction upside down (inverting the fraction).	The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$
Factors (Divisors)	The integers (whole numbers) that go into a number with no remainder.	Factors of 8 are 1,2,4 \& 8 Factors of 12: 1,2,3,4,6 \& 12
Multiples	Think Times Tables. Just write out the times tables for that number.	The first six multiples of 4 are 4, 8, 12, 16, 20 and 24
Product of Prime Factors	Numbers can be made up by multiplying prime numbers. (2,3,5,7,11,13,17..) To find the Product of Primes start with a factor tree. (Shown to the right) Product means multiply so don't forget to put the \times sign in between the numbers you found in your factor tree. If you are struggling with the factor tree just keep trying to divide by the prime number in order. Does it divide by 2 ? If so pick 2. If it doesn't divide by 2 does it divide by 3 ? By 5? By 7? By 11? Etc.	
$\begin{aligned} & \text { HCF (Highest } \\ & \text { Common Factor) } \end{aligned}$	The HCF is the largest number that goes into 2 or more different numbers. Method 1: Just list the factors of each and find largest number in each list Method 2: Using Factor tree. Take only the prime numbers that appear in each list of the factors of the numbers to their lowest power and multiply. This method is better for less obvious examples and larger numbers. (You can use a Venn Diagram to do this too.)	Example: "Find the HCF of 8 and 28 " Method 1: Factors of 8: 1,2,4 \& 8 Factors of 28: $1,2,4,7,14 \& 28$. The HCF of 8 and 28 is 4 Method 2: Product of Primes for 8 and 28: $8=2^{3}$ and $28=2^{2} \times 7$ so you only have 2 in both lists and you take it to the lowest power giving $2^{2}=4$
$\begin{aligned} & \text { LCM (Lowest } \\ & \text { Common Multiple) } \end{aligned}$	The lowest (or smallest) number that 2 or more different numbers go in to. Method 1: Just list out the times tables of each number and see which is the lowest number that appears in both lists. This is the LCM Method 2: Using Factor tree. Take all the prime numbers that appear in each list of the factors to their highest power and multiply. (You can use a Venn Diagram to do this too.) Common misconception: The LCM of 2 numbers is 1 . This is incorrect!	Example: "Find the LCM of 4 and 6" Method 1: Multiples of 4: 4, 8, 12, 16, .. Multiples of 6: 6, 12, 18.. The LCM of 4 and 6 is $\mathbf{1 2}$. Method 2: Product of Primes for 4 and 6: $4=2^{2}$ and $6=2 \times 3$. You need both 2 and 3 to their highest power giving $2^{2} \times 3=12$.

$\begin{aligned} & \text { Rounding to } 1 \text { DP } \\ & \text { (Decimal Place) } \\ & \hline \end{aligned}$	You are rounding the number to the nearest $\mathbf{1 0}^{\text {th }}$. Focus on the $2^{\text {nd }}$ number after the decimal point. If it's 5 or more round up. If it's 4 or less round down.	(a) $2.43=2.4$ (3 is less than 5) (b) $5.67=5.7$ (c) $1.09=1.1$ (9 is more than 5) (d) $2.98=3.0$
Rounding to 2 DP	Nearest 100 ${ }^{\text {th }}$. As above but focus on the $3^{\text {rd }}$ number after the decimal point.	$\begin{array}{lll}\text { (a) } 3.562=3.56 & \text { (b) } 0.785=0.79 & \text { (c) } 1.499=1.50\end{array}$
Rounding to 1 SF (Significant Figures)	When reading a number from left to right the first value that is not 0 in the number is the $1^{\text {st }}$ significant figure. Round the number using the same techniques as used for decimals shown above. With the number 0.043 the 4 is the first significant figure, 3 is the second.	(a) 243 to $1 \mathrm{SF}=200$ (Rounding to the nearest 100) (b) 5.6 to $1 \mathrm{SF}=6 \quad$ (Rounding to the nearest integer) (c) 47 to $1 \mathrm{SF}=50 \quad$ (Rounding to the nearest 10) (d) 0.48 to $1 \mathrm{SF}=0.5 \quad$ (Rounding to the nearest $10^{\text {th }}$)
Rounding to 2 SF	Same as before but now it's the second significant figure. Mind the 0's!	$\begin{array}{lll}\text { (a) } 243=240 & \text { (b) } 40.8=41 & \text { (c) } 0.546=0.55\end{array}$
Estimations \& Approximations	Round each number to 1 significant figure \& perform the calculation. You must show workings! Estimating doesn't require the exact value. It's non calculator!	(a) 98×51.2 becomes 100×50 which $=5000$ (b) $4.6+104.7$ becomes $5+100$ which $=105$
Calculations using Upper and Lower Bounds	Sometimes you will get a question where the numbers or measurements given have already been rounded. You just need to work out the minimum (Lower Bound) and maximum (Upper Bound) the number could be. One way to think of it is to half the interval given subtract it from the number to find the LB and then add it to the number to get the UB. An example could be 1.4 rounded to one d.p. one d.p $=0.1$. If you half this you get 0.05 . This gives us a lower bound of 1.35 and an upper bound of 1.45 . When you have done this work out which values are required to minimise or maximise the calculation.	E: A rectangle has one side length of 6 cm correct to the nearest cm and an area of $24.3 \mathrm{~cm}^{2}$ correct to 3 SF. Find the greatest possible length of the missing side. A:
Intervals and Bounds and Error Intervals	You may be asked to interpret or use inequalities for upper and lower bounds. If a number has already been rounded, you may be asked to find the upper and lower bounds of it. One way to do this is to split the interval in half and + this amount on to the value to get the upper bound and - it for the lower bound.	Example: The height of a plant is 1.8 m correct to 2 significant figures. Write an inequality to show this. Answer: $1.75 \leq h<1.85$ Be Careful with the inequality sign on the upper bound.
Fractions to Decimals	Some are obvious such as $3 / 4$ is 0.75 . For those that are not simply divide the numerator by the denominator using short division OR SD on your Casio. Common error! $1 / 3$ is not 0.3 . $£ 1$ shared between 3 people is not 30 p each.	(a) $1 / 8=0.125$ (b) $3 / 10=0.3$ (c) $7 / 100=0.07$ (d) $43 / 100=0.43$ (e) $28 / 1000=0.028$ (f) $37 / 50=74 / 100=0.74$
Decimals to Fractions	Some are obvious such as $0.5=1 / 2$ or $0.75=3 / 4$ and $0.1=1 / 10$ etc. If it's not obvious write it as a fraction over 10, 100 or 1000 and cancel down.	(a) $0.7=7 / 10$ (b) $0.23=23 / 100$ (c) $0.46=46 / 100$ or $23 / 50$
\% to Decimals	To convert a $\%$ to a decimal \div by 100 . To convert a decimal to a $\% \times$ by 100	$\begin{array}{ll}\text { (a) } 0.23 \times 100=23 \% & \text { (b) } 47 \% \div 100=0.47\end{array}$
Fractions to Percentages	A $\%$ is just a fraction out of 100 . Non calculator just 'scale' the denominator up to 100 with equivalent fractions. On a calculator just \times the fraction by 100 .	(a)Non Calc $\frac{3}{25}=\frac{12}{100}=12 \%$ (b)Calc $\frac{9}{17} \times 100=52.9 \%$
Simplifying Fractions	If they are not obvious like $\frac{5}{10}=\frac{1}{2}$ look for common factors to divide by.	$\begin{array}{ll}\text { (a) } \frac{6}{8}=\frac{3}{4}(\text { divide by } 2) & \text { (b) } \frac{20}{35}=\frac{4}{7} \text { (divide by 5) }\end{array}$
Mixed Numbers	See how many times the denominator goes into the numerator. This gives you the integer part and then just write the remainder over the original denominator.	$\begin{array}{lll}\text { (a) } \frac{9}{4}=\frac{4}{4}+\frac{4}{4}+\frac{1}{4}=2 \frac{1}{4} & \text { (b) } \frac{17}{5}=3 \frac{2}{5} & \text { (c) } \frac{5}{3}=1 \frac{2}{3}\end{array}$
Ordering Fractions	Find the common denominator of the fractions given, write equivalent fractions for each and simply order the fractions by the numerators. You must use the original fractions in your answer. Ascending means smallest to largest.	Order: $\frac{3}{4}, \frac{2}{3}, \frac{5}{6}, \frac{1}{2}$ equiv $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ so $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{5}{6}$

Page 2

Finding a F a Quantity	'Divide by the bottom, times by the top'. If you need $3 / 8$ of a number, divide the number in the question by 8 then multiply the answer by 3 . Alternatively, use a calculator. In maths 'of' means multiply so you can just type the calculation in as shown on the right. Just \times the fraction by the quantity.	Example: "Find $2 / 5$ of $£ 60$ " Answer: Start with $£ 60 \div$ $5=£ 12$. Now simply multiply by two. $2 \times 12=£ 24$. You could have simply done $\frac{2}{5} \times 60$ instead to give 24
Adding Fractions Adding Mixed Numbers	You must have a common denominator to add fractions. When you do, simply add the numerators. Use equivalent fractions to find common denominators. Whatever you do to the bottom, do to the top! If you have forgotten! Numerator = top, Denominator = bottom.	(a) $\frac{1}{5}+\frac{3}{5}=\frac{4}{5}$ (b) $\frac{2}{5}+\frac{3}{10}=\frac{4}{10}+\frac{3}{10}=\frac{7}{10}$ (c) $\frac{4}{5}+\frac{2}{3}=\frac{12}{15}+\frac{10}{15}=\frac{22}{15}$ (d) $\frac{3}{2}+\frac{2}{7}=\frac{21}{14}+\frac{4}{14}=1 \frac{11}{14}$
Subtracting Fractions Subtracting Mixed Numbers	You must have a common denominator to subtract fractions. When you do, simply subtract the numerators. Use equivalent fractions to find common denominators. Please note: You can cross multiply when adding and subtracting fractions although it's a long way round for some examples.	(a) $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$ (b) $\frac{4}{5}-\frac{1}{10}=\frac{8}{10}-\frac{1}{10}=\frac{7}{10}$ (c) $\frac{3}{4}-\frac{2}{3}=\frac{9}{12}-\frac{8}{12}=\frac{1}{12}$ (d) $\frac{2}{7}-\frac{5}{6}=\frac{12}{42}-\frac{35}{42}=-\frac{23}{42}$
Multiplying Fractions	ca	(a) $\frac{3}{5} \times \frac{4}{7}=\frac{12}{35}$ (b) $\frac{1}{8} \times \frac{4}{9}=\frac{4}{72}=\frac{1}{18}$ (simplified)
Dividing Fractions Multiplying \& Dividing Mixed Numbers	Invert (turn upside down) the $2^{\text {nd }}$ fraction and multiply (as shown above). "Dividing by a fraction is the same as multiplying by its reciprocal" You do not need a common denominator unlike adding or subtracting. How many halves of pizza can you cut from a whole pizza? $1 \div 1 / 2=2$ of cou	(a) $\frac{1}{8} \div \frac{4}{9} \quad$ is the same as $\quad \frac{1}{8} \times \frac{9}{4}=\frac{9}{32}$ (b) $\frac{3}{4} \div \frac{5}{6}$ is the same as $\frac{3}{4} \times \frac{6}{5}=\frac{18}{20}=\frac{9}{10} \quad$ (simplified)
Finding 10\%, 5\%, 1% of a quantity	To find 10% without a calculator just divide the original number by 10 , to find 1% divide it by 10 again. 5% is half of $10 \%, 2.5 \%$ is half of that!	
Finding a Percentage of a Quantity using a Calculator	For harder examples just type it into a calculator. Remember, 'of' in maths means multiply. Percentage means out of 100 so you can just type the percentage in as a fraction over 100 and \times by the quantity.	E: Find 23% of $327.5 \mathrm{~A}: \frac{23}{100} \times 327.5=75.325$ There is a \% button on the Casio too. See the tutorial!
Increase or Decrease by a \%	Find the \% required (see above) and add it on (increase) or take it off (decrease) If it's a calculator question just multiply the quantity by the $\%$	E: Increase $£ 30$ by $10 \% \quad$ A: $10 \%=£ 3$ so $30+3=£ 33$ E: Decrease 20 by 40% A: $10 \%=2,40 \%=8,20-8=12$
Writing one Number as a \% of Another	Write the $1^{\text {st }}$ number over the $2^{\text {nd }}$ as a fraction and \times your answer by 100 . It could help thinking as these like test scores. 7 as a $\%$ of 24 is $7 / 24 \times 100$.	Example: Write 12 as a \% of 31. A: $\frac{12}{31} \times 100=38.7 \%$
Percentage Change	You are looking at the increase or decrease as a \% of the original value. 'Difference divided by the original and multiplied by 100.' Example: A painting was bought for $£ 200$ \& sold for $£ 250$. Find the \% increase in its value.	Answer: $\frac{50}{200}=25 \%$ increase in value
Reverse P	You are working out the value BEFORE the \% increase or decrease. Use multipliers (some shown), set up an equation \& solve working backwards. Do not just find the \% of the value in the question and take it off or add it!	Example: A jumper was priced at $£ 48.60$ after a 10% reduction. Find its original price. $\mathrm{J} \times 0.9=48.60$ Answer: $\mathrm{J}=48.60 \div 0.9$ (The jumper was $£ 54$) $\mathrm{J}=54$

Growth and Decay	Find the starting quantity, \times this by the multiplier to increase or decrease the quantity and raise that to the required power. See worked example! The multiplier for growth will be greater than 1 , for decay less than 1 .	E: A bank pays 5\% compound interest a year. Bob invests $£ 3000$. How much will he have after 7 years? Answer: $3000 \times 1.05^{7}=4221.3012 \ldots$... (about $£ 4221.30$)
Exponential Functions and their Graphs	Exponential graphs can be used to model growth and decay. Exponential graphs can be written in the form $y=a^{x}$. They are curves! If $a>1$ you get growth. If $0<a<1$ you have decay. In 'real life situations these graphs may be written as $y=a b^{x}$. An example could be the value of a car: $P=25000 \times 0.92^{t}$. This simply models the price of a car with a 'new cost' of $£ 25000$ which is losing 8% a year. An investment could be represented by $I=4000 \times 1.03^{n}$. This just shows an initial investment of $£ 4000$ and a compound rate of 3% over n years.	
Simple and Compound Interest	Simple Interest: Interest calculated on ONLY the original investment. Compound Interest: Interest is calculated on BOTH the original investment and any interested gained over time. (This as interest on interest which is better) Be careful with two step calculations with different rates for different periods.	Example: Simple interest at 3% on $£ 1000$ over 4 years will give: $4 \times £ 30=£ 120$. This gives a total investment of $£ 1120$. Compound Interest at 3% on $£ 1000$ over 4 years gives: $1000 \times 1.03^{4}=£ 1125.51$
VAT	VAT is just 'Value Added Tax' and is a tax added to some of the goods and services we buy. The current rate for VAT in the UK is 20% All you need to do is find 20% and add it on or just use the multiplier 1.2. Careful! If the price already includes tax divide by 1.2 to find the pre VAT cost	Example: A car is priced at $£ 2000$ before tax. Find the price after VAT has been applied at 20\%: Answer: $£ 20000 \times 1.2=£ 24000$ (You can find 20\% and add it on if you don't want to use a multiplier)
Negative Numbers $\times \text { and } \div$	If you are either multiplying or dividing with negative numbers and the signs are the same the answer is positive, if they are different the answer is negative.	(a) $-2 \times 4=-8$ (b) $-3 \times-5=15$ (c) $3 \div-3=-1$ (d) $-16 \div-4=4$
Negative Numbers	Adding a negative decreases the value. Subtracting a negative increases the value. Start on a number line and either move up of down from your start point.	(a) $2-4=-2$ (b) $3--5=8$ (c) $-2+-5=-7$ (d) $-4--5=1$
BODMAS/BIDMAS (Order of Operations)	Brackets then Powers (BO/BI) comes first. Multiplication then Division (DM) comes next. Addition then Subtraction (AS) comes last.	(a) $3+4 \times 2=11$ (do the multiplication first) (b) $3+(4+1)^{2}$ Brackets: $(5)^{2}=25$ and then add $3=28$ (c) $12 \div 0.5-3=21$ (division first!)
Multiplying Decimals	Method 1: Count the total digits after the decimals at the start. The number you start with is the number you finish with. You may have to add 0 's. Method 2: Consider place value. Tenths \times Tenths $=$ Hundredths.	Example: 0.4×0.2 (2 digits after the decimals in total) $4 \times 2=8$ so my answer is 0.08 as I need to finish with 2 digits after the decimals. $0.3 \times 0.15=0.045$
Dividing by a Decimal	Simply multiply both numbers by powers of 10 until the decimal you are dividing by is an integer. At this point simply divide the numbers.	(a) $4 \div 0.2=40 \div 2=20$ (b) $6 \div 0.03=600 \div 3=200$ (c) $1.5 \div 0.3=15 \div 3=5$ (d) $18 \div 0.06=1800 \div 6=300$
Standard Form	The number must be between 1 and 9.9 and multiplied by a power of ten. + powers of 10 for 'large numbers' and - powers of 10 for 'small numbers'	(a) $8400=8.4 \times 10^{3}$ (b) $671000=6.71 \times 10^{5}$ (c) $0.00036=3.6 \times 10^{-4}$ (d) $0.097=9.7 \times 10^{-2}$
Calculating With Standard Form	When multiplying numbers in SF, multiply the numbers and add the powers. When dividing numbers in SF , divide the numbers and subtract the powers. Make sure your answer is in standard form. You may need to adjust at the end as shown in example (c) to the right. The initial answer is not in standard form.	(a) $\left(1.2 \times 10^{3}\right) \times\left(4 \times 10^{6}\right)=8.8 \times 10^{9}$ (b) $\left(4.5 \times 10^{5}\right) \div\left(3 \times 10^{2}\right)=1.5 \times 10^{3}$ (c) $\left(4.1 \times 10^{6}\right) \times\left(3 \times 10^{9}\right)=12.3 \times 10^{15}=1.23 \times 10^{16}$

