9-1 GCSE Maths Foundation & Higher Help & Revision Booklet

The topics in *italics* are those on the Higher Tier <u>only</u>. Formulae in shaded text are those <u>NOT</u> given in the exam formula booklet. You need to learn them!

Name

Class_

Target Grade 1 2 3 4 5 6 7 8 9

Number

Topic/Skill	Tips/Facts	Example
Integers	An integer is a whole number . It can be positive or negative.	Integers: 2, 5,100, 6345 Non Integers: ¼, 12.3, 0.76
Square Number	When you \times a number by itself you get a square number. This number has to be	The first 6 square numbers are: 1, 4, 9, 16, 25, 36
	an integer. Squaring a number is NOT the same as multiplying a number by 2.	(a) $3^2 = 3 \times 3 = 9$ (NOT 6) (b) $5^2 = 5 \times 5 = 25$
Square Roots	This is the inverse (reverse process) of squaring a number. $$ is used. (a) $6^2 = 36$ so $\sqrt{36} = 6$ (b) $9^2 = 81$ so $\sqrt{81} = 9$.	(a) $\sqrt{49} = 7$ (b) $\sqrt{121} = 11$ (c) $\sqrt{\frac{25}{4}} = \frac{\sqrt{25}}{\sqrt{4}} = \frac{5}{2}$
Cube Number/Roots	A number multiplied by itself three times . (The cube root $\sqrt[3]{}$ is the inverse).	(a) $4^3 = 4 \times 4 \times 4 = 64$ (NOT 12) (b) $2^3 = 8$ (NOT 6)
<u>A Prime Number</u>	A number that has only 2 factors, itself & 1 . 2 is the only even prime number.	2, 3, 5, 7, 11, 13, 17, 19 (1 is not a prime number!)
Rational and Irrational Numbers	Rational numbers can be written in the form $\frac{a}{b}$ where <i>a</i> and <i>b</i> are integers and	Rational: 2, 0.4, $\frac{1}{3}$, 0.7, $\sqrt{36}$, -1.2, $4\frac{1}{5}$
	Irrational numbers can't! Surds, and π are examples of irrational numbers.	Irrational: $\sqrt{3}$, π , $5\sqrt{7}$, e
Reciprocal	The reciprocal of a number is 1 divided by that number. Often it's easier to think about turning the fraction upside down (inverting the fraction).	The reciprocal of 5 is $\frac{1}{5}$ The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$
Factors (Divisors)	The integers (whole numbers) that go into a number with no remainder.	Factors of 8 are 1,2,4 & 8 Factors of 12: 1,2,3,4,6 & 12
<u>Multiples</u>	Think Times Tables. Just write out the times tables for that number.	The first six multiples of 4 are 4, 8, 12, 16, 20 and 24
Product of Prime Factors	Numbers can be made up by multiplying prime numbers . $(2,3,5,7,11,13,17)$ To find the Product of Primes start with a factor tree . (Shown to the right) Product means multiply so don't forget to put the × sign in between the numbers you found in your factor tree. If you are struggling with the factor tree just keep trying to divide by the prime number in order. Does it divide by 2? If so pick 2. If it doesn't divide by 2 does it divide by 3? By 5? By 7? By 11? Etc.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
HCF (Highest	The HCF is the largest number that goes into 2 or more different numbers.	Example: "Find the HCF of 8 and 28"
Common Factor)	Method 1: Just list the factors of each and find largest number in each list	Method 1 : Factors of 8: 1,2,4 & 8 Factors of 28:
	Method 2: Using Factor tree. Take only the prime numbers that appear in each	1,2,4,7,14 & 28. The HCF of 8 and 28 is 4
	list of the factors of the numbers to their lowest power and multiply. This	Method 2: Product of Primes for 8 and 28:
	method is better for less obvious examples and larger numbers.	$8 = 2^3$ and $28 = 2^2 \times 7$ so you only have 2 in both lists
	(You can use a Venn Diagram to do this too.)	and you take it to the lowest power giving $2^2 = 4$
LCM (Lowest	The lowest (or smallest) number that 2 or more different numbers go in to.	Example: "Find the LCM of 4 and 6"
Common Multiple)	Method 1: Just list out the times tables of each number and see which is the	Method 1:
	lowest number that appears in both lists. This is the LCM	Multiples of 4: 4, 8, 12 , 16, Multiples of 6: 6, 12 , 18
	Method 2: Using Factor tree. Take all the prime numbers that appear in each	The LCM of 4 and 6 is 12 .
	list of the factors to their highest power and multiply.	Method 2: Product of Primes for 4 and 6:
	(You can use a Venn Diagram to do this too.)	$4 = 2^2$ and $6 = 2 \times 3$. You need both 2 and 3 to their
	Common misconception: The LCM of 2 numbers is 1. This is incorrect!	highest power giving $2^2 \times 3 = 12$.

Rounding to 1 DP	You are rounding the number to the nearest 10th . Focus on the 2 nd number	(a) $2.43 = 2.4$ (3 is less than 5) (b) $5.67 = 5.7$		
(Decimal Place)	after the decimal point. If it's 5 or more round up. If it's 4 or less round down.	(c) $1.09 = 1.1$ (9 is more than 5) (d) $2.98 = 3.0$		
Rounding to 2 DP	Nearest 100^{th} . As above but focus on the 3^{rd} number after the decimal point.	(a) $3.562 = 3.56$ (b) $0.785 = 0.79$ (c) $1.499 = 1.50$		
Rounding to 1 SF	When reading a number from left to right the first value that is not 0 in the			
(Significant Figures)	number is the 1 st significant figure. Round the number using the same	(a) 243 to 1 SF = 200 (Rounding to the nearest 100) (b) 5 $($ to 1 SF = $($ (Rounding to the nearest integer)		
(Significant Figures)	techniques as used for decimals shown above. With the number 0.043 the 4 is	(b) 5.6 to $1 \text{ SF} = 6$ (Rounding to the nearest integer)		
	the first significant figure, 3 is the second.	(c) 47 to 1 SF = 50 (Rounding to the nearest 10) (d) 0.48 to 1 SF = 0.5 (Rounding to the nearest 10^{th})		
Rounding to 2 SF	Same as before but now it's the second significant figure. Mind the 0's!	$\begin{array}{c} (d) \ 0.48 \ \text{to} \ 1 \ \text{SF} = 0.5 (\text{Rounding to the nearest } 10^{\text{th}}) \\ (a) \ 243 = 240 (b) \ 40.8 = 41 (c) \ 0.546 = 0.55 \end{array}$		
		(a) $243 - 240$ (b) $40.8 - 41$ (c) $0.340 - 0.35$ (a) 98×51.2 becomes 100×50 which = 5000		
Estimations &	Round each number to 1 significant figure & perform the calculation. You must			
Approximations	show workings! Estimating doesn't require the exact value. It's non calculator!	(b) $4.6 + 104.7$ becomes $5+100$ which = 105		
Calculations using	Sometimes you will get a question where the numbers or measurements given	E: A rectangle has one side length of 6cm correct to		
Upper and Lower	have already been rounded. You just need to work out the minimum (Lower	the nearest cm and an area of $24.3cm^2$ correct to 3SF.		
<u>Bounds</u>	Bound) and maximum (Upper Bound) the number could be. One way to think	Find the greatest possible length of the missing side. A:		
	of it is to half the interval given subtract it from the number to find the LB and	UB Area		
	then add it to the number to get the UB. An example could be 1.4 rounded to	$LB UB Max Legth = \frac{UB Area}{LB Length}$		
	one d.p. one d.p = 0.1 . If you half this you get 0.05. This gives us a lower bound	Length 5.5 6.5 $= 24.35$		
	of 1.35 and an upper bound of 1.45. When you have done this work out which	5.5		
	values are required to minimise or maximise the calculation.	Area 24.25 24.35 = 4.427		
Intervals and Bounds	You may be asked to interpret or use inequalities for upper and lower bounds.	Example: The height of a plant is 1.8m correct to 2		
and	If a number has already been rounded, you may be asked to find the upper and	significant figures. Write an inequality to show this.		
Error Intervals	lower bounds of it. One way to do this is to split the interval in half and + this	Answer: $1.75 \le h < 1.85$		
	amount on to the value to get the upper bound and - it for the lower bound.	Be Careful with the inequality sign on the upper bound.		
Fractions to	Some are obvious such as $\frac{3}{4}$ is 0.75. For those that are not simply divide the	(a) $1/8 = 0.125$ (b) $3/10 = 0.3$		
Decimals	numerator by the denominator using short division OR SD on your Casio.	(c) $7/100 = 0.07$ (d) $43/100 = 0.43$		
	Common error! $1/3$ is not 0.3. £1 shared between 3 people is not 30p each.	(e) $28/1000 = 0.028$ (f) $37/50 = 74/100 = 0.74$		
Decimals to	Some are obvious such as $0.5 = \frac{1}{2}$ or $0.75 = \frac{3}{4}$ and $0.1 = \frac{1}{10}$ etc.	(a) $0.7 = 7/10$ (b) $0.23 = 23/100$		
Fractions	If it's not obvious write it as a fraction over 10, 100 or 1000 and cancel down.	(c) $0.46 = 46/100 \text{ or } 23/50$		
% to Decimals	To convert a % to a decimal \div by 100. To convert a decimal to a % \times by 100	(a) $0.23 \times 100 = 23\%$ (b) $47\% \div 100 = 0.47$		
Fractions to	A % is just a fraction out of 100. Non calculator just 'scale' the denominator up			
Percentages	to 100 with equivalent fractions. On a calculator just \times the fraction by 100	(a)Non Calc $\frac{3}{25} = \frac{12}{100} = 12\%$ (b)Calc $\frac{9}{17} \times 100 = 52.9\%$		
Simplifying	5 1			
Fractions	If they are not obvious like $\frac{5}{10} = \frac{1}{2}$ look for common factors to divide by.	(a) $\frac{6}{8} = \frac{3}{4}$ (divide by 2) (b) $\frac{20}{35} = \frac{4}{7}$ (divide by 5)		
	$10 \ 2$			
Mixed Numbers	See how many times the denominator goes into the numerator. This gives you	(a) $\frac{9}{4} = \frac{4}{4} + \frac{4}{4} + \frac{1}{4} = 2\frac{1}{4}$ (b) $\frac{17}{5} = 3\frac{2}{5}$ (c) $\frac{5}{3} = 1\frac{2}{3}$		
	the integer part and then just write the remainder over the original denominator.			
Ordering Fractions	Find the common denominator of the fractions given, write equivalent fractions	Order: $\frac{3}{4}, \frac{2}{5}, \frac{5}{5}, \frac{1}{2}$ equiv $\frac{9}{12}, \frac{8}{12}, \frac{10}{12}, \frac{6}{12}$ so $\frac{1}{2}, \frac{2}{5}, \frac{3}{5}, \frac{5}{5}$		
	for each and simply order the fractions by the numerators. You must use the	Order: $\frac{1}{4}, \frac{1}{3}, \frac{1}{6}, \frac{1}{2}$ equiv $\frac{1}{12}, \frac{1}{12}, \frac{1}{12}, \frac{1}{12}$ so $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$		
	original fractions in your answer. Ascending means smallest to largest.			