Surds (Simplifying)	$\sqrt{36}$ is a rational number as it is 6 . Surds are irrational square roots. $\sqrt{2}$ is an example of a surd and we say it's an 'exact value'. Its answer is a nonterminating (keeps going!), non-recurring (its decimal part doesn't repeat) decimal. Don't be tempted to write a surd as a decimal or round it, just leave it in exact form. When simplify surds look for the largest square number that goes into the surd (highest square factor), split the roots and simplify. Example: Simplify $\sqrt{12}$. The largest square number that goes into 12 is 4 . You can write $\sqrt{12}$ as $\sqrt{4 \times 3}$. Using the rules shown below $\sqrt{4} \times \sqrt{3}$ giving $2 \times \sqrt{3}=2 \sqrt{3}$.	(a) $\sqrt{8}=\sqrt{4 \times 2}=\sqrt{4} \times \sqrt{2}=2 \sqrt{2}$ (b) $\sqrt{45}=\sqrt{9 \times 5}=\sqrt{9} \times \sqrt{5}=3 \sqrt{5}$ (c) $\sqrt{108}=\sqrt{36 \times 3}=\sqrt{36} \times \sqrt{3}=6 \sqrt{3}$ (d) (In reverse) $5 \sqrt{3}=\sqrt{25} \times \sqrt{3}=\sqrt{25 \times 3}=\sqrt{75}$ NB: \sqrt{x} and $x^{\frac{1}{2}}$ are equivalent if you are working with both surds and the rules of indices.
Surds (Multiplying and Dividing)	Here are the rules! (1) $\sqrt{a} \times \sqrt{a}=a$ (2) $\sqrt{a} \times \sqrt{b}=\sqrt{a b}$ (3) $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$ Make sure you simplify your answer! $\sqrt{2} \times \sqrt{12}=\sqrt{24}=2 \sqrt{6}$ for example.	(a) $\sqrt{3} \times \sqrt{3}=3$ (b) $\sqrt{3} \times \sqrt{6}=\sqrt{18}=3 \sqrt{2}$ (c) $4 \sqrt{3} \times 2 \sqrt{5}=8 \sqrt{15}$ (d) $\frac{\sqrt{10}}{\sqrt{2}}=\sqrt{\frac{10}{2}}=\sqrt{5}$
Surds (Adding and Subtracting)	You can only add and subtract like surds. In algebra $a+2 a=3 a$. This is true for surds. $\sqrt{5}+2 \sqrt{5}=3 \sqrt{5}$. Sometimes you may have to simplify first!	(a) $3 \sqrt{2}+4 \sqrt{2}=7 \sqrt{2}$ (b) $9 \sqrt{5}-6 \sqrt{5}=3 \sqrt{5}$ (c) $5 \sqrt{2}-\sqrt{8}=5 \sqrt{2}-2 \sqrt{2}=3 \sqrt{2}$ (Just simplify $\sqrt{8}$)
Surds (Rationalising the Denominator)	A surd is an irrational number, so if you have a surd in the denominator you rationalise the denominator. This will leave an integer value in the denominator. Scenario 1: No + or - sign in the denominator. In this case simply multiply the numerator and the denominator by the surd and simplify. (see Example 1) Scenario 2: A + or - sign in the denominator and 2 numbers (at least one being a surd). Simply multiply the numerator and the denominator to create the difference of two squares. To rationalise swap the sign between the two values in the denominator. You will need to simplify your answer. (see Example 2)	Example 1: $\frac{5}{\sqrt{2}}=\frac{5 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}}=\frac{5 \sqrt{2}}{2}$ Example 2: $\frac{7}{5+\sqrt{3}}=\frac{7 \times(5-\sqrt{3})}{(5+\sqrt{3}) \times(5-\sqrt{3})}=\frac{7(5-\sqrt{3})}{25-5 \sqrt{3}+5 \sqrt{3}-9}=\frac{7(5-\sqrt{3})}{16}$
Converting Recurring Decimals into Fractions	You know, for example, $\frac{1}{3}=0 . \dot{3}$, but what if you were asked to write $0 . \dot{4}$ as a fraction without a calculator? All you need to do is set up \& solve an equation: Let $x=0 . \dot{4}$. Simply multiply x by powers of 10 until the pattern after repeats, subtract away, solve the equation \& simplify if necessary. Here is the worked answer: $x=0 . \dot{4}$ so $10 x=4 . \dot{4}$. Now subtract to give $10 x-x=4 . \dot{4}-0 . \dot{4}$. This will give $9 x=4$ and finally simply solve the equation to write $x=\frac{4}{9}$. Be very careful to check how many digits recur after the decimal. Example (a) and (b) differ. In (a) both the 2 and the 3 repeat. In (b) only the 5 repeats. Look out for the dots! Be careful as, for example, $0 . \dot{2} 1 \dot{5}=0.216216216 \ldots$... The dots mark the start and the end of the pattern and, of course, the 1 repeats.	(a) Write 0.23 as a fraction in its simplest form. Let $x=0 . \ddot{2} \dot{3}$, now $10 x=2 . \ddot{3} \dot{2}$ now go to $100 x=23 . \ddot{2}$. The pattern matches for $x \& 100 x$ so subtract away: $100 x-x=23 . \ddot{2} \dot{3}-0 . \ddot{2} 3 \text { so } 99 x=23 \text { and } x=\frac{23}{99}$ (b) Write $0.1 \dot{5}$ as a fraction in its simplest form. Let $x=0.1 \dot{5}$, now $10 x=1 . \dot{5}$ and $100 x=15 . \dot{5}$. The pattern matches for $10 x \& 100 x$ so subtract away: $100 x-10 x=15 . \dot{5}-1 . \dot{5} \text { so } 90 x=14 \text { and } x=\frac{7}{45}$ (Make sure you fully simplify your final answer)

Ratio, Proportion and Rates of Change

Simplifying Ratio	Simplify them like fractions by dividing by common factors if it's not obvious.	$\begin{array}{lll}\text { (a) } 5: 10 \text { is } 1: 2 \text { in its simplest form } & \text { (b) 14:21 is } 2: 3\end{array}$
$\begin{aligned} & \frac{\text { Ratios in the form }}{1: n / n: 1} \end{aligned}$	Divide both numbers in the ratio by one of numbers to leave one of them as 1 . Be careful when it comes to which way round the answer must be! $1: n$ or $n: 1$	$5: 7$ would be $1: \frac{7}{5}$ as $1: n(\div$ by 5$) \& \frac{5}{7}: 1$ as $n: 1(\div 7)$
Ratio Sharing	Add the total parts. A ratio of 4:2:1 has 7 parts (not $\mathbf{3}$ parts as $\mathbf{4 + 2 + 1 = 7)}$ Divide the amount to be shared to find the value of one part. Simply multiply this value by the each number in the ratio. Remember the units if applicable!	"Share $£ 60$ in a 3:2:1 ratio" 6 total parts. $£ 60$ divided by $6=£ 10$. Each part is worth $£ 10$ $3 \times £ 10=\mathbf{£ 3 0} \quad 2 \times £ 10=\mathbf{£ 2 0}$ $1 \times £ 10=£ 10$
Ratios Already Shared	Sometimes a ratio is already shared and you will need to work backwards. Simply find what one part is worth and then answers the questions given. The question will give you the clue to which quantity you are dividing. In these questions just think (for example) " 3 parts is worth $£ 12$, so 1 part must be worth $£ 4$ " and then use this information to answer the question.	Example: Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that Bob had $£ 16$, find out how much was shared. A: Bob has 2 parts. This means $£ 16=2$ parts. One part will be worth $£ 8$. There are 10 parts in total so $10 \times 8=£ 80$. A total of $£ 80$ was shared.
Ratios to Fractions	Add the total parts in the ratio. This becomes the denominator of the fractions. Simply write each part over that denominator. You should now be able to convert to decimals too either by simplifying or pressing SD on the calculator.	Example: 2:3 has 5 parts so this would be $\frac{2}{5}$ and $\frac{3}{5}$.
Ratios to \%	Write the ratios as fractions (as shown above) and then convert them into \%	Example: 2:3 would be 40% and 60% when shared
Best Buys	Find the unit cost by dividing the price by the quantity. The lowest number is the item that is the best buy. Be careful and don't round the price too early!	8 cakes for $£ 1.28=\mathbf{1 6 p}$ each (this is the unit cost) 13 cakes for $£ 2.05=\mathbf{1 5 . 8 p}$ each (so pack of 13 is better)
Basic Proportio	Find out the value of one item by dividing and then multiply your answer by the number of them you need. Some of these are recipe type questions and others are just shopping type scenarios. Just find the cost, weight or size of 1 and then multiply up. Using the units given may help you understand more.	Example: 3 cakes require 450 g of sugar to make. Find how much sugar 5 cakes require. Answer: $450 \div 3=150 \mathrm{~g}$ per cake. Now multiply this by 5 to give 750 g required for 5 cakes.
Exchange Rates	$£ 1$ = \$1.6. Multiply by 1.6 to go from $£$ to \$ \& divide by 1.6 to go from $\$$ to $£$	E: Convert $£ 12$ to \$ A: $12 \times 1.6=\$ 19.20$
Direct and Inverse Proportion	Direct: $y=k x$ or $y \propto x$ (This just reads y is directly proportional to x.) With direct proportion k is multiplied by x to get y. As x increases, y increases. k is known as the constant of proportionality. It's just a 'fixed value' multiplier. Inverse: $y=\frac{k}{x}$ or $y \propto \frac{1}{x}$ (This just reads y is inversely proportional to x.) With inverse proportion k is divided by x to get y. As x increases, y decreases. To solve problems involving direct and inverse proportion: (1) Pick the right equation (for either direct or inverse) and substitute the values given in the question to solve for k (the constant of proportionality) (2) Rewrite the equation with the correct value of k you have just found. (3) Substitute the $2^{\text {nd }}$ given value in for x or y to find the required missing value. (Be careful with examples such as y is proportional to the square of x. This can be written as $y=k x^{2}$ instead of $y=k x$). The root of x is written as \sqrt{x}.	Example 1: " p is directly proportional to q. When $p=12, q=4$. Find p when $q=20$ " $\begin{array}{ll} p=k q & \therefore p=3 q \\ 12=k(4) & \text { now: } \end{array} \quad \begin{array}{ll} p=3(20) \\ k=3 & \\ k=60 \end{array}$ Example 2: " p is inversely proportional to q. When $p=20, q=10$. Find p when $q=4$ " $\begin{array}{lll} p=\frac{k}{q} & \therefore p=\frac{200}{q} \\ 20=\frac{k}{10} & \text { now: } & p=\frac{200}{4} \\ k=200 & p=50 \end{array}$ $\text { Answer: } 1^{\text {st }} \text { solve for } k: 20=\frac{k}{10} \quad \text { now: } \quad p=\frac{200}{4}$

Graphs showing Direct Proportion can be written in the form $y=k x^{n}$ where k is the constant of proportionality. The notation $y \propto x^{n}$ may be used and means exactly the same thing. Direct graphs will always have the point $(0,0)$ on. The graph could be a straight line such as $y=2 x$ or a curve such as $y=3 x^{2}$.
Graphs showing Inverse Proportion can be written in the form $y=\frac{k}{x^{n}}$
where k is the constant of proportionality. The notation $y \propto \frac{1}{x^{n}}$ may be used.
These will not pass through the point $(0,0) \&$ approach the x axis as x increases.

Algebra

Terminology	Expression: A collection of terms (letters (unknowns/variables) and possibly numbers (constants)) without an equals sign. You don't solve an expression! Equation: A collection of terms (letters/numbers) with an equals sign. You can look to solve an equation for values of the unknown term (letter). Identity: An equation that holds true for all values. The \equiv sign is often used. Formula: A set of symbols that expresses a rule. Inequality: When a two values are not equal (\neq).
$\underline{\text { Ine }}$.	

Expressions: $4 a+2 b, x^{2}-3,1-4 y$,
Equation: $4 a+2 b=1$
Identity: $4 a+2 b \equiv 2(2 a+b)$
Formula: $A=\pi r^{2}$
Inequality: $x>4$
(a) $2 x+3 y+4 x-5 y+3$ becomes $6 x-2 y+3$
(b) $3 x+4-x^{2}+2 x-1$ becomes $5 x-x^{2}+3$
(a) $x^{2}-2 x+4 \equiv(x-1)^{2}+3$
(b) $x^{2}+x-6 \equiv(x-2)(x+3)$

Squaring is multiplying by itself and not by 2 .
$3 \times 3 \times 3=27$ and not $9 \quad 5 \times 5 \times 5=125$ and not 15
(a) $p^{5} \times p^{3}=p^{8}$
(b) $p^{7} \div p^{4}=p^{3} \quad$ (c) $p^{12} \times p=p^{13}$
(d) $2 a^{5} \times 3 a^{3}=6 a^{8}$
(e) $48 y^{5} \div 16 y=3 y^{4}$
(f) $\frac{4 m^{6}}{2 m^{2}}=2 m^{4}$
(g) $m^{2} n \times m^{5} n^{-1} \times 2 m^{-3} n^{6}=2 m^{4} n^{6}$
(a) $4^{0}=1$
(b) $x^{0}=1$
(c) $(x y)^{0}=1$
(d) $x y^{0}=x$
N.B 0^{0} is undefined! Can you think or explain why?

Raising to a Power (Rules of Indices) $\left(a^{m}\right)^{n}=a^{m n}$	When a number or algebraic term already raised to a power is raised to another power you multiply the powers. A common error is to multiply the bases by the powers instead of the powers by the powers. Example (c) to the right shows that 3 is to the power of 1 . The common error is to write 12 instead of 3^{4}.	(a) $\left(x^{2}\right)^{3}=x^{6}$ (b) $\left(x^{4} y^{5}\right)^{0.5}=x^{2} y^{2.5}$ (c) $\left(3 x^{4} y^{\frac{1}{4}}\right)^{4}=\left(3^{1} x^{4} y^{\frac{1}{4}}\right)^{4}=3^{4} x^{16} y^{1}=81 x^{16} y$
Negative Powers (Rules of Indices) $a^{-m}=\frac{1}{a^{m}}$	If you have number or algebraic term raised negative power this can be written as the reciprocal of that number or term raised to the positive power. Some examples: (i) $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$ (ii) $\left(\frac{2}{3}\right)^{-4}=\left(\frac{3}{2}\right)^{4}=\frac{81}{16}$ (iii) $\left(\frac{x}{y}\right)^{-z}=\left(\frac{y}{x}\right)^{z}$	(a) $3^{-2}=\frac{1}{3^{2}}$ which is $\frac{1}{9}$ (b) $5^{-3}=\frac{1}{5^{3}}$ which is $\frac{1}{125}$ Tougher one! (c) $0.5^{-2}=4$ (d) $0.2^{-3}=125$
Fractional Powers (Rules of Indices)	"Find the nth root of the number and then raise it to the power of m ". This is easier to do than it is to explain! If you have $8^{\frac{1}{3}}$ you take the third (or cube) root of 8 . This gives you 2 . Of course $2^{1}=2$ which gives us our answer. Now, if you have $8^{\frac{2}{3}}$, you do exactly the same at the start as before but you need to raise 2 to the power of 2 this time. $2^{2}=4$ so the answer is 4 . DO NOT DIVIDE THE NUMBER (BASE) BY THE POWER! Look out for negative fractional powers	(a) $16^{\frac{1}{4}}$ You need the $4^{\text {th }}$ root of 16 which is 2 as $2^{4}=16$ (b) $27^{\frac{2}{3}}=\left(27^{\frac{1}{3}}\right)^{2}=(3)^{2}=9$ (c) $32^{\frac{3}{5}}=\left(32^{\frac{1}{5}}\right)^{3}=(2)^{3}=8$ (d) $125^{\frac{4}{3}}=\left(125^{\frac{1}{3}}\right)^{4}=625$ (e) $\left(\frac{25}{36}\right)^{-\frac{1}{2}}=\left(\frac{36}{25}\right)^{\frac{1}{2}}=\frac{6}{5}$
Expanding Single Brackets	Multiply the number or algebraic term on the outside by each term inside the brackets. Be careful with negatives! The question may ask you to 'multiply out'	(a) $5(3 x+2) \equiv 15 x+10$ A common error is $15 x+5$. (b) $2 x(3 x-4) \equiv 6 x^{2}-8 x$
Expanding Double Brackets Expanding Triple Brackets	Multiply each term (all 4) by one another. You can use F.O.I.L \& then simplify. First, Outer, Inner, Last. Remember to simplify! Don't forget $+4 x-x$ is $+3 x$ and x times x is x^{2} not $2 x$. Be careful! $(a+b)^{2}=(a+b)(a+b)$ and NOT $a^{2}+b^{2}$	$\begin{array}{lll} \hline & (x+2)(x-3) & \\ (2 x-1)(3 x+2) \\ \text { (a) } & x^{2}-3 x+2 x-6 & \text { (b) } \\ & 6 x^{2}+4 x-3 x-2 \\ & x^{2}-x-6 & \\ 6 x^{2}+x-2 \end{array}$
Factoring Single Brackets	Find the HCF of numbers \&/or terms and write these on the outside of the bracket. Inside will be terms you have to \times the outside by to get the original.	(a) $6 x-3 \equiv 3(2 x-1)$ (b) $15 x+10 \equiv 5(3 x+2)$ (c) $6 x^{2}+8 x \equiv 2 x(3 x+4)$ (d) $x^{2}-x^{3}=x^{2}(1-x)$
Factoring Quadratics when $a=1$	When a quadratic expression is in the form $a x^{2}+b x+c$ find the two numbers that ADD to give b and MULTIPLY to give c. Be careful with negatives. Have 2 sets of brackets with x in each and then choose the factors!	(b) $x^{2}+2 x-8 \equiv(x+4)(x-2)$
Factoring Quadratics when $a \neq 1$	This method is a slightly less mathematically rigorous approach but can make factoring easier when you have, for example $6 x^{2}+5 x-4$ to factor. When a quadratic expression is in the form $a x^{2}+b x+c$: (1) Put the value of a in the front of each of the 2 brackets. (Don't panic here!) (2) Multiply a by c (3) Find the two numbers that add to give by and multiply to give ac (4) Place these values in the brackets with the correct sign. (5) Simplify and cancel common factor. Example: Factor $6 x^{2}+5 x-4$	Answer: (1) Let's start with ($6 x$)(6x). (2) Multiply a by c to give $a c=-24$ (3) You need 2 numbers that add to give +5 and multiply to give -24 . They will be +8 and -3 (4) This now gives $(6 x+8)(6 x-3)$. (5) At this stage take common factors out of both brackets (where applicable) and simplify: $2(3 x+4) \times 3(2 x-1)$, Cancel to give $(3 x+4)(2 x-1)$

Factoring the

 Difference of Two SquaresCompleting the
Square for
Quadratic
expressions (when $a=1$).