Finding a Fraction of <u>a Quantity</u>	'Divide by the bottom, times by the top'. If you need $3/8$ of a number, divide the number in the question by 8 then multiply the answer by 3. Alternatively, use a calculator. In maths 'of' means multiply so you can just type the calculation in as shown on the right. Just \times the fraction by the quantity.	Example: "Find 2/5 of £60" Answer: Start with £60 \div 5 = £12. Now simply multiply by two. 2 × 12 = £24. You could have simply done $\frac{2}{5}$ × 60 instead to give 24
Adding Fractions Adding Mixed Numbers	You must have a common denominator to add fractions. When you do, simply add the numerators. Use equivalent fractions to find common denominators. Whatever you do to the bottom, do to the top! If you have forgotten! Numerator = top, Denominator = bottom.	(a) $\frac{1}{5} + \frac{3}{5} = \frac{4}{5}$ (b) $\frac{2}{5} + \frac{3}{10} = \frac{4}{10} + \frac{3}{10} = \frac{7}{10}$ (c) $\frac{4}{5} + \frac{2}{3} = \frac{12}{15} + \frac{10}{15} = \frac{22}{15}$ (d) $\frac{3}{2} + \frac{2}{7} = \frac{21}{14} + \frac{4}{14} = 1\frac{11}{14}$
Subtracting Fractions Subtracting Mixed Numbers	You must have a common denominator to subtract fractions. When you do, simply subtract the numerators. Use equivalent fractions to find common denominators. Please note: You can cross multiply when adding and subtracting fractions although it's a long way round for some examples.	(a) $\frac{4}{5} - \frac{1}{5} = \frac{3}{5}$ (b) $\frac{4}{5} - \frac{1}{10} = \frac{8}{10} - \frac{1}{10} = \frac{7}{10}$
Multiplying Fractions	Multiply the numerators and multiply the denominators and simplify. You can cancel common factors at the start. You do not need a common denominator.	(a) $\frac{3}{5} \times \frac{4}{7} = \frac{12}{35}$ (b) $\frac{1}{8} \times \frac{4}{9} = \frac{4}{72} = \frac{1}{18}$ (simplified)
Dividing Fractions Multiplying & Dividing Mixed Numbers	Invert (turn upside down) the 2 nd fraction and multiply (as shown above). "Dividing by a fraction is the same as multiplying by its reciprocal" You do not need a common denominator unlike adding or subtracting. How many halves of pizza can you cut from a whole pizza? $1 \div \frac{1}{2} = 2$ of course!	(a) $\frac{1}{8} \div \frac{4}{9}$ is the same as $\frac{1}{8} \times \frac{9}{4} = \frac{9}{32}$ (b) $\frac{3}{4} \div \frac{5}{6}$ is the same as $\frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$ (simplified)
Finding 10%, 5%, 1% of a quantity	To find 10% without a calculator just divide the original number by 10, to find 1% divide it by 10 again. 5% is half of 10%, 2.5% is half of that!	£36: $10\% = £3.605\% = £1.80$ and $1\% = £0.36$ or $36p$ From this you could get $11\% = £3.96$, 12% , 16% etc.
Finding a Percentage of a Quantity using a Calculator	For harder examples just type it into a calculator. Remember, 'of' in maths means multiply. Percentage means out of 100 so you can just type the percentage in as a fraction over 100 and \times by the quantity.	E: Find 23% of 327.5 A: $\frac{23}{100} \times 327.5 = 75.325$ <i>There is a % button on the Casio too. See the tutorial!</i>
Increase or Decrease by a %	Find the % required (see above) and add it on (increase) or take it off (decrease) If it's a calculator question just multiply the quantity by the %	E: Increase £30 by 10% A: $10\% = £3 \text{ so } 30+3 = £33$ E: Decrease 20 by 40% A: $10\% = 2,40\% = 8, 20-8=12$
Writing one Number as a % of Another	Write the 1 st number over the 2 nd as a fraction and \times your answer by 100. It could help thinking as these like test scores. 7 as a % of 24 is 7/24 \times 100.	Example: Write 12 as a % of 31. A: $\frac{12}{31} \times 100 = 38.7\%$
Percentage Change	You are looking at the increase or decrease as a % of the original value. 'Difference divided by the original and multiplied by 100.' Example: A painting was bought for £200 & sold for £250. Find the % increase in its value.	Answer: $\frac{50}{200} = 25\%$ increase in value
Reverse Percentage	You are working out the value BEFORE the % increase or decrease. Use multipliers (some shown), set up an equation & solve working backwards. 1% increase 1.01 1% decrease 0.99 5% increase 1.05 10% decrease 0.90 10% increase 1.10 25% off 0.75	Example: A jumper was priced at £48.60 after a 10% reduction. Find its original price. $J \times 0.9 = 48.60$ Answer: J = 48.60 ÷ 0.9 (The jumper was £54)
	Do not just find the % of the value in the question and take it off or add it!	J = 54

Growth and Decay	Find the starting quantity, \times this by the multiplier to increase or decrease the	E: A bank pays 5% compound interest a year. Bob
	quantity and raise that to the required power. See worked example!	invests £3000. How much will he have after 7 years?
	The multiplier for growth will be greater than 1, for decay less than 1.	Answer: $3000 \times 1.05^7 = 4221.3012$ (about £4221.30)
<i>Exponential</i>	Exponential graphs can be used to model growth and decay. Exponential graphs	Growth $a > 1$ Decay $0 < a < 1$
Functions and their	can be written in the form $y = a^x$. They are curves! If $a > 1$ you get growth.	$y = 5^{\chi}$ $y = 2^{\chi}$ $y = 0.5^{\chi}$ 6
<u>Graphs</u>	If $0 < a < 1$ you have decay. In 'real life situations these graphs may be written	
	as $y = ab^x$. An example could be the value of a car: $P = 25000 \times 0.92^t$. This	
	simply models the price of a car with a 'new cost' of £25000 which is losing	
	8% a year. An investment could be represented by $I = 4000 \times 1.03^n$. This just	2
	shows an initial investment of $\pounds4000$ and a compound rate of 3% over <i>n</i> years.	
Simple and	Simple Interest : Interest calculated on ONLY the original investment.	Example: Simple interest at 3% on £1000 over 4 years
Compound Interest	Compound Interest : Interest is calculated on BOTH the original investment.	will give: $4 \times \pounds 30 = \pounds 120$. This gives a total investment
<u>compound interest</u>	and any interested gained over time. (This as interest on interest which is better)	of £1120. Compound Interest at 3% on £1000 over 4
	Be careful with two step calculations with different rates for different periods.	years gives: $1000 \times 1.03^4 = \pounds 1125.51$
VAT	VAT is just 'Value Added Tax' and is a tax added to some of the goods and	Example: A car is priced at £2000 before tax. Find the
	services we buy. The current rate for VAT in the UK is 20%	price after VAT has been applied at 20%:
	All you need to do is find 20% and add it on or just use the multiplier 1.2.	Answer: $\pounds 20000 \times 1.2 = \pounds 24000$ (You can find 20%)
	Careful! If the price already includes tax divide by 1.2 to find the pre VAT cost	and add it on if you don't want to use a multiplier)
Negative Numbers	If you are either multiplying or dividing with negative numbers and the signs	(a) $-2 \times 4 = -8$ (b) $-3 \times -5 = 15$
$(\times \text{ and } \div)$	are the same the answer is positive , if they are different the answer is negative .	(c) $3 \div -3 = -1$ (d) $-16 \div -4 = 4$
Negative Numbers	Adding a negative decreases the value. Subtracting a negative increases the	(a) $2-4=-2$ (b) $3-5=8$
<u>(+ and -)</u>	value. Start on a number line and either move up of down from your start point.	(c) $-2 + -5 = -7$ (d) $-45 = 1$
BODMAS/BIDMAS	Brackets then Powers (BO/BI) comes first.	(a) $3 + 4 \times 2 = 11$ (do the multiplication first)
(Order of	Multiplication then Division (DM) comes next.	(b) $3 + (4+1)^2$ Brackets: (5) $^2 = 25$ and then add $3 = 28$
Operations)	Addition then Subtraction (AS) comes last.	(c) $12 \div 0.5 - 3 = 21$ (division first!)
<u>Multiplying</u>	Method 1: Count the total digits after the decimals at the start. The number	Example: 0.4×0.2 (2 digits after the decimals in total)
Decimals	you start with is the number you finish with. You may have to add 0's.	$4 \times 2 = 8$ so my answer is 0.08 as I need to finish with
	Method 2: Consider place value. Tenths \times Tenths = Hundredths.	2 digits after the decimals. $0.3 \times 0.15 = 0.045$
<u>Dividing by a</u>	Simply multiply both numbers by powers of 10 until the decimal you are	(a) $4 \div 0.2 = 40 \div 2 = 20$ (b) $6 \div 0.03 = 600 \div 3 = 200$
Decimal	dividing by is an integer. At this point simply divide the numbers.	(c) $1.5 \div 0.3 = 15 \div 3 = 5$ (d) $18 \div 0.06 = 1800 \div 6 = 300$
Standard Form	The number must be between 1 and 9.9 and multiplied by a power of ten.	(a) $8400 = 8.4 \times 10^3$ (b) $671000 = 6.71 \times 10^5$
	+ powers of 10 for 'large numbers' and – powers of 10 for 'small numbers'	(c) $0.00036 = 3.6 \times 10^{-4}$ (d) $0.097 = 9.7 \times 10^{-2}$
Calculating With	When multiplying numbers in SF, multiply the numbers and add the powers.	(a) $(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
Standard Form	When dividing numbers in SF, divide the numbers and subtract the powers.	
	Make sure your answer is in standard form. You may need to adjust at the end	(b) $(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
	as shown in example (c) to the right. The initial answer is not in standard form.	(c) $(4.1 \times 10^6) \times (3 \times 10^9) = 12.3 \times 10^{15} = 1.23 \times 10^{16}$
	1	

<u>Surds (Simplifying)</u>	$\sqrt{36}$ is a rational number as it is 6. Surds are irrational square roots. $\sqrt{2}$ is an example of a surd and we say it's an 'exact value'. Its answer is a non-terminating (keeps going!), non-recurring (its decimal part doesn't repeat) decimal. Don't be tempted to write a surd as a decimal or round it, just leave it in exact form. When simplify surds look for the largest square number that goes into the surd (highest square factor), split the roots and simplify. Example: Simplify $\sqrt{12}$. The largest square number that goes into 12 is 4. You can write $\sqrt{12}$ as $\sqrt{4 \times 3}$. Using the rules shown below $\sqrt{4} \times \sqrt{3}$ giving $2 \times \sqrt{3} = 2\sqrt{3}$. Here are the rules! (1) $\sqrt{a} \times \sqrt{a} = a$ (2) $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (3) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	(a) $\sqrt{8} = \sqrt{4 \times 2} = \sqrt{4} \times \sqrt{2} = 2\sqrt{2}$ (b) $\sqrt{45} = \sqrt{9 \times 5} = \sqrt{9} \times \sqrt{5} = 3\sqrt{5}$ (c) $\sqrt{108} = \sqrt{36 \times 3} = \sqrt{36} \times \sqrt{3} = 6\sqrt{3}$ (d) (In reverse) $5\sqrt{3} = \sqrt{25} \times \sqrt{3} = \sqrt{25 \times 3} = \sqrt{75}$ NB: \sqrt{x} and $x^{\frac{1}{2}}$ are equivalent if you are working with both surds and the rules of indices. (a) $\sqrt{3} \times \sqrt{3} = 3$ (b) $\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3\sqrt{2}$
Surds (Adding and	Make sure you simplify your answer! $\sqrt{2} \times \sqrt{12} = \sqrt{24} = 2\sqrt{6}$ for example. You can only add and subtract like surds. In algebra $a + 2a = 3a$. This is true	(a) $\sqrt{3} \times \sqrt{3} = 3$ (b) $\sqrt{3} \times \sqrt{6} = \sqrt{18} = 3\sqrt{2}$ (c) $4\sqrt{3} \times 2\sqrt{5} = 8\sqrt{15}$ (d) $\frac{\sqrt{10}}{\sqrt{2}} = \sqrt{\frac{10}{2}} = \sqrt{5}$ (a) $3\sqrt{2} + 4\sqrt{2} = 7\sqrt{2}$ (b) $9\sqrt{5} - 6\sqrt{5} = 3\sqrt{5}$
<u>Subtracting)</u>	for surds. $\sqrt{5} + 2\sqrt{5} = 3\sqrt{5}$. Sometimes you may have to simplify first!	(c) $5\sqrt{2} - \sqrt{8} = 5\sqrt{2} - 2\sqrt{2} = 3\sqrt{2}$ (Just simplify $\sqrt{8}$)
<u>Surds (Rationalising</u> <u>the Denominator)</u>	A surd is an irrational number, so if you have a surd in the denominator you rationalise the denominator. This will leave an integer value in the denominator. Scenario 1: No + or – sign in the denominator. In this case simply multiply the numerator and the denominator by the surd and simplify. (see Example 1) Scenario 2: A + or – sign in the denominator and 2 numbers (at least one being a surd). Simply multiply the numerator and the denominator to create the difference of two squares. To rationalise swap the sign between the two values in the denominator. You will need to simplify your answer. (see Example 2)	Example 1: $\frac{5}{\sqrt{2}} = \frac{5 \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{5\sqrt{2}}{2}$ Example 2: $\frac{7}{5+\sqrt{3}} = \frac{7 \times (5-\sqrt{3})}{(5+\sqrt{3}) \times (5-\sqrt{3})} = \frac{7(5-\sqrt{3})}{25-5\sqrt{3}+5\sqrt{3}-9} = \frac{7(5-\sqrt{3})}{16}$
<u>Converting</u> <u>Recurring Decimals</u> <u>into Fractions</u>	You know, for example, $\frac{1}{3} = 0.3$, but what if you were asked to write 0.4 as a fraction without a calculator? All you need to do is set up & solve an equation: Let $x = 0.4$. Simply multiply x by powers of 10 until the pattern after repeats, subtract away, solve the equation & simplify if necessary. Here is the worked answer: $x = 0.4$ so $10x = 4.4$. Now subtract to give $10x - x = 4.4 - 0.4$. This will give $9x = 4$ and finally simply solve the equation to write $x = \frac{4}{9}$. Be very careful to check how many digits recur after the decimal. Example (a) and (b) differ. In (a) both the 2 and the 3 repeat. In (b) only the 5 repeats. Look out for the dots! Be careful as, for example, $0.215 = 0.216216216$ The dots mark the start and the end of the pattern and, of course, the 1 repeats.	(a) Write 0.23 as a fraction in its simplest form. Let $x = 0.23$, now $10x = 2.32$ now go to $100x = 23.23$. The pattern matches for $x & 100x$ so subtract away: $100x - x = 23.23 - 0.23$ so $99x = 23$ and $x = \frac{23}{99}$ (b) Write 0.15 as a fraction in its simplest form. Let $x = 0.15$, now $10x = 1.5$ and $100x = 15.5$. The pattern matches for $10x & 100x$ so subtract away: $100x - 10x = 15.5 - 1.5$ so $90x = 14$ and $x = \frac{7}{45}$ (Make sure you fully simplify your final answer)

Ratio, Proportion and Rates of Change

Simplifying Ratio	Simplify them like fractions by dividing by common factors if it's not obvious.	(a) 5:10 is 1:2 in its simplest form (b) 14:21 is 2:3		
Ratios in the form	Divide both numbers in the ratio by one of numbers to leave one of them as 1.			
1: <i>n</i> / <i>n</i> :1	Be careful when it comes to which way round the answer must be! $1:n$ or $n:1$	5:7 would be 1: $\frac{7}{5}$ as 1: <i>n</i> (÷ by 5) & $\frac{5}{7}$:1 as <i>n</i> :1(÷ 7)		
Ratio Sharing	Add the total parts. A ratio of 4:2:1 has 7 parts (not 3 parts as $4 + 2 + 1 = 7$)	"Share £60 in a 3:2:1 ratio" 6 total parts. £60 divided		
	Divide the amount to be shared to find the value of one part . Simply multiply	by $6 = \pounds 10$. Each part is worth $\pounds 10$		
	this value by the each number in the ratio. Remember the units if applicable!	$3 \times \pounds 10 = \pounds 30$ $2 \times \pounds 10 = \pounds 20$ $1 \times \pounds 10 = \pounds 10$		
Ratios Already	Sometimes a ratio is already shared and you will need to work backwards.	Example: Money was shared in the ratio 3:2:5 between		
Shared	Simply find what one part is worth and then answers the questions given. The	Ann, Bob and Cat. Given that Bob had £16, find out		
	question will give you the clue to which quantity you are dividing. In these	how much was shared. A: Bob has 2 parts. This means		
	questions just think (for example) "3 parts is worth £12, so 1 part must be worth	$\pounds 16 = 2$ parts. One part will be worth $\pounds 8$. There are 10		
	£4" and then use this information to answer the question.	parts in total so $10 \times 8 = \text{\pounds}80$. A total of $\text{\pounds}80$ was shared.		
Ratios to Fractions	Add the total parts in the ratio. This becomes the denominator of the fractions.	Example: 2:3 has 5 parts so this would be $\frac{2}{5}$ and $\frac{3}{5}$.		
	Simply write each part over that denominator. You should now be able to	Example: 2:5 has 5 parts so this would be $-$ and $-$. 5 5		
	convert to decimals too either by simplifying or pressing SD on the calculator.			
Ratios to %	Write the ratios as fractions (as shown above) and then convert them into %	Example: 2:3 would be 40% and 60% when shared		
Best Buys	Find the unit cost by dividing the price by the quantity . The lowest number is	8 cakes for $\pounds 1.28 = 16p$ each (this is the unit cost)		
	the item that is the best buy. Be careful and don't round the price too early!	13 cakes for $\pounds 2.05 = 15.8p$ each (so pack of 13 is better)		
Basic Proportion	Find out the value of one item by dividing and then multiply your answer by	Example: 3 cakes require 450g of sugar to make. Find		
	the number of them you need. Some of these are recipe type questions and	how much sugar 5 cakes require.		
	others are just shopping type scenarios. Just find the cost, weight or size of 1	Answer: $450 \div 3 = 150$ g per cake. Now multiply this		
	and then multiply up. Using the units given may help you understand more.	by 5 to give 750g required for 5 cakes.		
Exchange Rates	$\pounds 1 = \$1.6$. Multiply by 1.6 to go from \pounds to $\$$ & divide by 1.6 to go from $\$$ to \pounds	E: Convert £12 to \$ A: $12 \times 1.6 = 19.20		
Direct and Inverse	Direct: $y = kx$ or $y \propto x$ (This just reads y is directly proportional to x.)	Example 1: " p is directly proportional to q .		
<u>Proportion</u>	With direct proportion k is multiplied by x to get y . As x increases, y increases.	When $p = 12$, $q = 4$. Find p when $q = 20$ "		
	<i>k</i> is known as the constant of proportionality. It's just a 'fixed value' multiplier.	$p = kq$ $\therefore p = 3q$		
	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$ (This just reads y is inversely proportional to x.)	Answer: 1^{st} solve for k : $12 = k(4)$ now: $p = 3(20)$		
		$k = 3 \qquad \qquad p = 60$		
	With inverse proportion k is divided by x to get y . As x increases, y decreases.	Example 2: " <i>p</i> is inversely proportional to <i>q</i> .		
	To solve problems involving direct and inverse proportion:	When $p = 20$, $q = 10$. Find p when $q = 4$ "		
	(1) Pick the right equation (for either direct or inverse) and substitute the values			
	given in the question to solve for <i>k</i> (the constant of proportionality)	$p = \frac{k}{200} \qquad \therefore p = \frac{200}{200}$		
	(2) Rewrite the equation with the correct value of k you have just found.	\dot{q} \dot{q}		
	(3) Substitute the 2^{nd} given value in for <i>x</i> or <i>y</i> to find the required missing value.	k = 1 states $k = 20$ k = 200		
	(Be careful with examples such as y is proportional to the square of x . This can	Answer: 1 st solve for k: $20 = \frac{k}{10}$ now: $p = \frac{200}{4}$		
	be written as $y = kx^2$ instead of $y = kx$). The root of x is written as \sqrt{x} .	$k = 200 \qquad \qquad p = 50$		

Direct and Inverse	Graphs showing Direct Proportion can be written in the form $y = kx^n$		
Proportion Graphs	where k is the constant of proportionality. The notation $y \propto x^n$ may be used and	Direct Proportion Graphs	Inverse Proportion Graphs
	means exactly the same thing. Direct graphs will always have the point $(0,0)$ on.	$y = 3x^2$	$y = \frac{2}{x}$
	The graph could be a straight line such as $y = 2x$ or a curve such as $y = 3x^2$.	·6	$y = \frac{3}{x^2}$
	Graphs showing Inverse Proportion can be written in the form $y = \frac{k}{r^n}$	y = 2x	4
	where k is the constant of proportionality. The notation $y \propto \frac{1}{x^n}$ may be used.	$y = 0.5x^5$	$y = \frac{0.5}{x^5}$
	These will not pass through the point $(0,0)$ & approach the <i>x</i> axis as <i>x</i> increases.		0 2 4 6 8