An expression in the form $a^{2}-b^{2}$ you can factorise to give $(a+b)(a-b)$.
If you look at the examples to the right, when you expand the double brackets the two middle terms cancel to just leave the first and last.
There are times when a quadratic expression can't be factored. When a quadratic is in the form $x^{2}+b x+c$ you can write this in the form $(x+p)^{2}+q$
(The form $(x+p)^{2}+q$ is found by evaluating $\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+c$.)
This looks quite tough but it isn't too bad! Just follow these 3 steps:
(a) Have a set of brackets with x in and half the value of b in.
(b) Square the bracket.
(c) Subtract $\left(\frac{b}{2}\right)^{2}$ from c and tidy the expression.

After a few goes it becomes easier. Try and work with fractions as your work later on in maths will require you to do examples without a calculator.
There are advantages to writing an expression in the form $(x+p)^{2}+q$. You can gather information about the maximum or minimum of a function and the axis of symmetry. The completed square form can also allow us to solve quadratic equations of the form $a x^{2}+b x+c=0$ when factoring is not possible. When a quadratic expression is in the form $a x^{2}+b x+c$ where $a \neq 1$ you can complete the square and write it in the form $p(x+q)^{2}+r$. You can use a similar technique to that above but factor out a at the start. Here is an example: Complete the square for $2 x^{2}-12 x+4$. You need to take the factor of 2 out of the first two terms: $2\left[x^{2}-6 x\right]+4$. At this stage you can complete the square inside the square brackets to give: $2\left[(x-3)^{2}-9\right]+4$. You can now expand the square brackets to give $2(x-3)^{2}-18+4$ which gives $2(x-3)^{2}-14$.
This method can be used when a is a negative number as shown to the right. You can only complete the square when the value of a is 1 .
In the first example you could graph the quadratic. This would open upwards (positive), have a minimum point at $(-1,-7)$ and the axis of symmetry would be the line $x=-1$.
In the second example the graph would open downwards (negative), have a maximum point $\left(\frac{5}{2}, \frac{21}{4}\right)$ and the axis of symmetry would be the line $x=\frac{5}{2}$
(a) $x^{2}-25 \equiv(x+5)(x-5)$ Each term is a squared term
(b) $16 x^{2}-81 \equiv(4 x+9)(4 x-9)$

Example 1: Complete the square for $x^{2}-6 x+2$

Answer:

(a) $(x-3)$
(b) $(x-3)^{2}$
(c) $(x-3)^{2}-9+2$
which will tidy to give $(x-3)^{2}-7$
Example 2: Complete the square for $x^{2}+5 x-3$

Answer:

(a) $\left(x+\frac{5}{2}\right)$
(b) $\left(x+\frac{5}{2}\right)^{2}$
(c) $\left(x+\frac{5}{2}\right)^{2}-\frac{25}{4}-3$
which will tidy to give $\left(x+\frac{5}{2}\right)^{2}-\frac{37}{4}$
You can say that the minimum value of the expression in part (a) would be -7 and $-\frac{37}{4}$ in (b).
We will look at this later on in more depth.
Example 1: Complete the square for $4 x^{2}+8 x-3$
Answer: Factor the 4 out $4\left[x^{2}+2 x\right]-3$. At this stage complete the square inside the brackets to give $4\left[(x+1)^{2}-1\right]-3$. Now expand the square brackets to give $4(x+1)^{2}-4-3$. Finally tidy to $4(x+1)^{2}-7$
Example 2: Complete the square for $-x^{2}+5 x-1$
Answer: Factor the -1 out to give $-\left[x^{2}-5 x\right]-1$. Now complete the square $-\left[\left(x-\frac{5}{2}\right)^{2}-\frac{25}{4}\right]-1$. Expand the square brackets $-\left(x-\frac{5}{2}\right)^{2}+\frac{25}{4}-1$ and tidy to give the answer $-\left(x-\frac{5}{2}\right)^{2}+\frac{21}{4}$.

Formulae (Writing)	You may be asked to write and use a formula given a scenario. Use terms (letters) to represent the unknown quantities such as $C \& N$ and numbers to represent the constants such as +5 shown to the right which is a fixed value.	Example: "Bob charges $£ 3$ per window and a $£ 5$ call out charge" Answer: $C=3 N+5$ with N being the number of windows cleaned and C the cost.
Formulae (Substituting into)	Substitute the numbers given into the formula or expression. Swap letters for numbers. Be careful on the order. If $x=3$ and you need $2 x^{2}$ square 3 first, then multiply by 2 . There is a difference between $2 x^{2}$ and $(2 x)^{2}$. Be careful with negatives. Squaring makes it positive! Also, subtract a - means add it.	Example: $a=3, b=2$ and $c=5$ Find: (i) $2 a$ which is just $2(3)=6$ (ii) $3 a-2 b$ so $3(3)-2(2)=5$ (iii) $b^{2}-5$ which is $(2)^{2}-5=-1$
Formulae/Equations (Rearranging)	Changing the subject of an equation is like solving one without a 'pretty' answer at the end. Instead of your answer being a number, it's usually an expression containing other terms (letters) and possibly numbers. Don't panic; just apply the same rules as for solving. If you have $a+$, subtract this value from both sides. If you have $a-$ then add it to both sides, $\mathrm{a} \times$ then divide both sides by this quantity and $\mathrm{a} \div$ then multiply both sides by this quantity. What you do to one side, you just do to the other! If there are no + or - subtract signs then it will be \times or \div. Remember $u t=u \times t$ and not $u+t$. Brackets means multiply too! It doesn't matter if you have your subject on the right or the left hand side!	Example: Make x the subject of the equation $y=\frac{2 x-1}{z}$ A: $y=\frac{2 x-1}{z}$. Start by multiplying both sides by z to give $y z=2 x-1$. Now add 1 to both sides so $y z+1=2 x$ and finally divide both sides by 2 to give $\frac{y z+1}{2}=x$. You now have x as the subject.
Solving Linear Equations Unknowns on one side Unknowns on both sides	Get the x 's (unknowns or letters) on one side and the numbers on the other. Use the balance method. Simply do the opposite operation to what the equation gives until you have only x 's on one side and only numbers on other. If you have a +, subtract this value from both sides. If you have a - then add it to both sides, $\mathrm{a} \times$ then divide both sides by this quantity and $\mathrm{a} \div$ then multiply both sides by this quantity. What you do to one side, you just do to the other!	$\begin{array}{lll} & & 5 p+6=2 p+18 \\ 2 x-3=7 & \frac{y}{2}-1=5 \\ 3 p+6=18 & \text { (a) } \begin{array}{ll} 2 x=10 & \text { (b) } \begin{array}{l} \frac{y}{2}=6 \\ 3 p=12 \end{array} \\ x=5 & p=4 \end{array} & y=12 \end{array}$
Setting Up and Solving Linear Equations	Find an expression for each piece of information given in the question, add them together, and simplify the expression. This will then be set equal to a value given in the question (or implied) to give you your equation. Solve the equation and then make sure you answer the original question in context!	E: Bob is n years old. Fred is twice his age \& Sue is one year your than Bob. Their total age is 39. Set up and solve an equation to find the age of Bob. A: $n+2 n+n-1=39$ this gives $4 n-1=39$ and $n=10$
Equations with Fractions	You can think of this a couple of different ways: (1) Multiplying through by the LCM to 'clear' the fractions. (2) Cross multiplying to 'clear' the fractions. Example 1: (Multiplying by the LCM). Solve the equation: $\frac{x}{3}+4=2-\frac{3 x}{4}$ Answer: Multiply both sides of the equation by 12 (which is the LCM) to leave: $4 x+48=24-9 x$. At this stage you add $9 x$ and subtract 48 to both sides of the equation. You can now solve to get $13 x=-24$ and $x=\frac{-24}{13}$ The section later on algebraic fractions will help for harder examples	Example 2 (Cross Multiplying) Solve the equation: $\frac{x-1}{4}=\frac{x}{5}$ Answer: Cross Multiplying to get: $5(x-1)=4 x$. Expanding to get $5 x-5=4 x$ which gives $x=1$. Use either or both methods to solve equations with fractions. It's often a case of being flexible and seeing which method is quickest.

Solving Linear Simultaneous Equations (Algebraically)	If you have 2 unknowns (x and y for example) you need at least two equations to find the value of both x and y. To do this you solve simultaneous equations. Either make the value in front (coefficient) of x 's the same or the y 's the same. Once they are the same (eg both 5) if the signs in front are the same, subtract if they are different, add. You will have now eliminated one unknown (x or y) Solve the equation you have for either x or y. (This will be a simple equation) Finally substitute that value back in to any of the other equations to solve for the other unknown. Check your answers work for both!	(a) $\begin{aligned} & 2 x+y=7 \\ & 3 x-y=3 \end{aligned}$ (b) $\begin{aligned} & 5 x+2 y=9 \\ & 10 x+3 y=16 \end{aligned}$	Add them to get $5 x=10 \& x=2$. Substitute in: $2(2)+y=7$ so $y=3$ Multiply $1^{\text {st }}$ equation by 2 . $10 x+4 y=18$. Subtract to eliminate x 's to give $y=2$. Substitute in: $5 x+2(2)=9$ so $x=1$
Solving Linear and Non Linear Simultaneous Equations (Graphically)	These equations are solved by drawing the graphs (straight lines) of the two equations given. The solutions (answer to the question) will be where the lines meet. The graph to the right shows the solutions of the simultaneous equations $y=5-x$ and $y=2 x-1$. They intersect (meet) at the point with coordinates $(2,3)$. This means the solutions will be $x=2$ and $y=3$.		
Solving Quadratics (the form $a x^{2}=b$)	A quadratic equation will have a 'squared term' in such as x^{2} or t^{2} as its highest power. An example could be $x^{2}=36$. When the quadratic is in the form $a x^{2}=b$ simply isolate the x^{2} term so you have $x^{2}=$ to some value and square root both sides to solve. Remember there will be a positive and a negative solution! $3 \times 3=9$ and $-3 \times-3=9$ too. We must write both answers down.	$x^{2}=36$ (a) $\begin{aligned} & x= \pm \sqrt{36} \\ & x= \pm 6 \end{aligned}$	$2 x^{2}=98 \quad x^{2}+10=25$ (b) $\begin{aligned} & x^{2}=49 \\ & x= \pm \sqrt{49} \\ & x= \pm 7 \end{aligned}$ (c) $\begin{aligned} & x^{2}=15 \\ & x= \pm \sqrt{15} \end{aligned}$
Solving Quadratics the form $a x^{2}+b x=0$)	These can be factored and set to zero as there is no constant. Here is an example: $x^{2}+4 x=0$ now factor the x to give $x(x+4)=0$. At this stage either $x=0$ or $x+4=0$ as one or both of the factors will $=0$ For the answer to be 0 either one or both of the factors must $=0$. (Just think logically! $5 \times 0=0$, $9 \times 0=0$). This gives us the solutions $x=0$ or $x=-4$.	(a) $\begin{aligned} & x^{2}-3 x=0 \\ & x(x-3)=0 \\ & x=0 \text { or } x= \end{aligned}$	$x^{2}=5 x$ (b)
Solving Quadratics Factoring ($a=1$)	You have seen previously how to factor and expression in the form $a x^{2}+b x+c$. You can use this technique to solve equations in the form $a x^{2}+b x+c=0$. Once the expression is factored and set $=$ to a value it becomes an equation and you can solve for x. Set the quadratic $=0$ and solve. Here is an example: Solve the equation $x^{2}-x-6=0$. Using the method shown previously you can factor to give $(x-3)(x+2)=0$. This means either $(x-3)=0$ or $(x+2)=0$. Using these facts you can say $x=3$ or $x=-2$.	Example 1: Solve the equation $x^{2}+3 x-10=0$ Answer: Factor to give $(x-2)(x+5)=0$. This means $x=2$ or $x=-5$ Example 2: Solve the equation $x^{2}+x=12$ Answer: First rearrange into $a x^{2}+b x+c=0$ to give $x^{2}+x-12=0$. Now factor to $(x+4)(x-3)=0$. This will give us the solutions $x=-4$ or $x=3$.	
Solving Quadratics Factoring ($a \neq 1$)	You have seen previously how to factor and expression in the form $a x^{2}+b x+c$ when $a \neq 1$. You can use the same method to solve an equation in the form $a x^{2}+b x+c=0$ as the one used in the previous section. As with all equations check that your answer is valid especially if it's in context. Some solutions may not be valid such as negative answers where missing lengths are involved.	Example: Solve the equation $2 x^{2}+7 x-4=0$ Answer: Factor to give $(2 x-1)(x+4)=0$. This will give use the solutions $x=\frac{1}{2}$ or $x=-4$.	

Page 11

Solving Quadratics (Completing the Square)

Equation of a Circle (and its graph)

When a quadratic equation is in the form $a x^{2}+b x+c=0$ the solutions can be found using the quadratic equation $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
You would use the formula if the equation doesn't factor or you can't factor it easily. Be careful with the signs on $a, b \& c$ and make sure you obtain the + and the -solution using a calculator. To do this simply scroll to the \pm part, start with + and then change to - for the second solution. On a calculator use brackets
for x and just substitute the values in to give $\frac{-(b) \pm \sqrt{(b)^{2}-4(a)(c)}}{2(a)}$.
When a quadratic equation won't factor, you have two obvious choices when it comes to solving the equation. The first is using the formula (as shown above) and the $2^{\text {nd }}$ is using the completed square form.
When a quadratic is in the form $a x^{2}+b x+c=0$ you can write this in the form $(x+p)^{2}+q=0$ by completing the square (as shown previously). For there to be real solutions $q<0$. Before you use this method check you can't factor it as that would be easier most of the time! Using the example given previously BUT as an equation set $=0$ let's find the roots (solutions) to the equation $x^{2}-6 x+2=0$ Here are the steps (i) $(x-3) \quad$ (ii) $(x-3)^{2} \quad$ (iii) $(x-3)^{2}-9+2$ which will tidy to give $(x-3)^{2}-7=0$. This is where we got up to before! Now (iv) add 7 to both sides of the equation to give $(x-3)^{2}=7$. At this stage square root both sides to give (v) $x-3= \pm \sqrt{7}$. Finally add 3 to both sides to give the 'exact answer' of $x=3 \pm \sqrt{7}$. Exact means in surd form. Remember you will have two solutions $x=3+\sqrt{7}$ and $x=3-\sqrt{7}$ (or 0.35 and 5.65 to 2 d.p) The equation of a circle with its centre at the origin $(0,0)$ and a radius length r can be written as $x^{2}+y^{2}=r^{2}$. Don't panic, this is not much harder than using Pythagoras Theorem. Often you will be asked to draw one. If so just use a compass and have your centre at the origin.
$x^{2}+y^{2}=16$ is shown to the right and passes through $(4,0)(0,4)(-4,0) \&(0,-4)$ $x^{2}+y^{2}=25$ would have radius 5 and pass through $(5,0)(0,5)(-5,0) \&(0,-5)$ A common error is not square rooting the radius when asked for its length! If you are given a diagram and asked for the equation, simply pick a point and substitute the x and y coordinates into $x^{2}+y^{2}=r^{2}$ to find the value of r^{2} (or r).