Algebra

	Algebia			
Terminology	Expression: A collection of terms (letters (unknowns/variables) and possibly numbers (constants)) without an equals sign. You don't solve an expression! Equation: A collection of terms (letters/numbers) with an equals sign. You can look to solve an equation for values of the unknown term (letter). Identity: An equation that holds true for all values. The \equiv sign is often used. Formula: A set of symbols that expresses a rule. Inequality: When a two values are not equal (\neq).	Expressions: $4a + 2b$, $x^2 - 3$, $1 - 4y$, Equation: $4a + 2b = 1$ Identity: $4a + 2b = 2(2a + b)$ Formula: $A = \pi r^2$ Inequality: $x > 4$		
Simplifying Expressions	Just collect the 'like terms'. Be careful with negatives! x^2 and x are not like terms. $4x + 1$ is not $5x$ as 1 is not an x. It's a known as a constant.	(a) $2x+3y+4x-5y+3$ becomes $6x-2y+3$ (b) $3x+4-x^2+2x-1$ becomes $5x-x^2+3$		
Identities	An identity holds true for any value you substitute in. What does that mean? $4x+10 \equiv 2(2x+5)$ is an example. Substitute 2 in for x and each side will give 14. This will be the same for all values of x. Notice the = instead of =?	(a) $x^2 - 2x + 4 \equiv (x - 1)^2 + 3$ (b) $x^2 + x - 6 \equiv (x - 2)(x + 3)$		
$x \underline{\text{times}} x^{-}$	Multiplying x by x gives x^2 and not $2x$. Check this with 3, 5, or 10 for example	Squaring is multiplying by itself and not by 2.		
$p \times p \times p$	$p \times p \times p$ is p^3 and not $3p \cdot 3p$ means $3 \times p$. This is a common error!	$3 \times 3 \times 3 = 27$ and not 9 $5 \times 5 \times 5 = 125$ and not 15		
p+p+p	This $3p$ not p^3 . Just use numbers to check!	2+2+2=6 and not 8 $4+4+4=12$ and not 64		
Basic Powers (×&÷)(Rules of Indices) $a^m \times a^n = a^{m+n}$ and $a^m \div a^n = a^{m-n}$	When multiplying with the same letter or number (base) just add the powers. When dividing with the same letter or number (base) just subtract the powers. Remember $p = p^1$ and $p^0 = 1$. The base must be the same! $a^4 \times a = a^5$ BUT $a^6 \times b^3 \neq ab^9$ (The symbol \neq means doesn't equal)	(a) $p^5 \times p^3 = p^8$ (b) $p^7 \div p^4 = p^3$ (c) $p^{12} \times p = p^{13}$ (d) $2a^5 \times 3a^3 = 6a^8$ (e) $48y^5 \div 16y = 3y^4$ (f) $\frac{4m^6}{2m^2} = 2m^4$ (g) $m^2n \times m^5n^{-1} \times 2m^{-3}n^6 = 2m^4n^6$		
$\frac{\text{The Zero Power}}{(\text{Rules of Indices})}$ $a^{0} = 1$	A number raised to the power of zero is 1. An example could be $4^0 = 1 \text{ or } x^0 = 1$. Be careful with examples such as $3y^0$ this is not 1, it's $3 \times 1 = 3$ as the zero power is only on the y. Using the rule below though $(3y)^0 = 1$.	(a) $4^0 = 1$ (b) $x^0 = 1$ (c) $(xy)^0 = 1$ (d) $xy^0 = x$ N.B 0^0 is undefined! Can you think or explain why?		

Raising to a Power	When a number or algebraic term already raised to a power is raised to another	(a) $(x^2)^3 = x^6$ (b) $(x^4y^5)^{0.5} = x^2y^{2.5}$
$\frac{(\text{Rules of Indices})}{\left(a^{m}\right)^{n} = a^{mn}}$	power you multiply the powers. A common error is to multiply the bases by the powers instead of the powers by the powers. Example (c) to the right shows that 3 is to the power of 1. The common error is to write 12 instead of 3^4 .	
Negative Powers (Rules of Indices)	If you have number or algebraic term raised negative power this can be written as the reciprocal of that number or term raised to the positive power.	(a) $3^{-2} = \frac{1}{3^2}$ which is $\frac{1}{9}$ (b) $5^{-3} = \frac{1}{5^3}$ which is $\frac{1}{125}$
$a^{-m} = \frac{1}{a^m}$	Some examples: (i) $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$ (ii) $\left(\frac{2}{3}\right)^{-4} = \left(\frac{3}{2}\right)^4 = \frac{81}{16}$ (iii) $\left(\frac{x}{y}\right)^{-z} = \left(\frac{y}{x}\right)^z$	Tougher one! (c) $0.5^{-2} = 4$ (d) $0.2^{-3} = 125$
<u>Fractional Powers</u> (Rules of Indices)	"Find the <i>nth</i> root of the number and then raise it to the power of <i>m</i> ". This is easier to do than it is to explain! If you have $8^{\frac{1}{3}}$ you take the third (or cube) root	(a) $16^{\frac{1}{4}}$ You need the 4 th root of 16 which is 2 as $2^4 = 16$
$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	of 8. This gives you 2. Of course $2^1 = 2$ which gives us our answer. Now, if you $\frac{2}{2}$	(b) $27^{\frac{2}{3}} = \left(27^{\frac{1}{3}}\right)^2 = \left(3\right)^2 = 9$ (c) $32^{\frac{3}{5}} = \left(32^{\frac{1}{5}}\right)^3 = \left(2\right)^3 = 8$
	have 8^3 , you do exactly the same at the start as before but you need to raise 2 to the power of 2 this time. $2^2 = 4$ so the answer is 4. DO NOT DIVIDE THE NUMBER (BASE) BY THE POWER! Look out for negative fractional powers	(d) $125^{\frac{4}{3}} = \left(125^{\frac{1}{3}}\right)^4 = 625$ (e) $\left(\frac{25}{36}\right)^{-\frac{1}{2}} = \left(\frac{36}{25}\right)^{\frac{1}{2}} = \frac{6}{5}$
Expanding Single Brackets	Multiply the number or algebraic term on the outside by each term inside the brackets. Be careful with negatives! The question may ask you to 'multiply out'	(a) $5(3x+2) \equiv 15x+10$ A common error is $15x+5$. (b) $2x(3x-4) \equiv 6x^2 - 8x$
Expanding Double Brackets Expanding Triple Brackets	Multiply each term (all 4) by one another. You can use F.O.I.L & then simplify. First, Outer, Inner, Last . Remember to simplify ! Don't forget $+4x - x$ is $+3x$ and x times x is x^2 not $2x$. Be careful! $(a+b)^2 = (a+b)(a+b)$ and NOT $a^2 + b^2$	$(x+2)(x-3) (2x-1)(3x+2)$ (a) $x^2-3x+2x-6$ (b) $6x^2+4x-3x-2$ x^2-x-6 $6x^2+x-2$
Factoring Single Brackets	Find the HCF of numbers &/or terms and write these on the outside of the bracket. Inside will be terms you have to \times the outside by to get the original.	(a) $6x-3 \equiv 3(2x-1)$ (b) $15x+10 \equiv 5(3x+2)$ (c) $6x^2+8x \equiv 2x(3x+4)$ (d) $x^2-x^3 = x^2(1-x)$
$\frac{\text{Factoring Quadratics}}{\text{when } a = 1}$	When a quadratic expression is in the form $ax^2 + bx + c$ find the two numbers that ADD to give <i>b</i> and MULTIPLY to give <i>c</i> . Be careful with negatives. Have 2 sets of brackets with <i>x</i> in each and then choose the factors!	(a) $x^2 + 7x + 10 \equiv (x+5)(x+2)$ (b) $x^2 + 2x - 8 \equiv (x+4)(x-2)$
<u>Factoring</u> <u>Quadratics</u> when	This method is a slightly less mathematically rigorous approach but can make factoring easier when you have, for example $6x^2 + 5x - 4$ to factor.	Answer: (1) Let's start with $(6x)(6x)$. (2) Multiply <i>a</i> by <i>c</i> to give $ac = -24$
$a \neq 1$	When a quadratic expression is in the form $ax^2 + bx + c$: (1) Put the value of <i>a</i> in the front of each of the 2 brackets. (Don't panic here!) (2) Multiply <i>a</i> by <i>c</i>	(3) You need 2 numbers that add to give +5 and multiply to give -24 . They will be +8 and -3 (4) This now gives $(6x+8)(6x-3)$.
	(3) Find the two numbers that add to give by and multiply to give <i>ac</i>(4) Place these values in the brackets with the correct sign.	(5) At this stage take common factors out of both brackets (where applicable) and simplify:
	(5) Simplify and cancel common factor. Example: Factor $6x^2 + 5x - 4$	$2(3x+4)\times 3(2x-1)$, Cancel to give $(3x+4)(2x-1)$

Factoring the	An expression in the form $a^2 - b^2$ you can factorise to give $(a+b)(a-b)$.	(a) $x^2 - 25 \equiv (x+5)(x-5)$ Each term is a squared term
Difference of Two	If you look at the examples to the right, when you expand the double brackets	(b) $16x^2 - 81 \equiv (4x+9)(4x-9)$
Squares	the two middle terms cancel to just leave the first and last.	
<u>Completing the</u>	There are times when a quadratic expression can't be factored. When a	Example 1: Complete the square for $x^2 - 6x + 2$
<u>Square for</u>	quadratic is in the form $x^2 + bx + c$ you can write this in the form $(x + p)^2 + q$	Answer:
<u>Quadratic</u> <u>expressions (when</u>	(The form $(x+p)^2 + q$ is found by evaluating $\left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$.)	(a) $(x-3)$ (b) $(x-3)^2$ (c) $(x-3)^2-9+2$
a = 1).		which will tidy to give $(x-3)^2 - 7$
	This looks quite tough but it isn't too bad! Just follow these 3 steps: (a) Have a set of brackets with x in and half the value of b in.	Example 2: Complete the square for $x^2 + 5x - 3$
	(b) Square the bracket.	Answer:
	(c) Subtract $\left(\frac{b}{2}\right)^2$ from <i>c</i> and tidy the expression.	(a) $\left(x+\frac{5}{2}\right)$ (b) $\left(x+\frac{5}{2}\right)^2$ (c) $\left(x+\frac{5}{2}\right)^2 - \frac{25}{4} - 3$
	After a few goes it becomes easier. Try and work with fractions as your work later on in maths will require you to do examples without a calculator.	which will tidy to give $\left(x + \frac{5}{2}\right)^2 - \frac{37}{4}$
	There are advantages to writing an expression in the form $(x+p)^2 + q$. You can	You can say that the minimum value of the expression
	gather information about the maximum or minimum of a function and the axis of symmetry. The completed square form can also allow us to solve quadratic	in part (a) would be -7 and $-\frac{37}{4}$ in (b).
	equations of the form $ax^2 + bx + c = 0$ when factoring is not possible.	We will look at this later on in more depth.
Completing the	When a quadratic expression is in the form $ax^2 + bx + c$ where $a \neq 1$ you can	Example 1: Complete the square for $4x^2 + 8x - 3$
<u>Square for</u>	complete the square and write it in the form $p(x+q)^2 + r$. You can use a similar	Answer: Factor the 4 out $4\left\lceil x^2 + 2x \right\rceil - 3$. At this stage
<u>Quadratic</u> expressions (when	technique to that above but factor out <i>a</i> at the start. Here is an example:	complete the square inside the brackets to give
$expressions (when a \neq 1).$	Complete the square for $2x^2 - 12x + 4$. You need to take the factor of 2 out of	$4\left[(x+1)^2-1\right]-3$. Now expand the square brackets to
	the first two terms: $2\lfloor x^2 - 6x \rfloor + 4$. At this stage you can complete the square	give $4(x+1)^2 - 4 - 3$. Finally tidy to $4(x+1)^2 - 7$
	inside the square brackets to give: $2[(x-3)^2-9]+4$. You can now expand the	Example 2: Complete the square for $-x^2 + 5x - 1$
	square brackets to give $2(x-3)^2 - 18 + 4$ which gives $2(x-3)^2 - 14$.	Answer: Factor the -1 out to give $-\begin{bmatrix} x^2 - 5x \end{bmatrix} - 1$. Now
	This method can be used when <i>a</i> is a negative number as shown to the right. You can only complete the square when the value of <i>a</i> is 1. In the first example you could graph the quadratic. This would open upwards	complete the square $-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]-1$. Expand the
	(positive), have a minimum point at $(-1, -7)$ and the axis of symmetry would be the line $x = -1$.	square brackets $-\left(x-\frac{5}{2}\right)^2 + \frac{25}{4} - 1$ and tidy to give the
	In the second example the graph would open downwards (negative), have a maximum point $\left(\frac{5}{2}, \frac{21}{4}\right)$ and the axis of symmetry would be the line $x = \frac{5}{2}$	answer $-\left(x-\frac{5}{2}\right)^2+\frac{21}{4}$.

Formulae (Writing)	You may be asked to write and use a formula given a scenario. Use terms	Example: "Bob charges £3 per window and a £5 call		
<u>romanae (winting)</u>	(letters) to represent the unknown quantities such as $C \& N$ and numbers to	out charge" Answer: $C = 3N + 5$ with N being the		
	represent the constants such as $+5$ shown to the right which is a fixed value.	number of windows cleaned and C the cost.		
Formulae	Substitute the numbers given into the formula or expression. Swap letters for	Example: $a = 3$, $b = 2$ and $c = 5$ Find:		
(Substituting into)				
(Substituting Into)	numbers. Be careful on the order. If $x = 3$ and you need $2x^2$ square 3 first, then	(i) $2a$ which is just $2(3) = 6$ (ii) $2a - 2b = a^{2}(2) - 2(2) - 5$		
	multiply by 2. There is a difference between $2x^2$ and $(2x)^2$. Be careful with	(ii) $3a - 2b$ so $3(3) - 2(2) = 5$		
	negatives. Squaring makes it positive! Also, subtract a – means add it.	(iii) $b^2 - 5$ which is $(2)^2 - 5 = -1$		
Formulae/Equations	Changing the subject of an equation is like solving one without a 'pretty'	Example: Make <i>x</i> the subject of the equation		
(Rearranging)	answer at the end. Instead of your answer being a number, it's usually an	2x-1		
	expression containing other terms (letters) and possibly numbers. Don't panic;	$y = \frac{2x - 1}{z}$		
	just apply the same rules as for solving.	\sim		
	If you have a +, subtract this value from both sides. If you have a – then add it	A: $y = \frac{2x-1}{z}$. Start by multiplying both sides by z to		
	to both sides, a \times then divide both sides by this quantity and a \div then multiply	z		
	both sides by this quantity. What you do to one side, you just do to the other!	give $y_z = 2x - 1$. Now add 1 to both sides so $y_z + 1 = 2x$		
	If there are no + or – subtract signs then it will be \times or \div . Remember	and finally divide both sides by 2 to give $\frac{yz+1}{2} = x$.		
	$ut = u \times t$ and not $u + t$. Brackets means multiply too!	$\frac{1}{2}$		
	It doesn't matter if you have your subject on the right or the left hand side!	You now have <i>x</i> as the subject.		
Solving Linear	Get the <i>x</i> 's (unknowns or letters) on one side and the numbers on the other. Use	У 1 –		
Equations	the balance method. Simply do the opposite operation to what the equation	$2x-3=7 (a) 2x = 10 x = 5 (b) 3p+6=18 3p+6=18 3p=12 (c) \frac{y}{2}=6$		
Unknowns on one	gives until you have only x's on one side and only numbers on other.	2x-3=7 $3p+6=18$ y		
side	If you have a +, subtract this value from both sides. If you have a – then add it	(a) $2x = 10$ (b) $3y + 6 + 10$ (c) $\frac{y}{2} = 6$		
Unknowns on both	to both sides, a \times then divide both sides by this quantity and a \div then multiply			
sides	both sides by this quantity. What you do to one side, you just do to the other!	$p = 4 \qquad \qquad y = 12$		
Setting Up and	Find an expression for each piece of information given in the question, add	E: Bob is <i>n</i> years old. Fred is twice his age & Sue is		
Solving Linear	them together, and simplify the expression. This will then be set equal to a	one year your than Bob. Their total age is 39. Set up		
Equations	value given in the question (or implied) to give you your equation. Solve the	and solve an equation to find the age of Bob. A:		
	equation and then make sure you answer the original question in context!	n+2n+n-1=39 this gives $4n-1=39$ and $n=10$		
Equations with	You can think of this a couple of different ways:	Example 2 (Cross Multiplying)		
Fractions	(1) Multiplying through by the LCM to 'clear' the fractions.			
	(2) Cross multiplying to 'clear' the fractions.	Solve the equation: $\frac{x-1}{4} = \frac{x}{5}$		
		Answer: Cross Multiplying to get: $5(x-1) = 4x$.		
	Example 1: (Multiplying by the LCM). Solve the equation: $\frac{x}{3} + 4 = 2 - \frac{3x}{4}$			
	Answer: Multiply both sides of the equation by 12 (which is the LCM) to	Expanding to get $5x-5=4x$ which gives $x=1$.		
	leave: $4x + 48 = 24 - 9x$. At this stage you add $9x$ and subtract 48 to both sides	Use either on both methods to solve acceptions with		
		Use either or both methods to solve equations with		
	of the equation. You can now solve to get $13x = -24$ and $x = \frac{-24}{13}$	fractions. It's often a case of being flexible and seeing which mathed is guickest		
	15	which method is quickest.		
	The section later on algebraic fractions will help for harder examples			

Solving Linear Simultaneous Equations (Algebraically)	If you have 2 unknowns (x and y for example) you need at least two equations to find the value of both x and y . To do this you solve simultaneous equations. Either make the value in front (coefficient) of x 's the same or the y 's the same. Once they are the same (eg both 5) if the signs in front are the same , subtract if they are different , add . You will have now eliminated one unknown (x or y) Solve the equation you have for either x or y . (This will be a simple equation) Finally substitute that value back in to any of the other equations to solve for the other unknown. Check your answers work for both!	(a) 2x + y = 7 3x - y = 3 (b) 5x + 2y = 9 10x + 3y = 16	Add them to get $5x = 10$ & $x = 2$. Substitute in: $2(2) + y = 7$ so $y = 3$ Multiply 1 st equation by 2. 10x + 4y = 18. Subtract to eliminate x 's to give $y = 2$. Substitute in: $5x + 2(2) = 9$ so $x = 1$
<u>Solving Linear and</u> <u>Non Linear</u> <u>Simultaneous</u> <u>Equations</u> (Graphically)	These equations are solved by drawing the graphs (straight lines) of the two equations given. The solutions (answer to the question) will be where the lines meet. The graph to the right shows the solutions of the simultaneous equations $y=5-x$ and $y=2x-1$. They intersect (meet) at the point with coordinates (2,3). This means the solutions will be $x = 2$ and $y = 3$.		y = 2x - 1
Solving Quadratics (the form $ax^2 = b$)	A quadratic equation will have a 'squared term' in such as x^2 or t^2 as its highest power. An example could be $x^2 = 36$. When the quadratic is in the form $ax^2 = b$ simply isolate the x^2 term so you have $x^2 = to$ some value and square root both sides to solve. Remember there will be a positive and a negative solution! $3 \times 3 = 9$ and $-3 \times -3 = 9$ too. We must write both answers down.	$x^{2} = 36$ (a) $x = \pm \sqrt{36}$ $x = \pm 6$	(b) $2x^{2} = 98 \qquad x^{2} + 10 = 25$ $x^{2} = 49 \qquad (c) \qquad x^{2} = 15$ $x = \pm\sqrt{49} \qquad x = \pm\sqrt{15}$ $x = \pm7 \qquad x = \pm\sqrt{15}$
$\frac{\text{Solving Quadratics}}{(\text{the form})} ax^2 + bx = 0)$	These can be factored and set to zero as there is no constant. Here is an example: $x^2 + 4x = 0$ now factor the <i>x</i> to give $x(x+4) = 0$. At this stage either $x = 0$ or $x+4=0$ as one or both of the factors will = 0 For the answer to be 0 either one or both of the factors must = 0. (Just think logically! $5 \times 0 = 0$, $9 \times 0 = 0$). This gives us the solutions $x = 0$ or $x = -4$.	(a) $x^2 - 3x = 0$ x(x-3) = 0 x = 0 or $x = 3$	$x^{2} = 5x$ (b) $x^{2} - 5x = 0$ (c) $2x^{2} + 8x = 0$ $2x(x+4) = 0$ x(x-5) = 0 x = 0 or x = 5 $x = 0 or x = -4$
$\frac{\text{Solving Quadratics}}{\text{Factoring}} (a=1)$	You have seen previously how to factor and expression in the form $ax^2 + bx + c$. You can use this technique to solve equations in the form $ax^2 + bx + c = 0$. Once the expression is factored and set = to a value it becomes an equation and you can solve for x. Set the quadratic = 0 and solve. Here is an example: Solve the equation $x^2 - x - 6 = 0$. Using the method shown previously you can factor to give $(x-3)(x+2) = 0$. This means either $(x-3) = 0$ or $(x+2) = 0$. Using these facts you can say $x = 3$ or $x = -2$.	Answer: Factor x = 2 or $x = -5Example 2: SolAnswer: First regive x^2 + x - 12 =$	ve the equation $x^2 + 3x - 10 = 0$ to give $(x-2)(x+5) = 0$. This means ve the equation $x^2 + x = 12$ earrange into $ax^2 + bx + c = 0$ to = 0. Now factor to $(x+4)(x-3) = 0$. is the solutions $x = -4$ or $x = 3$.
$\frac{Solving Quadratics}{Factoring} (a \neq 1)$	You have seen previously how to factor and expression in the form $ax^2 + bx + c$ when $a \neq 1$. You can use the same method to solve an equation in the form $ax^2 + bx + c = 0$ as the one used in the previous section. As with all equations check that your answer is valid especially if it's in context. Some solutions may not be valid such as negative answers where missing lengths are involved.	Example: Solve Answer: Factor	the equation $2x^2 + 7x - 4 = 0$ to give $(2x-1)(x+4) = 0$. This will ations $x = \frac{1}{2}$ or $x = -4$.