Example: Solve the equation $3 x^{2}+x-5=0$
Answer: $a=3, b=1$ and $c=-5$
Substitute in to give $x=\frac{-1 \pm \sqrt{(1)^{2}-4(3)(-5)}}{2(3)}$
The + answer will be $x=\frac{-1+\sqrt{61}}{6}$ or 1.14 to 2 dp .
The - answer will be $x=\frac{-1-\sqrt{61}}{6}$ or -1.47 to 2dp
Example 1: Solve the equation $x^{2}+4 x+1=0$
Answer: Start by completing the square:
$(x+4)^{2}-16+1=0$. At this stage you can write
$(x+4)^{2}=15$ followed by $x+4= \pm \sqrt{15}$. Simply
subtracting the 4 from both sides gives us our exact answer of $x=-4 \pm \sqrt{15}$
Example 2: Solve the equation $x^{2}-7 x-2=0$
Answer: Start by completing the square:
$\left(x-\frac{7}{2}\right)^{2}-\frac{49}{4}-2=0$ which will now give
$\left(x-\frac{7}{2}\right)^{2}=\frac{53}{4}$ which in turn gives $x-\frac{7}{2}= \pm \sqrt{\frac{53}{4}}$
and further $x=\frac{7}{2} \pm \frac{\sqrt{53}}{2} \&$ tidying gives $x=\frac{7 \pm \sqrt{53}}{2}$
Example: $x^{2}+y^{2}=16$ is a circle with a radius of 4 .
Answer: Use a compass set 4 units apart!

A linear equation can be represented by a line. A non-liner by a curve or circle (for example). One of your equations can be written in the form 'Elimination' by subtraction is often not possible so the method of substitution is used for most examples. The general rule is to make either x or y the subject of the linear equation and substitute into the non-linear equation. Once you have solved the new non-linear equation for one unknown (x or y) then substitute the answer(s) back into the linear equation to find the other. Remember to solve for both x and y ! Your solutions may have to be given as coordinates as they will be the points where 2 graphs meet. The 2 graphs of the example to the right is shown below in figure 3 . Figure 1 is a line \& reciprocal, 2 a line $\&$ circle

There will be times when it's hard to solve an equation using the techniques you have learned or could learn in maths. The equation $x=\cos (x)$ is an example. In such cases you could use an iterative formula to solve the equation to a certain degree of accuracy.
If you have a function $\mathrm{f}(x)=0$ you can rearrange this to give $x=\mathrm{g}(x)$. This is just a new function of x using the original terms from $\mathrm{f}(x)=0$ This equation can then be used to set up the iterative formula. This can be written as $x_{n+1}=g\left(x_{n}\right)$. This forms a sequence for values to be substituted into.
You will be given a value of x_{0} (starting value for the first approximation of a solution to the equation $\mathrm{f}(x)=0$) and it's simply a case of setting up the iterative formula on the calculator and finding values of x_{1}, x_{2}, x_{3} and so on to locate a root. You will be given a level of accuracy to aim for or a number of iterations to produce. All that is happening is the first value (x_{0}) goes into the right hand side of the equation to produce a value of x on the left hand side. This value (x_{1}) is then taken and substituted into the right hand side again to produce a second value of $x\left(x_{2}\right)$. This process continues until the sequence converges (tends to/ approaches) to a limit. This limit will represent the solution of the equation. Not all rearrangements will yield the answer you want! Be flexible when it comes to forming $x=\mathrm{g}(x)$. Some sequences may diverge!

Example: Solve the simultaneous equations $y-x=4$ and $x^{2}+y=16$.
Answer: You can rewrite the $1^{\text {st }}$ equation as $y=x+4$. Now substitute this into the second equation to eliminate y to give $x^{2}+x+4=16$.
This can be written as $x^{2}+x-12=0$ which factors to $(x+4)(x-3)=0$ and gives $x=-4$ or $x=3$.
You now have to solve for y. Substitute the two values of x back into the linear $(y=x+4)$ to solve for y.
When $x=-4, y=-4+4$ which gives $y=0$.
When $x=3, y=3+4$ which gives $y=7$.
You have 2 solutions for x and 2 solutions for y. If these were points of intersection of two graphs the coordinates would be $(-4,0)$ and $(3,7)$.
Example: Use an iterative formula to find the positive root of the equation $x^{2}-3 x-6=0$ to 3 decimal places.
Answer: Set up an iterative formula by making x the subject of the equation $x^{2}-3 x-6=0$.
$x^{2}=3 x+6$
$x= \pm \sqrt{3 x+6}$
$x=+\sqrt{3 x+6}$
Start with $x_{0}=4$. At this stage type in 4 ad press $=$ on your calculator. To find x_{1} type in $\sqrt{3 \text { Ans }+6}$. This will give $x_{1}=4.242640$..
To find the next value x_{2}, press = again. This gives $x_{2}=4.327576 .$. , press $=$ again for x_{3} which
gives $x_{3}=4.356917$..repeat to get
$x_{5}=4.37047$..for x_{4} giving $x_{4}=4.367007$..,
$x_{5}=4.37047 . ., x_{6}=4.3716604 . . x_{7}=4.372068 .$.
$x_{8}=4.372208 \ldots$ At this stage both x_{7} and x_{8} round to
4.372. This means the iterative formula is converging to 4.372 to 3 decimal places.

The gradient of a line is how steep the line is. The greater the number (+ or -) , the steeper the line. To find the gradient of a line divide the total distance up or down by the total distance left or right. Up is + and down is -. Right is + and left is -. You may be able count squares and divide as shown to the right. The gradient can be positive (sloping upwards left to right) or negative (sloping downwards from left to right). Without a graph you could use the formula.
$m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}$ The gradient (m) of the line passing through $(1,2)$ and $(11,6)$ would be $m=\frac{6-2}{11-1}=\frac{4}{10}=\frac{2}{5}$. This goes up 2 units for every 5 to the right.

Find the equation of a straight line given a point and a gradient.

Finding the equation of a straight line given two points

Parallel and
Perpendicular Lines

A straight line can be written in the form $y=m x+c$ where m is the gradient and c is the point where the line crosses the y axis (c is known as the constant). To find the equation of a straight line given a point the line passes through and the gradient of the line you simply substitute the values of x, y and m into the equation $y=m x+c$. To find the value of c. Once you have the value of c simply put the equation 'back together' in the form $y=m x+c$. You may need to do this from a graph. Just find the gradient of the line and a point it passes through. If you have two points (or two sets of coordinates) then you can find the equation of the straight line passing through them. To find the equation of a straight line all you only ever need is the gradient and one point the line passes through (as shown in the example above). To find the gradient use the method shown above taking the two points you have for x_{1}, y_{1} and x_{2}, y_{2}. In the example to the right $x_{1}=6$ and $y_{1}=11 . x_{2}=2$ and $y_{2}=3$.
Once you have the gradient, pick one of the points you have (you can choose either) and simply substitute into $y=m x+c$ as shown in the previous section.

If two lines are parallel they will both have the same gradient. The two lines will never meet and stay a fixed distance apart. The value of m (the gradient) will be the same for both lines.
If two lines are perpendicular they will be at right angles to one another. The product (\times) of their gradients will always $=-1$ (or, if you like, the gradient of one line $\left(m_{1}\right)$ is the negative reciprocal of the gradient of the other line $\left(m_{2}\right)$). This could be written as $m_{1} \times m_{2}=-1$ ifs the lines are perpendicular OR if a line has gradient m, the line perpendicular to it will have gradient $-\frac{1}{m}$. Once you have found the gradient of the line parallel or perpendicular to the original line,

Example: Find the equation of the line with gradient 4 passing through the point $(2,7)$.
Answer: In this example $m=4$ and you need to find the value of c. Simply substitute the given values in to solve for c.
$y=m x+c$ which gives $7=2(4)+c$. This gives $c=-1$.
The equation of the line is therefore $y=4 x-1$
Example: Find the equation of the line passing through the points $(6,11)$ and $(2,3)$.
Answer: First find the gradient: $m=\frac{11-3}{6-2}=\frac{8}{4}=2$.
At this stage pick either one of the points the line goes through and substitute into $y=m x+c$ to give:
$11=2(3)+c$. You can see $c=5$ giving us the equation $y=2 x+5$.
Example 1: Find the equation of a line parallel to the line $y=3 x+2$ which passes through the point $(1,9)$.
Answer: The gradient will be the same giving $m=3$. Now substitute into $y=m x+c$ to give $9=3(1)+c$.
This means $c=6 \&$ the equation of the line $y=3 x+6$.
Example 2: Find the equation of a line perpendicular to the line $y=3 x+2$ which passes through the point $(6,5)$.
Answer: The gradient will be $\frac{-1}{3}$.

	simply substitute the values of x, y and m into the equation of a straight line $y=m x+c$ to find its equation. (This method is shown previously) Not all equations will be in the form $y=m x+c$. For example, the line $y=2 x+3$ is parallel to the line $4 y-8 x-9=0$. Their gradients are the same.								Now substitute int This means $c=7$	$+c$ to give $5=\frac{-1}{3}(6)+c$ ation of the line $y=\frac{-1}{3}+7$
Graph Recognition	Linear: A straight line graph which can be written in the form $y=m x+c$ Quadratic: A parabola which is a sweeping curve in the form $y=a x^{2}+b x+c$ Cubic: A sweeping curve in the form $y=a x^{3}+b x^{2}+c x+d$ Reciprocal: A curve in the form $y=\frac{a}{x}$.								 $y=x$	
Quadratic Graphs (Plotting from a Table)	This will be a parabola which is a sweeping curve \& NOT a collection of lines. Simply Fill out the table (same as linear graphs). Be careful with negatives. Squaring a negative makes it positive! Subtracting a negative will mean adding!$y=x^{2}-3 x+1$									
Sketching Quadratic Graphs from an equation (Maximum, Minimum \& Turning Points)	You may be asked to plotting one from a A quadratic equation called a parabola and The graph will cross In the Factored Fo You can get the shap In Completed Squa You can get the shap You can also find th symmetry (More information	ketc e of an be a C x a tic ave			gra is f er 0 an	$\begin{gathered} \hline \mathrm{ph} \mathrm{f} \\ \mathrm{mo} \\ \mathrm{rmm} \\ \mathrm{ma} \\ \mathrm{~m} \mathrm{cr} \\ \mathbf{N e} \\ \mathrm{Ne} \\ \hline \end{gathered}$	$\begin{aligned} & \text { seq } \\ & \text { aple } \\ & 2+b \\ & \text { in t } \\ & \text { e } y \\ & \text { Qu } \\ & \text { aph } \end{aligned}$	uation instead of skill. $x+c$. The graph is urning point. xis when $x=0$. adratic Graphs will have a maximum y y intercept easily. he y intercept easily. the axis of sections)	Example 1: Sketch any points of inters Answer: Factor to Example 2: Sketch the coordinates of the axis of symmetry and Answer: In comple	h of $y=x^{2}-x-6$ showing ith the coordinate axis. $(x-3)(x+2)$. Roots: $x=3, x=-2$ y intercept: $(0,-6)$ h of $y=x^{2}-6 x+2$ stating g point, the equation of the ots of the equation. are form $y=(x-3)^{2}-7$. Minimum point: $(3,-7)$ Axis of symmetry: $x=3$ Roots: $x=3 \pm \sqrt{7}$ y intercept: $(0,2)$

Cubic equations can be written in the form $y=a x^{3}+b x^{2}+c x+d$. Their graphs will produce a sweeping curve that passes through the x axis up to 3 times. The diagrams below show the difference between a positive \& negative graph.

Positive Cubic Graphs +

If $a>0$ the graph will enter in the bottom left ($3^{\text {rd }}$ quadrant) and leave in the top right region ($1^{\text {st }}$ quadrant)

Negative Cubic Graphs -

If $a<0$ the graph will enter in the top left ($2{ }^{\text {nd }}$ quadrant) and leave in the bottom right region (4 ${ }^{\text {th }}$ quadrant)

Cubic graphs are easier to draw when factored in the form:
$y=(x-p)(x-r)(x-q)$. Here p, q and r are just numbers!
The graph will cross the x axis when $y=0$ and cross the y axis when $x=0$.
If you take the equation $y=(x-3)(x+2)(x-1)$ you can sketch the graph using the information given. This example is positive cubic (if you expand the brackets the first term will be x^{3} rather than $-x^{3}$). The shape of this graph can be seen in the table above (+ example). Now consider where it crosses the x axis. This is when $y=0$. This gives $0=(x-3)(x+2)(x-1)$. Solving for each factor (like you would a quadratic equation) gives $x=-2, x=1$ and $x=3$. From here you can now plot the points $(-2,0),(1,0)$ and $(3,0)$. The graph will cross the y axis when $x=0$. Substituting in this gives
$y=(0-3)(0+2)(0-1)$ which in turn gives $y=(-3)(2)(-1)$ or $y=6$. You can now plot the point $(0,6)$. Finally draw the sketch as shown below.

Some cubic equations have repeated roots. An example is $y=(x-3)(x+5)^{2}$. The graph will touch the x axis at $(-5,0)$ and pass through at $(3,0)$

Example 1: Sketch the graph of

$y=(x-5)(x-2)(x+1)$ showing any points of intersection with the coordinate axes.
Answer: The cubic is positive.
When $y=0 x=-1, x=2$ and $x=5$. From here you can now plot the points $(-1,0),(2,0)$ and $(5,0)$.
When $x=0, y=(0-5)(0-2)(0+1)$ which gives $y=10$.
You can now plot the point $(0,10)$.
Finally sketch (not plot!) the curve.

Example 2: Sketch the graph of
$y=(3-x)(x-1)(x-4)$ showing any points of intersection with the coordinate axes.
Answer: The equation of cubic is negative.
When $y=0 \quad x=3, x=1$ and $x=4$. From here you can now plot the points $(3,0),(1,0)$ and $(4,0)$.
When $x=0, y=(3-0)(0-1)(0-4)$ which gives $y=12$.
You can now plot the point $(0,12)$.
Finally sketch (not plot!) the curve.

Asymptotes	An asymptote will appear as a straight line on a graph. This broken line denotes the value(s) that the graph can never take. The asymptotes may be horizontal or vertical and the curve will approach this line but never meet or cross it. If you look at the graph $y=\frac{1}{x}$ for positive values of x, the lines $x=0$ (the y axis) and $y=0$ (the x axis) are asymptotes. As the value of x gets very large the graph will tend to 0 but never actually be zero. 1 divided by a large number is very small but will never 'disappear' As the value of x gets very small (tends to 0), the value of y becomes very large \& eventually is undefined. $\frac{1}{0}$ is undefined. $1 / 1=1,1 / 0.1=10,1 / 0.01=100$ etc	Example: Draw the asymptotes on the graph of $y=\frac{1}{x}$ shown below. Answer: The broken lines show the lines $x=0 \& y=0$
Inequalities	$x>2$ " x is greater than 2 " This just means the number must be bigger than 2 $x<3 \quad$ " x is less than 3 " This just means the number must be smaller than 3 $x \geq 1$ " x is 1 or greater" This means the number can be equal to 1 or bigger $x \leq 6 \quad$ " x is 6 or less" This means the number can be equal to 6 or smaller $-3<x \leq 2$ " x is greater than -3 yet in turn equal to or less than 2" $(-2,-1,0,1,2)$	(a) State 3 integers that satisfy $x>4$ You could have (for example) 5, 9 \& 73. (it can't be 4) (b) State 3 numbers that satisfy $x \leq 3 . \quad 3,2.4,-1.7$ etc (c) State 3 integers that satisfy $-2<x \leq 4$ You could have (for example) $-1,3$ \& 4. (it can't be -2)
Set Notation for Solution Sets (Inequalities)	You can use set notation to represent inequalities as shown below. You could represent $-3<x \leq 2$ as $\{x:-3<x \leq 2\}$ You could represent $x<-5$ or $x>5$ as $\{x: x<-5\} \cup\{x: x>5\}$	$\}=$ The set of values $x=$ For $x:=$ such that $\cup=$ The union (and/or or both)
Solving Linear Inequalities	Use the same technique as you would for linear equations. Be careful! If \times or \div the inequality by a negative number the inequality sign changes direction.	E: Solve $2 x-1>7$. A: Add 1 to each side $2 x>8$. Divide by sides by 2 to give the final answer $x>4$
Shading Regions (Linear Inequalities)	Shading inequalities allows us to find a 'region' (or set of points) that satisfy one or more linear inequalities (or constraints) given. An example might be to shade the region that satisfies both $x>5$ and $y>4$. All you need to do is draw the line of each equation given as decide which side of the line to shade. If a strict inequality is used (for example $x>2$) then you must draw a broken line. For examples such as $x \leq 6$ where 6 is included you must draw a solid line. Generally you will shade the region you want as the shaded area \& label it ' R ' You can use the method shown to the right and shade at the end. If you find it easier you can shade as you go. Different colours may help! The tricky thing is to shade the right region. For example, if you wanted to use the question to the right and you didn't know whether to shade above or below the line $y=2 x$ you could test the point $(0,3)$ for example. Is 3 greater than 2 lots of 0 ?, yes it is. That means $(0,3)$ satisfies the inequality. This point is above the line so you would shade that area. When it comes to horizontal line ($y=1 \mathrm{etc}$)	Shade the region that satisfies $y>2 x, x>1$ and $y \leq 3$. Once you have done this decide where to shade. The shading will be to the right of the line $x=1$, below the line $y=3$ and above the line $y=2 x$. If you are unsure

Page 18

	shading above the line is greater than and below the line is less than. For vertical lines ($x=2 \mathrm{etc}$) the area to the right is greater than and the area to the left is less than. When you have finished the part of the question on shading you may be asked to state/find all or some of the integer points that satisfy the inequalities. All you have to do is pick integer coordinates either inside the shaded region or on the solid lines enclosing it. Do not include the coordinates on any broken lines. Do not leave these questions out just because you don't understand the equations of the straight lines! Draw a table of values, plot the points and draw a straight line through them. The technique is shown in the section on drawing straight line graphs.	just test a point to check that it satisfies all 3 inequalities. This will give the final region shown below.
Quadratic Inequalities	A quadratic inequality could be written in the form $a x^{2}+b x+c \geq 0$. In order to find the set of points (or region) that satisfy the inequality you can factor the quadratic expression to find the critical values. The method of factoring used is the same as shown previously. Once you have factored the expression you will have the critical values. At this stage draw a little sketch of a parabola with the critical values and shade the required regions. If the expression is $>/ \geq 0$ shade above the x axis (that's the line $y=0$). If the expression is $</ \leq 0$ then shade below the x axis. Be careful with the final notation used for inequalities Here are some examples below and a worked solution to the right: (a) (b)	Example: Solve the inequality $x^{2}-x-12<0$ Answer: Factor the quadratic to give $(x+3)(x-4)<0$ This gives us the critical values of $x=-3$ and $x=4$ Draw a sketch with these values: The required region is below the x axis \therefore The final answer is $-3<x<4$. (3 \& 4 are excluded)
Graph Transformations (Translations)	If the graph of a function is translated it is simply moved. The graph doesn't change shape, 'size' or orientation (which was around it is). If you start with the graph of $y=\mathrm{f}(x)$ you can translate horizontally (left and right or in the x direction) or vertically (up and down or in the y direction). Horizontal Translations: $y=\mathrm{f}(x-a)$ moves a units to the left. In vector form this would be a translation of $\binom{a}{0}$. So, $\mathrm{f}(x-3)$ moves right by 3 and $\mathrm{f}(x+1)$ moves right by 1 .	Example: The graph below shows part of the curve $y=\mathrm{f}(x)$ Sketch the graphs of: (a) $y=\mathrm{f}(x-1)$ (b) $\mathrm{f}(x)+2$ (c) $y=\mathrm{f}(x+3)+1$ Answer: (next page)

Fibonacci Like Sequence	The original Fibonacci Sequence is: $0,1,1,2,3,5,8,13,21,34,55 \ldots$ It starts with 0 and forms terms by adding the two numbers before it.	Example: Find the next 3 terms: 4, 10, 14.... Answer: 24, 38, 62 (Just add the previous two terms)
Algebraic Fractions (Simplifying)	Look for the highest common factor of numbers and algebraic terms. The rules of indices and factoring expressions will help you simplify algebraic fractions.	Example: $\frac{x^{2}+x-6}{2 x-4}=\frac{(x+3)(x-2)}{2(x-2)}=\frac{(x+3)}{2}$
Algebraic Fractions (Multiplying)	The main thing to remember is to cancel as many common factors as you can. The question you get may or may not require some factoring. Any easier example could be "Simplify fully $\frac{8 x^{4}}{y^{3}} \times \frac{x^{2} y^{5}}{4}$ ". Let's start with the 8 divided by 4 . This will cancel to give $\frac{2 x^{4}}{y^{3}} \times \frac{x^{2} y^{5}}{1}$. Now you can combine the powers of x and write the single fraction $\frac{2 x^{6} y^{5}}{y^{3}}$. Lastly, simply have to cancel the terms in y to give a final answer of $2 x^{6} y^{2}$. A harder example may need factoring such as $\frac{x^{2}-x-6}{4 x+8} \times \frac{x+5}{x^{2}-9}$. You need to factor as much as you can to give: $\frac{(x-3)(x+2)}{4(x+2)} \times \frac{(x+5)}{(x+3)(x-3)}$. Now you can cancel the common factors of $(x+2) \&(x-3)$ to give $\frac{1}{4} \times \frac{(x+5)}{(x+3)}$. This can be tidied, giving a final answer of $\frac{(x+5)}{4(x+3)}$ in its simplest form.	Example 1: Simplify fully $\frac{3 p^{7}}{q^{3} r} \times \frac{4 r^{2}}{15 p q}$ Answer: $\frac{4 p^{6} r}{5 q^{4}}$ Example 2: Simplify fully $\frac{x^{2}+2 x-8}{2 x-6} \times \frac{x^{2}+x-12}{5 x-10}$ Answer: Factor first: $\frac{(x+4)(x-2)}{2(x-3)} \times \frac{(x+4)(x-3)}{5(x-2)}$ Now cancel common factors: $\frac{(x+4)}{2} \times \frac{(x+4)}{5}$ Finally, simplify to give $\frac{(x+4)^{2}}{10}$. Example 3: Simplify fully $\frac{2 x^{2}-11 x+12}{x^{2}-25} \times \frac{(x+5)^{2}}{2 x-8}$ Answer: Factor $\frac{(2 x-3)(x-4)}{(x+5)(x-5)} \times \frac{(x+5)(x+5)}{2(x-4)}$ Cancel common factors and simplify $\frac{(2 x-3)(x+5)}{2(x-5)}$ Try and leave the final answer factored where you can.
Algebraic Fractions (Dividing)	The technique is similar to multiplying. To start with though you must invert the second fraction and multiply. At this stage you can start cancelling down! The example $\frac{6 p^{5}}{q^{2} r} \div \frac{3 r^{4}}{p^{3} q^{5}}$ could be written as $\frac{6 p^{5}}{q^{2} r} \times \frac{p^{3} q^{5}}{3 r^{4}}$. At this stage you would use the techniques shown above in multiplying algebraic fractions. This would give a final answer of $2 p^{8} q^{3} r^{5}$ in its simplest form. With any algebraic fraction, look out for the difference of two squares or expressions that can be factored. An example could be $25 x^{2}-9 \equiv(5 x+3)(5 x-3)$. This may allow you to cancel a factor that was not originally obvious. Factoring can also help reveal common factors. An example could be $10 x-15 \equiv 5(2 x-3)$. If you have the factor $(2 x-3)$ somewhere else in the fraction you could look to simplify.	Example: "Simplify fully $\frac{4 p}{5 q^{2}} \div \frac{2 p^{2} r}{15 q^{3}}$ " Answer: $\frac{4 p}{5 q^{2}} \times \frac{15 q^{3}}{2 p^{2} r}=\frac{2}{1} \times \frac{3 q}{p r}=\frac{6 q}{p r}$ Example 2: "Simplify fully $\frac{(p-1)}{q^{2}-q-6} \div \frac{p^{2}-1}{2 q-6}$ " Answer: $\frac{2}{(p+1)(q+2)}$ (Look out for the difference of 2 squares as above)

Like with normal fractions you must have a common denominator This is simply the LCM of the expressions or terms in the denominators of each of the fractions. Let's look at an example: "Simplify $\frac{2 x}{y^{3}}-\frac{5 y}{3 z}$ ". The common
denominator here would be the product of the dominators which can be written as $3 y^{3} z$. At this stage you set up a single fraction and multiply $2 x$ by $3 z$ and
$5 y$ by y^{3}. This will give $\frac{(2 x)(3 z)-(5 y)\left(y^{3}\right)}{3 y^{3} z}$ which will simplify to $\frac{6 x z-5 y^{4}}{3 y^{3} z}$. Another example could be: "Simplify $\frac{2}{(x-1)}+\frac{7}{(x+4)}$ ". The common denominator will be $(x-1)(x+4)$. You can now form a single fraction starting with a single fraction $\frac{}{(x-1)(x+4)}$. At this stage you need to multiply the 2 by $(x+4)$ and the 7 by $(x-1)$. This will give $\frac{2(x+4)+7(x-1)}{(x-1)(x+4)}$. Now expand the brackets and simplify: $\frac{2 x+8+7 x-7}{(x-1)(x+4)}$. This will simplify to $\frac{9 x-1}{(x-1)(x+4)}$.
The common denominator of x and x^{2} is x^{2}. Try it with $x=3$. You have $3 \& 9$.
A proof is an argument to justify a mathematical statement. When writing a proof you must show that the statement holds true for all cases not just select certain values and conclude it must be true for all values. The way to do this is to write out and manipulate algebraic expressions and identities to form your proof. Let's start with some basic expressions for numbers

n	$2 n$	$2 n+1$ or $2 n-1$	$2 n+2$	$2 n+3$
an integer	an even integer	an odd integer	the next even integer after $2 n$	the next odd integer after $2 n+1$

Using expressions like those above to set up the expression. Expanding brackets, simplifying and refactoring is usually used to show the proof. You must include a concluding statement to end the proof. Examples are shown to the right. Simply showing isolated cases hold true by using numbers does not prove a statement is true for all values. You will not be awarded marks for doing this. The only time you can substitute numbers in is to show that a proof is not true with a counter example. You may be asked to do this.

Example 1: "Simplify fully $\frac{4 p}{5 q^{2}}+\frac{2 r}{3}$ "
Answer: $\frac{4 p(3)+2 r\left(5 q^{2}\right)}{15 q^{2}}=\frac{12 p+10 q^{2} r}{15 q^{2}}$
Example 2: "Simplify fully $\frac{5}{(x-2)}-\frac{4}{(x-3)}$ "
Answer: $\frac{5(x-3)-4(x-2)}{(x-2)(x-3)}=\frac{x-7}{(x-2)(x-3)}$
Example 3: "Simplify fully $\frac{p}{p^{2}-9}+\frac{p-4}{p-3}$ "
Answer: $\frac{p}{(p+3)(p-3)}+\frac{p-4}{(p-3)}=\frac{p+(p+3)(p-4)}{(p+3)(p-3)}$
which gives $\frac{p^{2}-12}{p^{2}-9}$ in simplified form.
With Example 3 the difference of 2 squares was used to factor the denominator.
Exam 1: Show that the difference between the squares of 2 consecutive odd integers is always a multiple of 8 . Answer: Let the first of the 2 numbers be $2 n-1 \&$ the second $2 n+1$. Square each to give $(2 n+1)^{2} \&(2 n-1)^{2}$. Difference means subtract $\therefore(2 n+1)^{2}-(2 n-1)^{2}$. Expand brackets to give $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$. Simplify to $8 n$ by cancelling the terms. Conclude with the statement " $8 n$ is a multiple of $8 \therefore$ true for all consecutive odd integers."
Example 2: Show that product of any two odd numbers is always odd.
Answer: Let the first number be $2 n-1$ and the second $2 n+1$. Multiplying: $(2 n-1)(2 n+1)=4 n^{2}-1$ $4 n^{2}$ is always even as it's a multiple of $4 \therefore 4 n^{2}-1$ is odd for all values of n.

Functions	A
	(Evaluating)
	In
	$\mathrm{f}(x)$
	s
	m
	Y
	ex
	y

Functions

(Composite)

A function is just a rule that maps one number to another. A function will have an input (such as x) and an output (such as y). An example could be $y=2 x$. Instead of writing $y=2 x$ you could use function notation and write $\mathrm{f}(x)=2 x$. $\mathrm{f}(x)$ just means " y is a function of x ". You can evaluate functions by substituting numbers in. If $\mathrm{f}(x)=2 x$ you can say $\mathrm{f}(5)=2(5)$ which of course means $f(5)=10$. Evaluate simply tells you to swap x for the number(s) given. You can work backwards and find an input for functions given an output. An example using $\mathrm{f}(x)=2 x$ could be: Find the value of a such that $\mathrm{f}(a)=14$. All you need to do is substitute $x=a$ in and solve: $2 a=14$ which of course gives $a=7$.
A composite function simply requires you to substitute one function into another. If you have two functions, for example, $\mathrm{f}(x)=x^{2}-1$ and $\mathrm{g}(x)=3 x$ you can form the composite functions $\operatorname{fg}(x)$ or $\operatorname{gf}(x)$. (You could have $\mathrm{ff}(x)$ if you liked). $\mathrm{fg}(x)$ means "dog first and then f " whereas $\mathrm{gf}(x)$ means "dof first and theng ". An example could be: Find (a) fg(2) and (b) gf(2). Answer: (a) Start with $g(2)$. Using the function, $g(2)=6$. Now do $f(6)$. This will give $f(6)=35$. For part (b) start with $f(2)$. This gives $f(2)=3$. Now $\operatorname{dog}(3)=9$.
Functions (Inverse) \quad The inverse function $\mathrm{f}^{-1}(x)$ undoes the effect of the original function $\mathrm{f}(x)$. To find the inverse function of a function, write the equation out as $y=\mathrm{f}(x)$ swap the x 's and y 's over in the original function and then set about making y the subject by rearranging.
An example could be $\mathrm{f}(x)=\sqrt{1+x^{3}}$.
Write $y=\sqrt{1+x^{3}}$, now swap to give $x=\sqrt{1+y^{3}}$. Now rearrange to give $y=\sqrt[3]{x^{2}-1}$. At this stage you need to write $\mathrm{f}^{-1}(x)=\sqrt[3]{x^{2}-1}$.
It's important you give your final answer in the form $\mathrm{f}^{-1}(x)$

Example 1: $\mathrm{f}(x)=3 x-1$.
Find (or evaluate) (a) $f(5)$, (b) $f(-1)$ and (c) $f(p)$.
Answer: (a) 14, (b) -4 and (c) $3 p-1$
Example 1: $\mathrm{g}(x)=1-4 x$. Given that $\mathrm{g}(t)=15$, find the value of t.
Answer: Don't worry about it being $g(x)$! Simply substitute in to give $15=1-4 t$. Solving for $t, 4 t=-14$ and $t=-\frac{7}{2}$

Example 1: Using the functions $\mathrm{f}(x)=1-x$ and

$$
\mathrm{g}(x)=x^{2} \text { find: (a) } \operatorname{gf}(5) \text { (b) } \mathrm{fg}(1) \text { (c) } \mathrm{ff}(p)
$$

Answer: (a) $\mathrm{gf}(5)$ (b) $\mathrm{fg}(1)=0$ (c) $\mathrm{ff}(p)=(1-p)^{2}$
Example 2: $\mathrm{f}(x)=x+2, \mathrm{~g}(x)=\frac{1}{x}$ and $\mathrm{h}(x)=x^{3}$.
Find fhg(0.5)
Answer: fhg $(0.5)=10$
Example: $\mathrm{f}(x)=(1-2 x)^{5}$ Find the inverse $\mathrm{f}^{-1}(x)$.
Answer: Let $y=(1-2 x)^{5}$. Now swap the x 's and y 's over to give $x=(1-2 y)^{5}$. Rearrange to give $y=\frac{1-\sqrt[5]{x}}{2}$. The final answer will be $\mathrm{f}^{-1}(x)=\frac{1-\sqrt[5]{x}}{2}$

A function can only have an inverse if it's 1-2-1 for the set of values you are considering. You will study this later on.

Using a Calculator

$\underline{\text { Using a Casio }}$	Using a calculator effectively can really help in exams. Some basic tips: Calculator Make sure you are in Degrees and Math mode. The letter D will be at the top of the screen (Shift mode 3 gets you there) and the word Math. Find the $S \Leftrightarrow D$ button to convert from a fraction to a decimal. Shift followed by $\times 10^{x}=\pi$. Hit $_{\circ}$, , \& it will convert the answer into hours, minutes \& seconds

> D and Math are circled to the right!

Page 25

Statistics

Scatter Graphs and Correlation (and Line of Best Fit)	Scatter graphs plot data in pairs (bivariate). This might be the temperature and ice cream sales or the age of a car and the value of the car. Positive Correlation: As one value increases, the other increases. Negative Correlation: As one value increases the other decreases. No Correlation: There is no linear relationship between the two. If you are asked to find estimates from a scatter graph you must draw a line of best fit and read up and across from it.				
Line of Best Fit \bar{x},	The line of best fit passes through \bar{x}, \bar{y} where $\bar{x}=$ mean of $x \& \bar{y}=$ mean of y	Find \bar{x}, \bar{y} and draw the line of best fit through this point.			
Outliers	Points on the scatter graph that don't follow the pattern of the other points..	An example is shown on the second graph above			
Interpolation and Extrapolation	Interpolation is using the line of best fit to estimates values within the data set. Extrapolation is using the line of best fit to estimates values outside the data set. You must be careful when extrapolating as the estimate may not be accurate The points will either be wrongly collected or anomalies. The diagram to the right shows an example of a region where you could interpolate \& extrapolate.				
Pictograms	Pictograms are a convenient visual way of representing data. They are similar to bar charts. Make sure you have a key (as shown to the right). You can use half a picture but don't try and do $1 / 4 \mathrm{~s}$ of thirds! Some questions will require you to work backwards and find missing values instead of drawing them. Use the key to help you with this.	Example: The pictogram below shows 10 black 12 red, 2 green $\& 16$ others for the colours of car surveyed			
Standard and Back to Back Stem and Leaf Diagrams		Example: Use the back to back stem and leaf diagram to the left to find the median score and range for the boys. Answer: Median $=13$ and Range $=34-2=32$. Tip! Always remember your key and note how the key differs on either side of the back to back example.			
Two Way	Two way tables allow us to model situations where there are two variables involved. In the example to the right there is gender and whether the person is left or right handed. Just fill out the information step by step using the values given either in the table or the question and make sure all of the totals add up for each row and column! Often one value is given in the question. Check this as you may think you are missing some information. You may be asked to work out some questions on probability or fractions from the table. Make sure you read the question correctly! A question might be "One person is chosen at random. What is the probability that the person is left handed girl?" You would simply find the number of left handed girls (which is 6) and divide that by the total (which is 100). The probability would be $6 / 100$ or you could simplify the fraction to give $3 / 50$. Another could be "What fraction of the boys are RH?" answer 48/58 or 24/29	Question: Complete the 2 way table below.			
			Left Handed	Right Handed	Total
		Boys	10		58
		Girls			
		Answer: Step 1, fill out the easy parts (the totals)			
		Boys	10	48	58
		Girls			42
		Step 2, fill out the remaining parts			
		Boys	10	48	58
		Girls	6	36	42
		Total	16	84	
		Now check each row and column adds up correctly!			