<u>Solving Quadratics</u> (Using the formula)	When a quadratic equation is in the form $ax^2 + bx + c = 0$ the solutions can be found using the quadratic equation $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. You would use the formula if the equation doesn't factor or you can't factor it easily. Be careful with the signs on $a, b \& c$ and make sure you obtain the + and the – solution using a calculator. To do this simply scroll to the \pm part, start with + and then change to – for the second solution. On a calculator use brackets for x and just substitute the values in to give $\frac{-(b) \pm \sqrt{(b)^2 - 4(a)(c)}}{2(a)}$.	Example: Solve the equation $3x^2 + x - 5 = 0$ Answer: $a = 3, b = 1$ and $c = -5$ Substitute in to give $x = \frac{-1 \pm \sqrt{(1)^2 - 4(3)(-5)}}{2(3)}$ The + answer will be $x = \frac{-1 + \sqrt{61}}{6}$ or 1.14 to 2 dp. The - answer will be $x = \frac{-1 - \sqrt{61}}{6}$ or -1.47 to 2dp
<u>Solving Quadratics</u> (<u>Completing the</u> <u>Square</u>)	When a quadratic equation won't factor, you have two obvious choices when it comes to solving the equation. The first is using the formula (as shown above) and the 2 nd is using the completed square form. When a quadratic is in the form $ax^2 + bx + c = 0$ you can write this in the form $(x + p)^2 + q = 0$ by completing the square (as shown previously). For there to be real solutions $q < 0$. Before you use this method check you can't factor it as that would be easier most of the time! Using the example given previously BUT as an equation set = 0 let's find the roots (solutions) to the equation $x^2 - 6x + 2 = 0$ Here are the steps (i) $(x-3)$ (ii) $(x-3)^2$ (iii) $(x-3)^2 -9+2$ which will tidy to give $(x-3)^2 - 7 = 0$. This is where we got up to before! Now (iv) add 7 to both sides of the equation to give $(x-3)^2 = 7$. At this stage square root both sides to give (v) $x-3 = \pm\sqrt{7}$. Finally add 3 to both sides to give the 'exact answer' of $x = 3\pm\sqrt{7}$ and $x = 3-\sqrt{7}$ (or 0.35 and 5.65 to 2 d.p)	Example 1: Solve the equation $x^2 + 4x + 1 = 0$ Answer: Start by completing the square: $(x+4)^2 - 16 + 1 = 0$. At this stage you can write $(x+4)^2 = 15$ followed by $x + 4 = \pm \sqrt{15}$. Simply subtracting the 4 from both sides gives us our exact answer of $x = -4 \pm \sqrt{15}$ Example 2: Solve the equation $x^2 - 7x - 2 = 0$ Answer: Start by completing the square: $\left(x - \frac{7}{2}\right)^2 - \frac{49}{4} - 2 = 0$ which will now give $\left(x - \frac{7}{2}\right)^2 = \frac{53}{4}$ which in turn gives $x - \frac{7}{2} = \pm \sqrt{\frac{53}{4}}$ and further $x = \frac{7}{2} \pm \frac{\sqrt{53}}{2}$ & tidying gives $x = \frac{7 \pm \sqrt{53}}{2}$
<u>Equation of a Circle</u> (and its graph)	The equation of a circle with its centre at the origin $(0, 0)$ and a radius length <i>r</i> can be written as $x^2 + y^2 = r^2$. Don't panic, this is not much harder than using Pythagoras Theorem. Often you will be asked to draw one. If so just use a compass and have your centre at the origin. $x^2 + y^2 = 16$ is shown to the right and passes through $(4,0) (0,4) (-4,0) \& (0,-4)$ $x^2 + y^2 = 25$ would have radius 5 and pass through $(5,0) (0,5) (-5,0) \& (0,-5)$ A common error is not square rooting the radius when asked for its length! If you are given a diagram and asked for the equation, simply pick a point and substitute the <i>x</i> and <i>y</i> coordinates into $x^2 + y^2 = r^2$ to find the value of r^2 (or <i>r</i>).	Example: $x^2 + y^2 = 16$ is a circle with a radius of 4. Answer: Use a compass set 4 units apart!

<u>Linear and non</u> <u>Linear Simultaneous</u> <u>Equations (Solving</u> <u>Algebraically)</u>	A linear equation can be represented by a line. A non-liner by a curve or circle (for example). One of your equations can be written in the form 'Elimination' by subtraction is often not possible so the method of substitution is used for most examples. The general rule is to make either x or y the subject of the linear equation and substitute into the non-linear equation . Once you have solved the new non-linear equation for one unknown (x or y) then substitute the answer(s) back into the linear equation to find the other. Remember to solve for both x and y ! Your solutions may have to be given as coordinates as they will be the points where 2 graphs meet. The 2 graphs of the example to the right is shown below in figure 3. Figure 1 is a line & reciprocal, 2 a line & circle	Example: Solve the simultaneous equations $y - x = 4$ and $x^2 + y = 16$. Answer: You can rewrite the 1 st equation as $y = x+4$. Now substitute this into the second equation to eliminate y to give $x^2 + x + 4 = 16$. This can be written as $x^2 + x - 12 = 0$ which factors to (x+4)(x-3) = 0 and gives $x = -4$ or $x = 3$. You now have to solve for y. Substitute the two values of x back into the linear ($y = x+4$) to solve for y. When $x = -4$, $y = -4+4$ which gives $y = 0$. When $x = 3$, $y = 3+4$ which gives $y = 7$. You have 2 solutions for x and 2 solutions for y. If these were points of intersection of two graphs the coordinates would be (-4,0) and (3,7).
<u>Solving Equations by</u> <u>iterative methods</u>	There will be times when it's hard to solve an equation using the techniques you have learned or could learn in maths. The equation $x = \cos(x)$ is an example. In such cases you could use an iterative formula to solve the equation to a certain degree of accuracy. If you have a function $f(x) = 0$ you can rearrange this to give $x = g(x)$. This is just a new function of x using the original terms from $f(x) = 0$ This equation can then be used to set up the iterative formula. This can be written as $x_{n+1} = g(x_n)$. This forms a sequence for values to be substituted into. You will be given a value of x_0 (starting value for the first approximation of a solution to the equation $f(x) = 0$) and it's simply a case of setting up the iterative formula on the calculator and finding values of x_1, x_2, x_3 and so on to locate a root. You will be given a level of accuracy to aim for or a number of iterations to produce. All that is happening is the first value (x_0) goes into the right hand side of the equation to produce a value of x on the left hand side. This value (x_1) is then taken and substituted into the right hand side again to produce a second value of x (x_2). This process continues until the sequence converges (tends to/ approaches) to a limit. This limit will represent the solution of the equation. Not all rearrangements will yield the answer you want! Be flexible when it comes to forming $x = g(x)$. Some sequences may diverge!	Example: Use an iterative formula to find the positive root of the equation $x^2 - 3x - 6 = 0$ to 3 decimal places. Answer: Set up an iterative formula by making <i>x</i> the subject of the equation $x^2 - 3x - 6 = 0$. $x^2 = 3x + 6$ $x = \pm \sqrt{3x + 6}$ $x = \pm \sqrt{3x + 6}$ Start with $x_0 = 4$. At this stage type in 4 ad press = on your calculator. To find x_1 type in $\sqrt{3}$ Ans + 6. This will give $x_1 = 4.242640$ To find the next value x_2 , press = again. This gives $x_2 = 4.327576$, press = again for x_3 which gives $x_3 = 4.356917$ repeat to get $x_5 = 4.37047$, $x_6 = 4.3716604$ $x_7 = 4.372068$ $x_8 = 4.372208$ At this stage both x_7 and x_8 round to 4.372. This means the iterative formula is converging to 4.372 to 3 decimal places.

Plotting Straight Line Graphs (Linear Graphs or Linear Functions) <u>Method 1 (Table)</u> <u>Method 2</u> (Gradient/Intercept <u>Method)</u>	Method 1 : Make a table of values using the method shown to the right. The graph of $y = 2x+1$ is shown to the right for $-1 \le x \le 3$. All you have to do is substitute the values into the equation start with $x = -1$ and finishing with $x = 3$. Make sure the values are going up by 2 each time! Method 2 : Use the gradient/intercept method. The line $y = 2x+1$ is in the form $y = mx + c$. The gradient is <i>m</i> and the <i>y</i> intercept is <i>c</i> . This line will pass through the <i>y</i> axis at the point (0.1) and have a gradient of 2. That means it goes up 2 for every one it goes across (to the right as it's +). (Gradient shown below) Make sure your line is straight. Any 'kinks' suggests your coordinates are incorrect. The values will always be going up or down by a fixed amount. Don't worry if you get an equation such as $x + y = 5$. You can just use a table of values as before. You may even want to rearrange the equation to $y = 5-x$ or $y = -x+5$ if you find it easier. Finally! Make sure you draw a line!	$ \frac{x - 1 \ 0 \ 1 \ 2 \ 3}{y - 1 \ 1 \ 3 \ 5 \ 7} $ The graph of $y = 2x + 1$ for $-1 \le x \le 3$
Midpoint of a Line	Method 1: Add the <i>x</i> coordinates and divide by 2, add the <i>y</i> coordinates & divide by 2. Method 2: Sketch the line (if you can) and find the values half between the two <i>x</i> 's and two <i>y</i> 's Another way of thinking about this is that the midpoint is the average of the <i>x</i> 's and the averages of the <i>y</i> 's. The formula is $M = \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}$ The numbers won't necessarily be integers and could of course be negative.	Example: Find the midpoint of a line through (2,1) & (6,7). Answer: $\frac{2+6}{2} = 4$ and $\frac{1+7}{2} = 4$ so the midpoint is 4,4
Length of a Line Segment.	To find the length of a line segment just use Pythagoras Theorem. Method 1 (Easier Examples): Make the line the hypotenuse of a right angled triangle, count the number of squares horizontally and the number of square vertically. Use the as the lengths of the two shorter sides of a right angled triangle. At this stage apply Pythagoras Theorem. Method 2 (Harder Examples): Use the formula $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$. Don't be scared, this is Pythagoras too. It's just easier to apply if you have decimal, fractional or negative coordinates and drawing a triangle (like in method 1) is hard. It's just the 'change in <i>x</i> and the change in <i>y</i> . Example: $A(0.5, 2)$ and $B(-3, 4.2)$. Find the length of the line segment AB . Solution: $x_1 = 0.5, x_2 = -3, y_1 = 2 \& y_2 = 4.2$. so $\sqrt{(0.5 - (-3))^2 + (2 - 4.2)^2} \approx 4.1$	Method 1 $\sqrt{4^2 + 2^2}$ $= 2\sqrt{5}$ 4 $\sqrt{(-3)^2 + 1^2}$ $= \sqrt{10}$ $\sqrt{(-3)^2 + 1^2}$ $= \sqrt{10}$