Page 27

Cumulative Frequency Graph	Using a completed cumulative frequency table (as shown previously) allows you to draw a cumulative frequency curve. The points are plotted at the end of the class interval (upper class boundary) and a sweeping curve is drawn through the points as show to the right. The class interval is drawn on the horizontal axis and the cumulative frequency on the vertical axis. Make sure you label each axis correctly.	
Lower Quartile (Q1), Median (Q2), Upper Quartile (Q3) and IQR (See previous and next video)	Lower Quartile (Q1): 25\% of the values in the data set are less than the value of the LQ. To find an estimated value \div the data set (44 here) by 4 and read across and down on the graph as shown to the right. (In the case shown it will be from the $11^{\text {th }}$ value). The LQ is not 11 . It's $\sim 18-19$ in the case to the right! Median (Q2): 50% of the values in the data set are less than the value of the median. To an estimated value \div the data set (44 here) by 2 and read across and down on the graph as shown to the right. (In the case shown it will be from the $22^{\text {nd }}$ value). The median is not 22 . It's about 30 in the case to the right! Upper Quartile (Q3): 75\% of the values in the data set are less than the value of the UQ. To find an estimated value \div the data set by 4 and $\times 3$ and read across and down on the graph as shown to the right. (In the case shown it will be from the $33^{\text {rd }}$ value). The UQ is not 33 . It's about 38 in the case shown! Interquartile Range IQR: represents the 'middle 50% of the data set. The IQR is found by calculating the Upper Quartile - Lower Quartile (Q3-Q1). In the case shown an estimated will be $37-18=19$. This shows that 50% of the items in the data set were within a range of 19 units.	 A box plot could be drawn off the bottom of this CF curve using the lines from the LQ, M and UQ but you will need the lowest and highest values too.
Drawing Box Plots	A box plot is a convenient, visual way of representing the 5 main summary statistics. The lowest value, the lower quartile, the median, the upper quartile and the highest value are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency curve if you are also given a maximum and minimum value either in the question or you can work it out. The first vertical line is the lowest value, the $2^{\text {nd }}$ the LQ, the $3^{\text {rd }}$ is the median, the $4^{\text {th }}$ is the UQ and the final vertical line is the highest value in the data set. The 'box' represents the middle 50% of the data. The range can be found by calculating the higher value - lowest value. The Range and IQR are measures of spread and the median is an average.	Example: The students in class X1 sat maths test. The test was out of 25 . The highest score was 19 , the lowest score was 8 , the median score was 14 , the lower quartile was 10 and the upper quartile was 17. Draw a box plot to represent the information. Answer:
$\begin{aligned} & \text { Comparing Box } \\ & \text { Plots } \end{aligned}$	Box plots allow the reader to way of compare data sets. When two or more box plots are drawn on the same scale or set of axis they can be compared and commented on.	Example: The students in class Y1 also sat the maths test. Compare the results of the two classes using the box plots below.

	The two areas to focus when comparing box plots are: (1) The average using the median. (2) The spread of the data using the IQR (and range to a lesser extent). The higher the median value the higher the average is. The lower the median the lower the average is. The smaller the IQR the more consistent the observations are, the wider the IQR the less consistent they are. Small box = consistent, Large box = less consistent. When comparing box plots you must compare them in context. You cannot simply say "The median is higher" you need to use this in context. Talk about scores, heights, minutes etc.	Answer: You context. Focus higher Media average the st test than in Y mark". For th the spread of "The students terms of their You could als lowest scores, the median and	eed to give on the media han Y1. A dents in X1 as their med second comp ta using the Y1 were m core as the IQ make refere he range, 25 IQR are the	ast two ement cou e more score son you R. A st consis was 4 to the and 75\% ain choic	mparisons in h. X1 have a be "On cessful in the higher by 1 ould look at ent could be than X 1 in est and the data but
Drawing Histograms	Histograms look similar to bar charts. The 3 main differences between them are (1) The area of the bar is proportional to the frequency of that class. (2) The grouped continuous data is in classes of unequal widths. (3) Histograms show frequency density and not frequency on the vertical axis. To draw a histogram You need the frequency density. Frequency Density is calculated by dividing the frequency by the class width (size or interval). You can say $F D=\frac{F}{C W}$. (The classes (height) below have widths of 10,20,15 and 25) Histograms are drawn from continuous grouped data like the following table. In the example to the right, we will draw a histogram for the data above. When drawing the histogram, make sure frequency density (NOT FREQUENCY) goes on the vertical axis and the height (or any continuous measure) goes on the horizontal axis. Make sure you use a good scale for the histogram and draw them accurately. The bars must be proportional to the frequency.	Example: Draw a histogram using the previous table. Answer: You need to add two columns and find the frequency density.			
		Height	Frequency (F)	Class Width $(C W)$	Frequency Density (FD)
		$0<h \leq 10$	8	5	$8 \div 5=1.6$
		$10<h \leq 30$	6	20	$6 \div 20=0.3$
		$30<h \leq 45$	15	15	$15 \div 15=1$
		$45<h \leq 70$	5	25	$5 \div 25=0.2$
		 Frequency density always goes on the vertical axis and the classes on the horizontal axis.			

| $\underline{\text { Interpreting }}$Histograms | You may be asked to interpret a histogram instead of drawing one. You may be
 asked to find out information about the frequency or the class widths from a
 histogram that has been drawn.
 You can simply rearrange the formula given in the previous section to find
 either the frequency or the class width. |
| :--- | :--- | :--- |
| Frequency Density Frequency Class Width
 $F D=\frac{F}{C W}$ $F D \times C W=F$ $C W=\frac{F}{F D}$ | |$>.$

Remember, the area of the bar is proportional to the frequency of the interval. To find the frequency you will either:
(1) Count squares
(2) Multiply the frequency density by the class width.

Check that the scale factor is 1:1. With more challenging questions there may be a scale factor enlargement on the area of k.

Example: The histogram below shows information about the heights of a number of plants. Given that there were 4 plants less than 5 cm tall, find the number of plants that were more than 5 cm tall.

Answer: Here the FD $=0.8$ for the interval $0<h \leq 5$. Using $F D \times C W=F$ you get $0.8 \times 5=4$. This means there is no scale factor to deal with. To find the number of plants for $5<h \leq 15$ you calculate $1.2 \times 10=12$ and for $15<h \leq 30$ you calculate $2.4 \times 15=36$. This gives a total of $12+36=48$

Probability

Simple Probability (Theoretical)	The number of things you want to happen divided by the number of things that could happen. 1 head on a fair coin, 2 sides so the probability of head =1/2	Probability of rolling a 4 on a fair 6 sided die is $1 / 6$ There is one 4 and 6 different numbers.
Listing Outcomes Systematically and Sample Spaces	Listing outcomes systematically makes working with probability easier. You can often just use thee the first letter of each word. Think 'combinations' here. Sample spaces show all the possible outcomes of 2 events.	Example: Bob picks two items from Coke, Sweets, Burger and Ice Cream. List the possible combinations: Answer: CS, CB, CI, SB, SI, BI
Basic Notation	$P(A)$ just means 'the probability of A happening' $P\left(A^{\prime}\right)$ means 'the probability of A not happening'. This is called the compliment of A and it can be read as A dashed.	Example: There are 8 balls in a bag. 5 are Green and the rest are Red. Find: (a) $P($ Green) (b) $P(G r e e n '$) (c) $P($ Red $)$. Answer: (a) $5 / 8$ (b) $3 / 8$ (c) $3 / 8$
Mutually Exclusive Events and the OR Rule for Addition	If two events are mutually exclusive they cannot happen at the same time. For mutually exclusive events $P(A$ or $B)=P(A)+P(B)$ (The OR Rule). You just add the two probabilities. It looks confusing but it's easy! The probability of something not happening is "1 minus the probability of it happening" or more technically $P\left(A^{\prime}\right)=1-P(A)$ The probabilities of all possible outcomes in an event will always add to 1 .	Example: Bob either catches the bus or the train to work. The probability of him catching the bus is 0.4 . Find the probability that he doesn't catch the bus. Answer: 1-0.4 = 0.6 The probability of picking and card that is red and a spade from a pack of cards are mutually exclusive.
Relative Frequency and Expected Outcomes	This is how many times something happens \div by the number of trials that took place in the experiment. To find the number of expected outcomes just \times the probability by the number of trials. This is different to theoretical probability.	Example: The probability a football team wins a game is 0.2 . How many games would you expect them to win out of 40 ? Answer: $0.2 \times 40=8$, so about 8 games.

Frequency Trees	These show how many times two or more events happen. NOT a tree diagram!	Outcomes on branches, frequency at the end of branch!
Tree Diagrams for Probability (For video see Independent Events and Conditional Probability)	Use a tree diagram to help work out the probability of more than one event. All branches must sum to 1 when you add downwards $(0.2+0.8=1$ as shown in the example to the right). If you are modelling conditional probability check that your probabilities on the second branches reflect any changes. An example could be sweets in a bag. If you have 7 mints out of 10 in a bag of sweets on the first pick and you choose one then there will only be 6 mints left out of 9 sweets. The probabilities of independent events don't change	
Independent Events and Conditional Probability.	If two or more events are said to be independent, the outcome of a previous event doesn't influence the probability of the next. The question may tell you that the events are independent. Anything 'without replacement' is conditional.	Independent could be replacing a counter in a bag after picking it. Conditional would be where the counter wasn't replaced.
The AND and OR Rule in Probability (See previous videos for tutorial).	OR means you need to Add the probabilities and AND means Multiply them. Be careful with the wording. Two chocolates for example is chocolate AND chocolate. Two mints or Two Toffee means you would have to add once you have multiplied! Check to see if the problem is independent or conditional!	Using the Tree Diagram above:
$\underline{\text { Set Notation }}$	A represents the Set A and its elements. A set is just a collection of items A^{\prime} (A dashed) means the elements not in Set A (the compliment or NOT A) \in means 'is an element of a set'. (This is just a value in the set) \{ \} Shows the items (or numbers) in the set. ξ Universal Set (All values being considered (even if they are not in A or B)) $A \cup B$ (The Union) is A or B or both. $A \cap B$ (The Intersection) is both A and B $A \cap B \mid B$ is both A and B given it's already in B	Set A are the even numbers less than 10: $A=\{2,4,6,8\}$ Set B are the prime numbers less than 10: $B=\{2,3,5,7\}$ $4 \in A$ simply means 4 is in Set A $A \cup B=\{2,3,4,5,6,7,8\}$ These are in either or both! $A \cap B=\{2\}$ This is the single value in both sets!
Venn Diagrams (Shading) 2 and 3 circles.	You can use Venn diagrams to represent sets and to calculate probabilities. You may be asked to shade Venn Diagrams as shown below and to the right. 'A or B or Both The Intersection	
Venn Diagrams (Problem Solving)	\left.Finding the Outside Value Finding the Intersection Value (1) Put the 'neither' value outside $\right]$(1) Write the 'both' value in (2) Take the number of 'neither' from intersection (middle of Venn). the total number of items. (2) Find what's left over for the two 'only' parts and fill those in (3) Add the 2 'Coke' and 'Fanta' individually. values together. (3) What's left over goes on the (4) Subtract the added amount to get outside to give the 'neither' value. how many go in the 'both'	40 People Go to a Party. 50 People Go to a Party. 28 take Coke, 19 take 34 take Coke, 19 take Fanta \& 10 take both. Fanta \& 10 take neither How many take neither? How many take both? The answer is 3 The answer is 9

Page 32

Geometry and Measures

Area of Rectangle	The area is the space inside a shape. Multiply the two side lengths. Width \square Area $=$ Length \times Width Perimeter $=2($ Length + Width $)$	Example: Find the area of a rectangle with side lengths 3 cm and 5 cm . Answer: $A=3 \times 5$ which gives $15 \mathrm{~cm}^{2}$. Remember the units for area are always something 'squared'
Perimeter of a Rectangle	The perimeter is the distance around the outside. Add each side length! Some rectangles only show two lengths, make sure you are adding all four sides!	Example: Find the perimeter of the rectangle above. Answer: $P=3+3+5+5$ which gives 16 cm . Not $16 \mathrm{~cm}^{2}$
Area of Parallelogram	Treat these like a rectangle. Base \times Perpendicular Height. Not the slant height! It will be the same for a rhombus. A rhombus has 4 sides of equal length.	Example: Find the area of a parallelogram below. Answer: Area $=5 \times 3=15 \mathrm{~cm}^{2}$ (Again units are squared)
Area of a Triangle	Multiply the base by the height and half your answer. Please half the answer! OR $\text { Area }=\frac{\text { base } \times h e i g h t}{2}$ b	Example: Find the area of a triangle with a base of 5 cm and a height of 4 cm . Answer: Area $=\frac{4 \times 5}{2}$ which gives $10 \mathrm{~cm}^{2}$
$\frac{\text { Area of a Triangle }}{\left(\text { Using } \frac{1}{2} a b \sin (C)\right)}$	To find the area of a triangle where the base and perpendicular height is given you can use the method above. If it's not possible to do this use the formula below.	Example: Find the area of the triangle below: Answer: $a=7.8, b=9.6$ and $C=85^{\circ}$. Using the formula: Area $=\frac{1}{2}(7.8)(9.6) \sin \left(85^{\circ}\right)$ which gives Area $=44.8 u^{2}$ correct to 1 decimal place.
Area of a Kite	Use the same method as you do for a triangle. Height \times Width and half answer. The area is half that of a rectangle with the same dimensions.	Example: Find the area of the kite below. Answer: Area $=\frac{8 \times 3}{2}=12 \mathrm{~mm}^{2}$
$\underline{\text { Area of a Trapezium }}$	Add the two parallel sides, multiply it by the height and half your answer. If you can't remember this split it up into rectangles and triangles if you can.	Example: Find the area of the parallelogram below. Answer: + top \& bottom, \times by 4 and half it to give $16 u^{2}$

Page 33

Page 34

Surface Area of a Cuboid	The surface area is the area of the outside of a 3D shape. Find the area of each face and add them up. Check if it is open or closed top. If it's open it will only have 5 faces. Think about a dice. You can touch all six faces. The total surface area would just be 6 times the area of each face. Units is always 'squared'	Example: Find the surface area of the cuboid below. Answer: $\begin{aligned} & A=2(2 \times 5)+2(2 \times 7)+2(5 \times 7) \\ & A=118 \mathrm{~cm}^{2} \end{aligned}$
Sketching the Net of a Cuboid (and other 3D Shapes)	Just think what the box/cube/prism would look like if you unfolded it. Don't forget the lid if it has one. Dimensions must be accurate and have a label. The example shown to the right is a net of a $2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 3 \mathrm{~cm}$ closed cuboid. An open topped cube will have 5 faces, a closed top will have 6 . There are different possible ways of drawing nets. You don't need to draw any flaps!	
Volume of a Prism Surface Area of a Triangular Prism	This is the same as the cuboid when finding the volume. Area of the cross section \times length. Be very careful with triangular prisms. Make sure you half your answer when finding the area of the cross section. For cylinders you will need the area of a circle. If you are already given the area simply multiply that by the length. Answer will be in something cubed such as cm^{3}	Example 1: Find the volume of the prism below. Answer: The area of the cross section is $3 \mathrm{~cm}^{2}$ (Remember to half it!) The volume will just be $3 \times 4=12 \mathrm{~cm}^{3}$
Volume of a Cylinder Surface Area of a Cylinder	A cylinder is a prism. You would use the method shown above. The cross section is simply a circle. Find the area of that circle using $A=\pi r^{2}$ and multiply the answer by the height of the cylinder. The formula is $V=\pi r^{2} h$.	Example: Find the volume of the cylinder below: Answer: $V=\pi \times 2^{2} \times 5$ which can be written as $V=20 \pi u^{3}$ or $62.8 u^{3}$
Volume of a Cone	A cone is not a prism as it doesn't have a constant cross section. The formula used is $V=\frac{1}{3} \pi r^{2} h$. Just find the volume of a cylinder and divide by 3 . A cylinder is just $V=\pi r^{2} h$ which is the area of a circle \times the height. (A prism!)	Example: Find the volume of the cone below. Answer: $V=\frac{1}{3} \pi \times 6^{2} \times 8$ which gives $96 \pi m^{3}$ or $301.6 \mathrm{~m}^{3}$

Surface Area of a Cone	The curved surface of a cone is given as $A=\pi l r$ where r is the radius and l is the slant height. This doesn't include the area of the base. You may need to use Pythagoras to find the slant height if you are given the perpendicular height. If you have a solid cone and need the base too add the area of the end circle to your answer!	Example: Find the curved surface area of the cone below: Answer: $A=\pi \times 5 \times 3$ which gives $15 \pi m^{2}$ or $48.1 \mathrm{~m}^{2}$
Volume of a Pyramid	This is similar to the volume of a cone. Again a pyramid is not a prism as there is no constant cross section. Just find the area of the base, multiply by the height $\& \div$ by 3 or if you like: $V=\frac{1}{3} b h$. This works for triangular based too!	Example: Find the volume of the pyramid below. Answer: $V=\frac{1}{3} \times 6 \times 6 \times 7$ which gives $21 \pi \mathrm{~cm}^{3}$
Frustums	A frustum is either a cone or a pyramid with the top removed. To find the volume simply find the volume of the original large cone or pyramid and then take away the volume of the smaller cone/pyramid you removed from the top. (1) Check you have the radius and perpendicular height. If you have the slant height you will need Pythagoras Theorem or trigonometry. (2) You may need to use similar triangles to find a missing radius or height.	Example: Find the volume of the frustum below. Answer: $V=\frac{1}{3} \pi(10)^{2}(24)-\frac{1}{3} \pi(5)^{2}(12)=700 \pi \mathrm{~cm}^{3}$ (This is just the volume of the large cone - small cone) N.B You could also find the surface area if required!
Volume of a Sphere	A sphere is just a perfect ball! If the sphere has radius r the volume is given as $V=\frac{4}{3} \pi r^{3}$. Just substitute the values in. Your answer will be in units cubed. Look out for hemispheres. This is just half a sphere so half your answer.	Example 1: Find the volume of a sphere with diameter 10 cm . Answer: Radius $=5 \mathrm{~cm} . \therefore V=\frac{4}{3} \times \pi \times 5^{3}=\frac{500 \pi}{3} \mathrm{~cm}^{3}$ Example 2: Find the volume of a hemisphere with radius 4 mm . Answer: $V=\frac{2}{3} \times \pi \times 4^{3}=\frac{128 \pi}{3} \mathrm{~mm}^{3}$ (You could just find the sphere and half your answer)

Page 37

Metric Enlargements	$\begin{aligned} & m m \rightarrow c m \\ & m m \leftarrow c m \\ & c m \rightarrow m \\ & c m \leftarrow m \\ & m m \rightarrow m \\ & m m \leftarrow m \end{aligned}$	$\begin{aligned} & \hline \div 10 \\ & \times 10 \\ & \div 100 \\ & \times 100 \\ & \div 1000 \\ & \times 1000 \end{aligned}$	$\begin{aligned} & \mathrm{mm}^{2} \rightarrow \mathrm{~cm}^{2} \\ & \mathrm{~mm}^{2} \leftarrow \mathrm{~cm}^{2} \\ & \mathrm{~cm}^{2} \rightarrow m^{2} \\ & \mathrm{~cm}^{2} \leftarrow m^{2} \\ & \mathrm{~mm}^{2} \rightarrow m^{2} \\ & \mathrm{~mm}^{2} \leftarrow m^{2} \end{aligned}$	$\begin{aligned} & \div 10^{2}=100 \\ & \times 10^{2} \\ & \div 100^{2} \\ & \times 100^{2} \\ & \div 1000^{2} \\ & \times 1000^{2} \end{aligned}$	$\begin{aligned} & {m m^{3} \rightarrow c m^{3}}^{m^{3}} \leftarrow \mathrm{~cm}^{3} \\ & \mathrm{~cm}^{3} \rightarrow m^{3} \\ & \mathrm{~cm}^{3} \leftarrow m^{3} \\ & \mathrm{~mm}^{3} \rightarrow m^{3} \\ & \mathrm{~mm}^{3} \leftarrow m^{3} \end{aligned}$	$\begin{aligned} & \div 10^{3}=1000 \\ & \times 10^{3} \\ & \div 100^{3} \\ & \times 100^{3} \\ & \div 1000^{3} \\ & \times 1000^{3} \end{aligned}$	Example : Convert $300 \mathrm{~cm}^{3}$ into m^{3} Answer: $300 \div 100^{3}=0.0003 \mathrm{~m}^{3}$ If you are given the dimensions of a rectangle (for example) in cm and asked to find the area in m^{2} you may want to convert at the start rather than at the end. The answer will be the same.
Angle Types	Acute angles are less than 90°, Right angles are exactly 90°, (Often shown by a small square on no value) Obtuse angles are greater than 90° but less than 180° Reflex angles are greater than 180° and less than 360° If you are asked to draw a reflex angle it may be easier to draw and acute one and then mark the larger angle round the other side!						
Basic Angle Facts	The angles on a straight line add to 180°. (This may be written as 'sum to') The angles around a point add to 360°. Look out for right angles! These have a little square and often no numbers on! Some questions will need algebra to solve for an unknown angle. An example might be a line with and angle of $2 x$ and an angle of $3 x$. Just add them and solve: $2 x+3 x=180^{\circ}$ so $5 x=180^{\circ}$ and $x=36^{\circ}$						$x+y=180^{\circ}$ $a+b+c+d=360^{\circ}$
Opposite Angles	Opposite angles are equal. Remember also that the angles on a straight line add to 180° and angles around a point add to 360°. This will help you with some multi-step problems later on.						
Alternate Angles	Alternate angles are equal. These look like a letter Z. $x=x \& y=y$ of course! (Do not use the term ' Z angles' in an exam. You must use Alternate) Often you will be asked to state with a reason why you have given your answer. There is often more than one way to explain how you found the angle.						
Corresponding Angles	Corresponding angles are equal. These look like the letter F. (Do not use the term 'F angles' in an exam. You must use Corresponding) Often you will be asked to state with a reason why you have given your answer. There is often more than one way to explain how you found the angle. Some students may see two angles as corresponding instead of selecting alternate angles. As long as you show how you will get the marks.						
Co-interior Angles	Co-interior angles add to $180^{\circ} . x+y=180^{\circ}$ These look like the letter C (Do not use the term ' C angles' in an exam. You must use Co-interior) Often you will be asked to state with a reason why you have given your answer. Check your answer makes sense. Clearly $x+y$ are not the same size unless they $=90^{\circ}$. Students often incorrectly just say 'opposite angles'.						

Page 39

Page 40

| $\frac{\text { Circle Theorem }}{\text { (The Bow/Angles in }}$ |
| :--- | :--- | :--- |
| the Same Segment) |\quad| The angles at the top of the bow are the same. The angles at the bottom of the |
| :--- |
| bow are the same. You don't need the lines to go through the centre. |
| Circle Theorem
 (Tangent) | | When a tangent meets a radius it meets at right angles. You can say the angle the value of x and y in the circle below. |
| :--- |
| between the radius and the tangent is 90° or that they are perpendicular. |
| When two tangents are drawn from a point to the circle their lengths are equal. |

		(3) Substituting into $y=m x+c$ with the point $(4,3)$ and a gradient of $-\frac{4}{3}$ you get: $3=-\frac{4}{3}(4)+c$ which gives $c=\frac{25}{3}$ and as a result the equation of the tangent is $y=-\frac{4}{3} x+\frac{25}{3}$. A diagram is shown to the left.
Types of Triangles	Right Angle Triangles have one 90° angle in. Look out for the square in these Isosceles have 2 equal sides and 2 equal base angles. Look for notation! Equilateral have 3 equal sides and 3 equal angles (60°) Look for notation! Scalene have different size sides and angles. No notation. You can spot isosceles and equilateral by the small lines on their sides.	
Parallel and Perpendicular Lines	Parallel lines never meet and have a fixed distance between them. Perpendicular lines are at right angles. There is a 90° angle between them. If two straight lines are parallel the value of m in the equation $y=m x+c$ will be the same for both lines. $y=3 x-1$ and $y=3 x+2$ as their gradients are equal.	
Angle and Line Bisectors	Angle Bisector: Cuts the angle in half. Open the compass up. Place the sharp end on the vertex. Mark a point on each line Without changing the compass put the compass on each point and mark a centre point. Get a ruler and draw a line through the vertex and centre point. Line Bisector (Perpendicular Bisector): Cuts the line in half and at right angles Put the sharp end on Point A. Open the compass up past half way on the line. Mark a point above and below the line. Without changing the compass do the same from B. Draw a straight line through the points. You MUST leave your construction marks on all bisection questions!	
Loci and Regions	A locus is just a path of points or region that follows a rule. For the locus of points closer to B than A you will create a perpendicular bisector as above and shade to the right of the line as shown to the right. For the locus of points less than or more than a fixed distance from A use a compass with the given radius to draw a circle. You may have to combine loci. Points more than 2 cm from A Look out for broken lines on strict inequalities.	Example: Draw the locus of points no more than 3cm from A and no more than 2 cm from B. Answer: Draw a circle with radius 3 cm from A and one with radius 2 cm from B. Shade inside as it's no more than! (If it were more than it would have been outside!)

Translating a Shape (A Transformation)	Translate means to move the shape. There is no change in its size or its orientation. Vectors are used to give information about the 'movement' The top number tells you to move right or left. Right is + and left is - . The bottom number tells you to move up or down. Up is + and down is - . If coordinates are used for the translation just treat them like vectors.	(a) $\binom{2}{3}$ is right 2 and up 3 (b) $\binom{-1}{2}$ is left 1 and up 2 (c) $\binom{3}{-5}$ is right 3 and down 5 (d) $\binom{0}{4}$ is just up 4
Rotating a Shape (Transformation)	The size of the shape doesn't change. The shape is simply turned about a point. You will be given (i) A direction (ii) An angle and (iii) A centre of rotation.	(a) Rotate Shape $\mathrm{A} 90^{\circ}$ clockwise about $(0,1)$ (b) Rotate Shape B 270° anti clockwise about $(0,0)$
Reflecting a Shape (Transformation)	Think about standing looking in a mirror. Learn lines such as $x=2$ (vertical), $y=-1$ (horizontal) \& $y=x$ (diagonal). Use a mirror if you are unsure.	(a) Reflect Shape A in the x axis. (b) Reflect Shape A in the line $x=2$.
Enlarging a Shape (Basic examples) (Transformation)	You will be given a Scale Factor and no centre of enlargement. Multiply each side length of the shape by the scale factor. A scale factor of 2 is twice as big (\times by 2), not +2 to each side. See below for centre of enlargement examples.	$\begin{aligned} & \text { SF of } 3=3 \text { times larger (} \times \text { EACH side length by } 3) \\ & \text { SF of } 1 / 2=\text { half the size }(\div \text { EACH side length by } 2) \end{aligned}$ $\text { SF of } 1=\text { no change in the size of the shape }$
Enlargements Given a centre of Enlargement (Including Negative and Fractional)	If the scale factor is positive both shapes will be the same side of the centre of enlargement. If the SF is negative the two shapes will be either side of the centre. Negative enlargements will look like they have been rotated. One way to do this is with guidelines \& the other way is to do it with vectors. SF 2 is twice as big \& twice as far away from the centre of enlargement.	
Finding the centre of Enlargement	Draw guidelines through each corresponding vertex of the two shapes with a pencil and ruler. Each line will pass through the centre of enlargement when done accurately as shown to the right. Be careful with negative enlargements when finding the corresponding corners as the shape will be a different way round.	
$\begin{aligned} & \hline \text { Combining } \\ & \text { Transformations } \\ & \hline \end{aligned}$	Perform 2 transformations and then state the single transformation that maps thee original shape to the final shape. You may need to use resultant vectors.	To find the resultant vector you can add the 2 vectors you used in the translations given.
Naming Transformations (The 4 choices)	Rotations will be the same size but often a different way around. (orientation) Translations have simply been moved. No change to size or orientation. Reflections will sometimes have the same orientation depending on the shape. Enlargements will be the same shape but either larger or smaller!	(Centre, direction and angle required for Rotations) (The vector is required for Translations) (The reflection line for Reflections) Look out for $y=x$ (The scale factor is required for Enlargements)
Line Symmetry	How many mirror lines can you draw on the shape? Regular shapes will have the same number of sides as they do symmetry lines and rotational symmetry. Be careful with patterns within shapes. This will change the symmetry! Parallelograms seem to catch people out too!	
Rotational Symmetry	How many times does the shape (and pattern if applicable) look the same when you turn it through $\mathbf{3 6 0}{ }^{\circ}$? This gives us the order of rotational symmetry. Be careful with patterns. Regular shapes without patterns will have the same number of sides as their rotational symmetry. Use tracing paper if you need. A circle without a pattern will have an undefined number!	Order $=5$ (Regular) Order $=2$ Order $=3$ (Regular) Order $=1$

Page 43 -

Plans and Elevations	These types of drawing take 3D drawings and produce 3 different 2D drawings. Plan View: From above. Think 'birds eye view' Side Elevation: A 2D shot from the side of the object. Front Elevation: A 2D shot from the side of the object. You will be told which is the front and/or side. Remember to put the units on!	Side Elevation
Metric Units (See Video on converting units)	Length: $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ and km. $1 \mathrm{~km}=1000 \mathrm{~m}=100^{\prime} 000 \mathrm{~cm}=1^{\prime} 000^{\prime} 000 \mathrm{~mm}$ Mass: $\mathrm{mg}, \mathrm{g}, \mathrm{kg}$, tonnes $1 \mathrm{~kg}=1000 \mathrm{~g}$ Volume: $\mathrm{ml}, \mathrm{cl}, \mathrm{l}$ 1 litre $=1000 \mathrm{ml}$	Man's height $\sim 1.8-2 \mathrm{~m}$, credit card $\sim 0.8 \mathrm{~mm}$ thick Adults weight 70 kg , a small cake $=150 \mathrm{~g}$ Glass of coke is about 250 ml
$\begin{aligned} & \text { Speed, Distance, } \\ & \text { Time } \end{aligned}$	Speed $=$ Distance \div Time Distance $=$ Speed \times Time Time $=$ Distance \div Speed Remember the correct units!	(a) Speed is 4 mph , Time is 2 hours, Find the Distance. $\mathrm{D}=\mathrm{S} \times \mathrm{T}$ so $4 \times 2=8$ miles. (b) Time is 5 hours, Distance $=12 \mathrm{~km}$, Find the Speed $\mathrm{S}=\mathrm{D} \div \mathrm{T} \quad$ so $12 \div 5=2.4 \mathrm{kph}$
Distance/Time Graphs	Distance/Time graphs show the distance covered and the time taken as shown to the right. Distance is on the vertical axis and time is on the horizontal. You can find the speed from the gradient of the line (Distance \div Time). The steeper the line, the quicker the speed. If there is a flat line (horizontal to the time axis) the object is stationary. On the example to the right the speed on the first section is $4 \div 2=2 \mathrm{~km} / \mathrm{h}$, the second $0 \mathrm{~km} / \mathrm{h}$ and the third $4 \div 4=1 \mathrm{~km} / \mathrm{h}$	
$\begin{aligned} & \text { Velocity Time } \\ & \text { Graphs } \end{aligned}$	Velocity/Time Graphs show the speed of an object over a given time. Velocity is on the vertical axis and time is on the horizontal. You can find the acceleration from the gradient of the line (Speed \div Time). The steeper the line the quicker the acceleration. If the line goes up it's acceleration, if it goes down it's deceleration and if it's flat then there is no acceleration and a constant speed. The area under the graph is the distance covered. This can be found by either finding the area of the trapezium or adding the areas of rectangles and triangles.	
Density, Mass, Volume	Density $=$ Mass \div Volume Mass $=$ Density \times Volume Volume $=$ Mass \div Density Remember the correct units.	(a) Density is $8 \mathrm{~kg} / \mathrm{m}^{3}$, Mass is 2 kg , Find the Volume. $\mathrm{V}=\mathrm{M} \div \mathrm{D} \quad \text { so } \quad 2 \div 8=1 / 4 \mathrm{~m}^{3}$ (b) Volume is $20 \mathrm{~cm}^{3}$, Mass is 30 g , Find the Density $\mathrm{D}=\mathrm{M} \div \mathrm{V} \quad \text { so } 30 \div 20=1.5 \mathrm{~g} / \mathrm{cm}^{3}$
Pressure	Pressure $=$ Force \div Area Force $=$ Pressure \times Area Area $=$ Force \div Pressure (Force is measured in Newtons (N))	(a) Force is 12 N , Area $=3 m^{2}$. Find the Pressure $\mathrm{P}=\mathrm{F} \div \mathrm{A} \quad \text { so } \quad 12 \div 3=4 \mathrm{~N} / \mathrm{m}^{2}$ (b) Area $=1.2 \mathrm{~m}^{2}$, Pressure $=4.8 \mathrm{~N} / \mathrm{m}^{2}$. Find the Force $\mathrm{F}=\mathrm{P} \times \mathrm{A} \quad \text { so } \quad 1.2 \times 4.8=5.76 \mathrm{~N}$

Parallel and

 Collinear VectorsYou can use vectors to solve problems in geomerty. It's important to remember that vectors have both direction and magnitude (size). You must look at which way the arros on the vectors are pointing!
You can find a 'vector journey' by simply tracing your finger along the given route you want to take. The diagram below shows how to get from each point in the triangle to the others. You can see that travelling from O to A is different from A to O. The magnitude of the vector is the same but the direction is reversed to give the negative value.
We can say $\overrightarrow{O A}=a$ and $\overrightarrow{A O}=-a$
Look out for the arrows to show the direction of the vector.