The Gradient of a Line	The gradient of a line is how steep the line is. The greater the number (+ or -), the steeper the line. To find the gradient of a line divide the total distance up or down by the total distance left or right . Up is + and down is Right is + and left is You may be able count squares and divide as shown to the right. The gradient can be positive (sloping upwards left to right) or negative (sloping downwards from left to right). Without a graph you could use the formula. $m = \frac{y_1 - y_2}{x_1 - x_2}$ The gradient (<i>m</i>) of the line passing through (1,2) and (11,6) would be $m = \frac{6-2}{11-1} = \frac{4}{10} = \frac{2}{5}$. This goes up 2 units for every 5 to the right.	Gradient = $4/2 = 2$ Gradient = $-3/1 = -3$ Gradient = $-3/1 = -3$ Gradient = $-3/1 = -3$ 4 -3 1 0 0 1 2 3 4 -3 1 0 1 0 1 1 0 1 2 3 3 1 1 1 1 1 1 1 1
Find the equation of	A straight line can be written in the form $y = mx + c$ where <i>m</i> is the gradient	Example: Find the equation of the line with gradient 4 $\frac{1}{2}$
<u>a straight line given</u> <u>a point and a</u>	and c is the point where the line crosses the y axis (c is known as the constant). To find the equation of a straight line given a point the line passes through and	passing through the point $(2,7)$. Answer: In this example $m = 4$ and you need to find the
gradient.	the gradient of the line you simply substitute the values of x, y and m into the	value of c . Simply substitute the given values in to
	equation $y = mx + c$. To find the value of c. Once you have the value of c simply	solve for c .
	put the equation 'back together' in the form $y = mx + c$. You may need to do	y = mx + c which gives $7 = 2(4) + c$. This gives $c = -1$. The equation of the line is therefore $y = 4x - 1$
	this from a graph. Just find the gradient of the line and a point it passes through.	
Finding the equation	If you have two points (or two sets of coordinates) then you can find the equation of the straight line passing through them. To find the equation of a	Example: Find the equation of the line passing through the points $((-1))$ and $((-2))$
<u>of a straight line</u> given two points	straight line all you only ever need is the gradient and one point the line passes through (as shown in the example above). To find the gradient use the method	the points (6,11) and (2,3). Answer: First find the gradient: $m = \frac{11-3}{6-2} = \frac{8}{4} = 2$.
	shown above taking the two points you have for x_1 , y_1 and x_2 , y_2 . In the example to the right $x_1 = 6$ and $y_1 = 11$. $x_2 = 2$ and $y_2 = 3$.	At this stage pick either one of the points the line goes through and substitute into $y = mx + c$ to give:
	Once you have the gradient, pick one of the points you have (you can choose	11 = 2(3) + c. You can see $c = 5$ giving us the
	either) and simply substitute into $y = mx + c$ as shown in the previous section.	equation $y = 2x + 5$.
Parallel and	If two lines are parallel they will both have the same gradient. The two lines	Example 1: Find the equation of a line parallel to the
Perpendicular Lines	will never meet and stay a fixed distance apart. The value of m (the gradient)	line $y = 3x + 2$ which passes through the point (1,9).
	will be the same for both lines. If two lines are perpendicular they will be at right angles to one another. The	Answer: The gradient will be the same giving $m = 3$.
	product (\times) of their gradients will always = -1 (or, if you like, the gradient of	Now substitute into $y = mx + c$ to give $9 = 3(1) + c$. This maps, $a = 6$ is the equation of the line $y = 3x + 6$
	one line (m_1) is the negative reciprocal of the gradient of the other line (m_2)).	This means $c = 6$ & the equation of the line $y = 3x + 6$. Example 2: Find the equation of a line perpendicular
	This could be written as $m_1 \times m_2 = -1$ ifs the lines are perpendicular OR if a line	to the line $y = 3x + 2$ which passes through the point
	has gradient m, the line perpendicular to it will have gradient $-\frac{1}{m}$. Once you	(6,5).
	have found the gradient of the line parallel or perpendicular to the original line,	Answer: The gradient will be $\frac{-1}{3}$.

	simply substitute the values of x , y and m into the equation of a straight	Now substitute into $y = mx + c$ to give $5 = \frac{-1}{2}(6) + c$			
	line $y = mx + c$ to find its equation. (This method is shown previously)	5			
	Not all equations will be in the form $y = mx + c$. For example, the line	This means $c = 7$ & the equation of the line $y = \frac{-1}{2} + 7$			
	y = 2x + 3 is parallel to the line $4y - 8x - 9 = 0$. Their gradients are the same.	3			
Graph Recognition	Linear: A straight line graph which can be written in the form $y = mx + c$				
	Quadratic: A parabola which is a sweeping curve in the form $y = ax^2 + bx + c$	Linear 2 2 Cubic Reciprocal			
	Cubic: A sweeping curve in the form $y = ax^3 + bx^2 + cx + d$	Quadraic			
	Reciprocal: A curve in the form $y = \frac{a}{x}$.	$y = x$ $y = x^2$ $y = x^3$ $y = \frac{1}{y}$			
Quadratic Graphs	This will be a parabola which is a sweeping curve & NOT a collection of lines.				
(Plotting from a	Simply Fill out the table (same as linear graphs). Be careful with negatives.	Line (or axis)			
Table)	Squaring a negative makes it positive! Subtracting a negative will mean adding!				
	$y = x^2 - 3x + 1$				
	x -2 -1 0 1 2 3 4 5				
	y 11 6 1 -1 -1 1 6 11	⁰ ² ⁴ Turning point			
Sketching Quadratic	You may be asked to sketch a quadratic graph from its equation instead of	Example 1: Sketch the graph of $y = x^2 - x - 6$ showing			
Graphs from an	plotting one from a table of values. This is a more complex skill.	any points of intersection with the coordinate axis.			
equation (Maximum,	A quadratic equation can be written in the form $y = ax^2 + bx + c$. The graph is	Answer: Factor to give $y = (x-3)(x+2)$.			
<u>Minimum & Turning</u> <u>Points)</u>	called a parabola and is a curve with either a max or min turning point.	Roots: $x = 3, x = -2$			
	The graph will cross the x axis when $y = 0$ and cross the y axis when $x = 0$.	y intercept: $(0, -6)$			
	Positive Quadratic GraphsNegative Quadratic Graphs				
	If $a > 0$ the graph will have a minimum If $a < 0$ the graph will have a maximum				
		Example 2. Shot h the enclose $\int e^{2} (x + 2) dx dx$			
		Example 2: Sketch the graph of $y = x^2 - 6x + 2$ stating the coordinates of the turning point, the equation of the axis of symmetry and the roots of the equation.			
	In the Factored Form $y = (x-p)(x-q)$:	Answer: In completed square form $y = (x-3)^2 - 7$.			
	You can get the shape, find the roots (solutions) and find the y intercept easily.	Minimum point: (3 7)			
	In Completed Square Form $y = (x + p)^2 + q$	Axis of symmetry: $x = 3$			
	You can get the shape, find the roots (solutions) and find the y intercept easily.	Roots: $x = 3 \pm \sqrt{7}$			
	You can also find the maximum/minimum turning point & the axis of	$\begin{array}{c c} \text{Roots: } x = 3 \pm \sqrt{7} \\ \text{y intercept: } (0,2) \end{array}$			
	symmetry	y intercept. (0,2)			
	(More information on each technique is given in previous sections)	(3,-7)			
	(Actor a germanon on each recharge is given in previous sections)				

Asymptotes	An asymptote will appear as a straight line on a graph. This broken line denotes the value(α) that the graph can payor take. The asymptotes may be herizontal or	Example: Draw the asymptotes on the graph		
	the value(s) that the graph can never take. The asymptotes may be horizontal or vertical and the curve will approach this line but never meet or cross it.	of $y = \frac{1}{x}$ shown below.		
	If you look at the graph $y = \frac{1}{x}$ for positive values of x, the lines	Answer: The broken lines show the lines $x = 0 \& y = 0$		
	x = 0 (the y axis) and $y = 0$ (the x axis) are asymptotes.	$y' = \frac{1}{x}$		
	As the value of <i>x</i> gets very large the graph will tend to 0 but never actually be zero. 1 divided by a large number is very small but will never 'disappear' As the value of <i>x</i> gets very small (tends to 0), the value of <i>y</i> becomes very large	y = 0		
	& eventually is undefined. $\frac{1}{0}$ is undefined. $1/1 = 1$, $1/0.1 = 10$, $1/0.01 = 100$ etc	$\frac{1}{2}$ $x = 0$		
Inequalities	x > 2 "x is greater than 2" This just means the number must be bigger than 2	(a) State 3 integers that satisfy $x > 4$		
	x < 3 "x is less than 3" This just means the number must be smaller than 3	You could have (for example) 5, 9 & 73. (it can't be 4)		
	$x \ge 1$ "x is 1 or greater" This means the number can be equal to 1 or bigger	(b) State 3 numbers that satisfy $x \le 3$. 3, 2.4, -1.7 etc		
	$x \le 6$ "x is 6 or less" This means the number can be equal to 6 or smaller	(c) State 3 integers that satisfy $-2 < x \le 4$		
	$-3 < x \le 2$ " x is greater than -3 yet in turn equal to or less than 2" (-2,-1,0,1,2)	You could have (for example) -1, 3 & 4. (it can't be -2)		
Set Notation for	You can use set notation to represent inequalities as shown below.	$\{ \}$ = The set of values x = For x := such that		
Solution Sets	You could represent $-3 < x \le 2$ as $\{x: -3 < x \le 2\}$	\cup = The union (and/or or both)		
<u>(Inequalities)</u>	You could represent $x < -5$ or $x > 5$ as $\{x : x < -5\} \cup \{x : x > 5\}$			
Solving Linear	Use the same technique as you would for linear equations. Be careful! If \times or \div	E: Solve $2x-1 > 7$. A: Add 1 to each side $2x > 8$.		
Inequalities	the inequality by a negative number the inequality sign changes direction.	Divide by sides by 2 to give the final answer $x > 4$		
Shading Regions	Shading inequalities allows us to find a 'region' (or set of points) that satisfy	Shade the region that satisfies $y > 2x$, $x > 1$ and $y \le 3$.		
<u>(Linear Inequalities)</u>	one or more linear inequalities (or constraints) given. An example might be to shade the region that satisfies both $x > 5$ and $y > 4$.	$\begin{array}{c c} -6 \\ \hline \\ \\ \\ -4 \end{array} \end{array} \begin{array}{c c} y = 2x \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $		
	All you need to do is draw the line of each equation given as decide which side of the line to shade. If a strict inequality is used (for example $x > 2$) then you must draw a broken line. For examples such as $x \le 6$ where 6 is included you			
	must draw a solid line.			
	Generally you will shade the region you want as the shaded area & label it 'R'	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	You can use the method shown to the right and shade at the end. If you find it	Draw the line Now add the Finally add the		
	easier you can shade as you go. Different colours may help!	y = 2x using a line $x = 1$ line $y = 3$ using a		
	The tricky thing is to shade the right region. For example, if you wanted to use	broken line. using a solid line.		
	the question to the right and you didn't know whether to shade above or below	broken line.		
	the line $y = 2x$ you could test the point (0,3) for example. Is 3 greater than 2 lots	Once you have done this decide where to shade. The		
	of 0 ?, yes it is. That means $(0,3)$ satisfies the inequality. This point is above the	shading will be to the right of the line $x = 1$, below the		
	line so you would shade that area. When it comes to horizontal line ($y = 1$ etc)	line $y = 3$ and above the line $y = 2x$. If you are unsure		