You may be given midpoints or ratios in questions. Simply set up a vector journey and use the information given. Drawing it out will really help especially as most vectors questions don't include the grid.
The example to the right shows this.
You will need to be able to simplify and factor basic algebraic expressions as they will often highlight parallel vectors.
An example could be $\overrightarrow{A B}=2 p-\frac{1}{2}(4 q-2 p)$. This simplifies to give $p-2 q$ which is parallel to $3(p-2 q)$ for example. This is covered below.
With ratios if you have a ratio of 2:3 then the line is split into 5 parts. So one part is $2 / 5$ of the line and the other $3 / 5$. A ratio of $5: 7$ has 12 parts so it would be split as $5 / 12$ and 7/12.

Parallel vectors will simply be a mutliple of of each other. If you have the vector $2 a+b$ and the vector $4 a+2 b$ then you can say these are parallel. $4 a+2 b \equiv 2(2 a+b)$. This means that $4 a+2 b$ is in the same direction (or parallel) to $2 a+b$ but twice the length. By factoring, it's easier to see parallel vectors and will help when you construct a proof in a vectors question.

Example 1: X is the midpoint of $A B$. Find $\overrightarrow{O X}$
Answer: Draw X on the original diagram

Now build up a journey.
You could use $\overrightarrow{O X}=\overrightarrow{O A}+\frac{1}{2} \overrightarrow{A B}$.
This will give: $\overrightarrow{O X}=a+\frac{1}{2}(b-a)$.
This will simplify to $\frac{1}{2} a+\frac{1}{2} b$ or $\frac{1}{2}(a+b)$
Example 2: Y is the point on $O A$ such that the ratio $O Y: Y A$ is $1: 3$. Find $\overrightarrow{B Y}$.
Answer: Draw Y on the original diagram

If the ratio is $1: 3$ split the line into four parts (quarters). and simply build a vector journey. $\overrightarrow{B Y}=\overrightarrow{B O}+\frac{1}{4} \overrightarrow{O A}$ which gives $\overrightarrow{B Y}=-b+\frac{1}{4} a$.
Example: The points P and Q are the midpoints of the lines $O A$ and $O B$ respectively. Show that the lines $A B$ and $P Q$ are parallel.
Answer: Mark the points P and Q on the diagram.

	Collinear points are points on the same straight line as shown below. $\overrightarrow{A X}=\overrightarrow{\mathrm{AAB}}$ (where k is just a scalar enlargement) shows that line lines $A X$ and $A B$ are parallel. As they both pass through A it can be said that they are collinear, or if you like, are all on the same line. To show 3 points are collinear you must show that one vector is a multiple of the other AND that both vectors pass through one of the points. Showing the two vectors are parallel is not enough as parallel vectors could be anywhere on 'the grid'.	You have seen in a previous example that $\overrightarrow{A B}=b-a$. All you need to do is show that $\overrightarrow{P Q}=k(b-a)$. $\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}$ which will give $\overrightarrow{P Q}=-\frac{1}{2} a+\frac{1}{2} b$ which in turn will tidy to $\overrightarrow{P Q}=\frac{1}{2}(b-a)$. This is a vector parallel to $\overrightarrow{A B}$ and half its length.
Pythagoras Theorem for Right Angle Triangles	Pythagoras Theorem is used to find missing lengths in right angled triangles when 2 side lengths are given. The triangle must be a right angled triangle. $a^{2}+b^{2}=c^{2}$ $a \& b$ are the $\mathbf{2}$ shorter sides and c is the hypotenuse (longest). Make sure you label each correctly. Neither shorter side can be longer than the hypotenuse! Make sure you square root the answer to find the length. You + when you need the hypotenuse \& - when you need a shorter side.	$\begin{aligned} & a=y, b=8, c=10 \\ & a^{2}=c^{2}-b^{2} \\ & y^{2}=100-64 \\ & y^{2}=36 \\ & y=6 \end{aligned}$
3D Pythagoras Theorem	Pythagoras Theorem in 3D is used to find missing lengths in cuboids. Use the same principles as 2D. $a^{2}+b^{2}+c^{2}=d^{2}$. Here d is the diagonal of the box. Look out for pencil in box questions. These just want the max diagonal length.	Example: Find the longest pencil that can fit in a pencil tin with dimensions $12 \mathrm{~cm}, 13 \mathrm{~cm}$ and 9 cm . The pencil tin is in the shape of a cuboid. Answer: Length $=\sqrt{12^{2}+13^{2}+9^{2}}$ which gives 19.8 cm correct to 1dp. If you are given a cube the side lengths are the same. If you are working backwards set $3 x^{2}=$ to the diagonal.

Trigonometric Ratios	Trigonometric ratios are used to find missing lengths and angles in right angled triangles. You would use Pythagoras if you had 2 given sides and need to find the 3rd. The triangle shows each side length relative to the angle θ. You can use the Trig Ratios below to help find missing lengths and angles. $\sin =\frac{\text { opposite }}{\text { hypotenuse }}$ $\text { cos }=\frac{\text { adjacent }}{\text { hypotenuse }}$ $\tan =\frac{\text { opposite }}{\text { adjacent }}$ Use sin, $\cos \& \tan$ for finding lengths and $\sin ^{-1}, \cos ^{-1} \& \tan ^{-1}$ for finding angles. Press 'shift' on your Casio when you need the angle!					Example 1: (a) Find the value of x Answer: You want the opposite (length) and you have the adjacent side to the given angle. You use tan here. $x=11 \times \tan \left(35^{\circ}\right)$ which gives $x=7.70 \mathrm{~cm}$ Example 2: (b) Find the value of x Answer: You want the angle. You have the adjacent side and the hypotenuse. You use cos here. $\cos (x)=\frac{5}{7}$ which gives $x=\cos ^{-1}\left(\frac{5}{7}\right)$ and $x=44.4^{\circ}$
Special Values for Angles in Trigonometry	You will need to	the values for sp	ial angle 45° $\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ $\frac{1}{\sqrt{2}}$ or $\frac{\sqrt{2}}{2}$ 1	the 600° $\frac{\sqrt{3}}{2}$ $\frac{1}{2}$ $\sqrt{3}$	90° 1 0	You can derive these values using the diagrams below. Remember: $\sin (x)=\frac{o p p}{h y p}, \cos (x)=\frac{a d j}{h y p} \& \tan (x)=\frac{o p p}{a d j}$
Graphs of Trig Functions (with basic equations)	There are 3 trig	cor graphs you	need to (x) $\leq 360^{\circ}$			 You can find values and solve equations using symmetry and cycles. This is covered in the videos.
Transforming Trig Graphs	The same rules translations will	shown previou egrees! See the	for alg video	ic gr elp	The horizontal braic graphs.	Translations Reflections and Stretches.

Index

Algebra (Terminology) (Page 7)
Algebraic Fractions (Page 23)
Algebraic Proof (Page 24)
Angles (Basic Angle Facts) (Page 39)
Angles (Interior and Exterior Angles in Polygons) (Page 40)
Angles (Opposite Angles) (Page 39)
Angles (Types of Angle) (Page 39)
Angles in Parallel Lines (Alternate Angles) (Page 39)
Angles in Parallel Lines (Co-interior Angles) (Page 39)
Angles in Parallel Lines (Corresponding Angles) (Page 39)
Area of a Circle (Page 34)
Area Under a Curve (Page 21)
Asymptotes (Page 18)
Averages (Mean From a Table) (Page 26)
Averages (Mean) (Page 26)
Averages (Median) (Page 26)
Averages (Mode) (Page 26)
Bearings (Page 40)
Best Buys (Page 6)
BIDMAS/BODMAS (Order of Operations) (Page 4
Bisection of an Angle and a Line (Page 42)
Box Plots (Comparing) (Page 29)
Box Plots (Drawing) (Page 29)
Brackets (Expanding Double Brackets) (Page 8)
Brackets (Expanding Single Brackets) (Page 8)
Capture/Recapture Method (Page 28)
Circle Theorems (Page 40)
Circles (Arc Length) Page 34)
Circles (Area of a Sector) (Page 34)
Circles (Area) (Page 34)
Circles (Circumference) (Page 34)
Circles (Parts) (Page 34)
Completing the Square (Page 9)
Composite Shapes (Area) (Page 34)
Composite Shapes (Perimeter) (Page 34)
Cone (Curved Surface Area) (Page 36)
Congruent Shapes (Page 37)
Congruent Triangles) (Page 38)
Correlation (Page 27)
Cube Numbers (Page 1)
Cuboids (Surface Area of a Cuboid) (Page 35)
Cuboids (Volume of a Cuboid) (Page 34) Cumulative Frequency (Graphs) (Page 28)
Cumulative Frequency (Tables) (Page 28)
Cylinder (Volume of a Cylinder) (Page 35)
Decimals (Converting Recurring Decimals to Fractions) (Page 5)
Decimals (Multiplying) (Page 4)
Decimals to Fractions (Page 2)
Density/Mass/Volume (Page 44)
Equations (Equation of a Tangent to a Circle) (Page 41)
Equations (Equations with Fractions) (Page 10)
Equations (Linear \& Non Linear Simultaneous Eqs) (Page 13)
Equations (Simultaneous Linear Equations) (Page 11)
Equations (Solving by Iteration) (Page 13)
Equations (Solving Linear Equations) (Page 10)
Equations (Solving Quadratic Equations (Page 11/12)

Equations (The Equation of a Circle) (Page 12) Equations (The Equation of a Straight Line) (Page 15) Estimations and Approximations (Page 2)
Exponential Functions (Page 4)
Expressions (Simplifying) (Page 7)
Extrapolation (Page 27)
Factorising (Quadratics) (Page 8)
Factorising (Single Brackets) (Page 8)
Factorising (The Difference of 2 Squares) (Page 9) Factors (Page 1)
Formulae (Rearranging) (Page 10)
Formulae (Substituting Into) (Page 10)
Formulae (Writing) (Page 10)
Fractions (Adding) (Page 3)
Fractions (Dividing) (Page 3)
Fractions (Finding a Quantity) (Page 3)
Fractions (Multiplying) (Page 3)
Fractions (Ordering) (Page 2)
Fractions (Simplifying) (Page 2)
Fractions (Subtracting) (Page 3)
Fractions to Decimals (Page 2)
Fractions to Percentages (Page 2)
Frustums (Page 36)
Functions (Composite) (Page 25)
Functions (Inverse) (Page 25)
Functions (Notation and Evaluating) (Page 25)
Gradient of a Line (Page 15)
Graphs (Cubic Graphs) (Page 17)
Graphs (Distance/Time Graphs) (Page 44)
Graphs (Graph Recognition) (Page 16)
Graphs (Quadratic Graphs from a Table) (Page 16)
Graphs (Sketching Quadratic Graphs) (Page 16)
Graphs (Solving Simultaneous Equations) (Page 11)
Grap (Sols) (Page
Graphs (Strigh (Page
Gras (Trasforion (Page 19)
Graphs (Tren)
(Page 48)
Gaphs (Trgonatic Graphs) (Page 48)
raphs (Velocity/Time Graphs) (Page 44)
Growth and Decay (Page 4)
HCF (Page 1)
Histograms (Drawing) (Page 30)
Histograms (Interpreting) (Page 31)
Identities (Page 7)
Inequalities (Quadratic Inequalities) (Page 19) Inequalities (Reading and Writing) (Page 18) Inequalities (Set Notation) (Page 18) Inequalities (Shading Regions) (Page 18) Integers (Page 1)
Interest (Simple and Compound) (Page 4)
Interpolation (Page 27)
Intervals and bounds (Page 2)
IQR (Page 28)
Iteration (Page 13)
Kinematics (SUVAT) (Page 45)
Kite (Area) (Page 33)

LCM (Page 1)
Length of a Line Segment (Page 14)
Listing Outcomes Systematically (Page 31)
Loci and Regions (Page 42)
Lower Quartile (Page 28)
Metric Measures (Page 39)
Metric Units (Page 44)
Midpoint of a Line (Page 14)
Moving Averages (Page 26)
Multiples (Page 1)
Negative Numbers (Adding and Subtracting) (Page 4) Negative Numbers (Multiplication \& Division) (Page 4) Nets (Sketching the Net of a Solid) (Page 35) Parallel and Perpendicular Lines (Page 15)
Parallelograms (Area) (Page 33)
Percentages (Change) (Page 3)
Percentages (Reverse \%) (Page 3)
Percentages (Find 10\%, 5\% and 1\%) (Page 3)
Percentages (Find a Quantity) (Page 3)
Percentages (Increasing and Decreasing by a \%) (Page 3)
Percentages to Decimals (Page 2)
Perpendicular Lines (Page 15)
Pictograms (Page 27)
Pie Charts (Page 26)
Plans and Elevations (Page 44)
Powers (Adding and Subtracting) (Page 7)
Pressure (Page 44)
Prime Numbers (Page 1)
Prism (Volume of a Prism) (Page 35)
Probability (AND \& OR Rules) (Page 32)
Probability (Basic) (Page 31)
Probability (Experimental Probability) (Page 31)
Probability (Independent Events) (Page 32)
Probability (Mutually Exclusive Events) (Page 31)
Probability (Notation) (Page 31)
Probability (Of Something Not Happening) (Page 31)
Probability (Tree Diagrams) (Page 32)
Product of Prime Factors (Page 1)
Proportion (Basic) (Page 6)
Proportion (Direct and Inverse) (Page 6)
Proportion (Graphs) (Page 7)
Pyramid (Volume of a Pyramid) (Page 36)
Pythagoras Theorem 2D (Page 47)
Pythagoras Theorem 3D (Page 47)
Quartiles (Page 28)
Range of a Data Set (Page 26)
Rational and Irrational Numbers (Page 1)
Ratios (Simplifying) (Page 6)
Ratios ($1: \mathrm{n}$ and $\mathrm{n}: 1$) (Page 6)
Ratios (Already Shared) (Page 6)
(To Fractions and to percentages) (Page 6)
Reciprocal (Page 1)
Rectangles (Area) (Page 33)
Rectangles (Perimeter) (Page 33)
Relative Frequency (Page 31)
Rounding to 1 DP (Page 2)

Rounding to 1 SF (Page 2)
Rounding to 2 DP (Page 2)
Rounding to 2 SF (Page 2
Rules of Indices (Fractional Powers) (Page 8)
Rules of Indices (Negative Powers) (Page 7)
Rules of indices (Raising to a Power) (Page 8)
Rules of Indices (Zero Power) (Page 8)
Sampling (Definitions) (Page 27)
Scatter Graphs and Line of Best Fit (Page 27)
Sequences (Basic Number Patterns) (Page 22) Sequences (Fibonacci Sequences) (Page 23)
Sequences (Notation) (Page 22)
Sequences (nth Term of a Linear Sequence) (Page 22)
Sequences (nth Term of a Quadratic Sequence) (Page 22)
Set Notation (Page 32)
Similar Shapes (Page 37)
Similar Solids (Page 38)
Similar Triangles (Page 37) Solids (Page 37)
Speed/Distance/Time (Page 44)
Spheres and Hemispheres (Area) (Page 37)
Spheres and Hemispheres (Volume) (Page 36) Square Numbers (Page 1)
Square Roots (Page 1)
Standard Form (Calculating) (Page 4)
Standard Form (Writing) (Page 4)
Stem and Leaf Diagrams (Page 27)
Stratified Sample (Page 28)
Surds (Adding and Subtracting) (Page 5)
Surds (Multiplying and Dividing) (Page 5)
Surds (Rationalising the Denominator) (Page 5)
Surds (Simplifying) (Page 5)
Symmetry (Line) (Page 43)
Symmetry (Rotational) (Page 43)
Tangents to Curves (Page 20)
Time Series Graphs (Page 26)
Transformations (Page 43)
Trapezium (Area) (Page 33)
Tree Diagrams and Frequency Trees (Page 32)
Triangle (Area) (Page 33)
Triangles (Types of Triangle) (Page 42)
Trigonometry (Graphs of Trig Functions) (Page 48)
Trigonometry (Ratios SOH/CAH/TOA) (Page 48)
Trigonometry (Special Values) (Page 48)
Trigonometry (The Cosine Rule) (Page 49)
Trigonometry (The Sine Rule) (Page 49)
Two Way Tables (Page 27)
Upper and Lower Bounds (Page 2)
Upper Quartile (Page 28)
Using a Calculator (Page 35)
VAT (Page 4)
Vectors (Adding, Subtracting and Multiplying) (page 45)
Vectors (Geometry) (Page 46)
Vectors (Parallel and Collinear Vectors) (Page 46)
Vectors (Resultant Vectors) (page 45)
Venn Diagrams (Page 32)

Date	Topic I need to work on	What have I done about it?	Teacher Suggestions	Update	Has progress been made?