	shading above the line is greater than and below the line is less than. For	just test a point to check that it satisfies all 3
	vertical lines ($x = 2$ etc) the area to the right is greater than and the area to the	inequalities. This will give the final region shown
	left is less than.	below.
	When you have finished the part of the question on shading you may be asked	v = 2x
	to state/find all or some of the integer points that satisfy the inequalities. All	-4
	you have to do is pick integer coordinates either inside the shaded region or on	y = 3
	the solid lines enclosing it. Do not include the coordinates on any broken lines.	
	Do not leave these questions out just because you don't understand the	2
	equations of the straight lines! Draw a table of values, plot the points and draw	x = 1
	a straight line through them. The technique is shown in the section on drawing	
	straight line graphs.	9 2 4
Quadratic	A quadratic inequality could be written in the form $ax^2 + bx + c \ge 0$. In order to	Example: Solve the inequality $x^2 - x - 12 < 0$
<u>Inequalities</u>	find the set of points (or region) that satisfy the inequality you can factor the	Answer: Factor the quadratic to give $(x+3)(x-4) < 0$
	quadratic expression to find the critical values. The method of factoring used is	This gives us the critical values of $x = -3$ and $x = 4$
	the same as shown previously. Once you have factored the expression you will	Draw a sketch with these values:
	have the critical values. At this stage draw a little sketch of a parabola with the with a back of the parabola (> 0) the definition of the parabola is	-3 2 1 0 1 2 3 /4
	critical values and shade the required regions. If the expression is $>/\geq 0$ shade	
	above the x axis (that's the line $y = 0$). If the expression is $< / \le 0$ then shade	
	below the x axis. Be careful with the final notation used for inequalities	.10
	Here are some examples below and a worked solution to the right:	The required region is below the <i>x</i> axis
	Solve: $0 \le x^2 + 2x - 8$ $0 \le (x+4)(x-2)$ ¹⁰ Solve: $0 > x^2 - x - 6$ 0 > (x-3)(x+2)	-3
	$\therefore x \le -4 \text{ or } x \ge 2 \qquad \text{s}$	
	(a) (b)	\therefore The final answer is $-3 < x < 4$. (3 & 4 are excluded)
Graph	If the graph of a function is translated it is simply moved. The graph doesn't	Example: The graph below shows part of the
<u>Transformations</u>	change shape, 'size' or orientation (which was around it is).	curve $y = f(x)$
(Translations)	If you start with the graph of $y = f(x)$ you can translate horizontally (left and	
	right or in the x direction) or vertically (up and down or in the y direction).	
	Horizontal Translations: $y = f(x-a)$ moves <i>a</i> units to the left. In vector form	
	(a)	
	this would be a translation of $\begin{pmatrix} a \\ 0 \end{pmatrix}$. So, f(x-3) moves right by 3	
	and $f(x+1)$ moves right by 1.	Sketch the graphs of:
	and $(\lambda + 1)$ moves light by 1.	(a) $y = f(x-1)$ (b) $f(x)+2$ (c) $y = f(x+3)+1$
		(a) $y = 1(x + 1)$ (b) $1(x) + 2$ (c) $y = 1(x + 3) + 1$ Answer: (next page)
		Answer. (next page)

	Vertical Translations: $y = f(x) + a$ moves up by <i>a</i> units. In vector form this would be a translation of $\begin{pmatrix} 0 \\ a \end{pmatrix}$. So, $f(x) + 5$ moves up by 5 and $f(x) - 4$ moves down by 4. Tip! If the number is on the outside, the <i>y</i> coordinates change. If the number is on the inside the <i>x</i> coordinates change! Look out for combined translations too!		(b)	
<u>Graph</u> Transformations	If the graph of a function is reflected, it will be mirrored in one of the coordinate axis. The shape doesn't change.	Example: Using the	• • •) in the section
	If you start with the graph of $y = f(x)$ you can reflect this in the x or the y axis.	above, sketch the g		$(\mathbf{a}) = \mathbf{f}(-\mathbf{a})$
(Reflections)	In you start with the graph of $y = 1(x)$ you can reflect this in the x of the y txis.	(a) $y = -f(x)$	(b) $y = f(-x)$	(c) $y = f(-x)$
	Reflected in the <i>y</i> axis: $y = f(-x)$ is a reflection in the <i>y</i> axis. The <i>y</i> coordinates remain the same but the <i>x</i> coordinates become negative.	Answer:		
	Reflected in the <i>x</i> axis: $y = -f(x)$ is a reflection in the <i>x</i> axis. The <i>x</i> coordinates remain the same but the <i>y</i> coordinates become negative.		2	
	Tip! If the number is on the outside, the <i>y</i> coordinates change. If the number is		-4 -2 0	
	on the inside the <i>x</i> coordinates change!	(a)	(b)	(c)
<u>Graph</u> <u>Transformations</u>	If the graph of a function is stretched its shape is changed. A graph can be stretched either in the <i>y</i> direction (vertically) or the <i>x</i> direction (horizontally).	Example: Using the above, sketch the g	graphs of:	
(Stretches)	If you start with the graph of $y = f(x)$ you can stretch this in the x or	(a) $y = 2f(x)$	(b) $y = f(2x)$	(c) $y = 0.5 f(3x)$
	the <i>y</i> direction.	Answer:		
	Stretched in the <i>x</i> direction: $y = f(ax)$ is a stretch, scale factor $\frac{1}{a}$ in the <i>x</i> direction. Simply divide the <i>x</i> coordinates by <i>a</i> . The <i>y</i> coordinates do not change.			
	Stretched in the <i>y</i> direction:		2	
	y = a f(x) is a stretch, scale factor a in the y direction.			2
	Simply multiply the <i>y</i> coordinates by <i>a</i> . The <i>x</i> coordinates do not change.			
	Tip! If the number is on the outside, the <i>y</i> coordinates change. If the number is	0 2 4	0 2	0 2 4
	on the inside the <i>x</i> coordinates change!	(a)	(b)	(c)

<u>Tangents to Curves</u> (Estimating <u>Gradients and rates</u> of change)	A tangent is a straight line that will touch a curve at a point. You may be asked to estimate the gradient of a tangent to a curve at a given point. You have seen in a previous section how to find the gradient of a straight line. And you are simply going to apply this to a given curve. Once the tangent has been drawn you can find the gradient by counting the	Example: The graph shows the velocity of a particle. By drawing a tangent to the curve, estimate the rate at which V is increasing after 1 second
Chords (Gradients and Average rates of change)	squares up or down and left or right. In the example to the right you can see the tangent 'goes up 2' for every '2 it goes across to the right'. The gradient is therefore +2. Often you will be asked to state what this represents in the context of the question. In the example to the right, the rate of change of the velocity is the acceleration. If you have a distance/time graph the tangent will give an estimate for the velocity at a given point. This is the instantaneous rate of change. You may also be asked about the average rate of change. To do this, simply draw a chord between the two values given and estimate the gradient of the chord. This will be different from the instantaneous rate of change at a given point. A chord is a straight line that connects two sets of coordinates rather than touching the curve at a given point like a tangent. Chords and tangents on curves are the same as they are on the circles you will have met in maths!	$\frac{v_{m/s}^{2}}{t_{(seconds)}^{2}}$ Answer: Drawing a tangent & estimating the gradient $\frac{v_{m/s}^{2}}{t_{m/s}^{2}}$ $t_{(seconds)}^{2}$ $t_{(seconds)}$
		You can see that the gradient from the graph is 2. This
<u>Area Under Curves</u>	You can estimate the area trapped under a curve by drawing a collection of trapezia with equal heights (the height will be the difference in the <i>x</i> coordinates). The more trapezia you draw, the more accurate the estimate becomes. (You will be told how many trapezia you need to draw). To start with, draw a chord (a straight line) between the <i>x</i> coordinates on the curve to make the top of the trapezia. Once these have been draw it's just a case of finding the area of each trapezium and adding them as shown to the right. In this example The area trapped under the curve for $0 \le x \le 3$ has been drawn with 3 trapezia. The first chord is drawn from the point on the curve where $x = 0$ and $y = 1$ to the point where $x = 1$ and $y = 4$. The second chord from where $x = 3$ and $y = 4$.	represents the acceleration which will be $2m/s^2$

Sequences	Look out for the Square Numbers							, 49					
(Number Patterns)	Look out for the Cube N					1, 8, 27, 6							
	Look out for the Fibonacci Sequence							13, 21, 3	4(add th	ne 2 previ	ious terms)		
	Look out for Linear (arithmetic) sequences such as 4, 10, 16, 22							Increases or decreases by fixed amount. (+ or –)					
	-							tio or con	nstant mu	ltiplier (×	(or ÷)		
Sequence Notation	A sequence may be writte	n in the form	$u_n = .$ This just	st means the <i>n</i>	th term of a	Example	$u_n = 3n$	n+1. Fin	$\operatorname{id} u_1, u_2 \operatorname{an}$	$\mathrm{d}u_3$. Ans	swer:		
<u>& Finding Terms</u>	sequence. The values of <i>n</i>	generally star	t at 1. u_1 is th	e 1 st term, u_2 t	he 2^{nd}	When $n =$	$=1, u_1 =$	4, n = 2	$\therefore u_2 = 7$	$, n = 3 \therefore$	$u_3 = 10$		
<u>nth</u> Term Formula of a Linear (Arithmetic) Sequence	This might be 'going up by 4 each time' or 'going down by 2 each time'ATo find the <i>nth</i> term formula of a linear (arithmetic) sequence:A(1) Find the difference. (What's it increasing or decreasing by each time?)A							Example: Find the <i>nth</i> term for: 3, 7, 11, 15 Answer: Create a little table with the term in: $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
	(3) Use values of <i>n</i> in the(4) Find what number you	able starting need to add	with <i>n</i> =1 an s or subtract to	ubstitute in.	for all terms	writing 4 need to su	<i>n</i> . Now ubtract 1	take $n =$ to get 3	1 so 4n is which is	$4 \times 1 = 4$ the require	4. You red term.		
	This method only works i					The <i>nth</i> t							
<u>Geometric</u>	Geometric sequences hav					-		e next 3	terms in t	the seque	nce: 4, 12,		
<u>Sequences</u>	the terms in the sequence		•	0 1	~	36, 108							
	number each time. 3, 6, 1	-	-			Answer: The constant multiplier is 3. Simply multiply							
	common ratio of 2. Each find the common ratio by					108 by 3 Giving 324 and multiply by 3 again to give 972.							
nth m					-2, 12/0 - 2		• Find a	formula	for the nt	htorm of	the		
<u>nth Term of a</u>	Quadratic sequences can					Example: Find a formula for the <i>nth</i> term of the quadratic sequence: 4, 7, 14, 25, 40							
<u>Quadratic Sequence</u>	An example of a quadrati	-				Answer: The first difference: 3, 7, 11, 15 and the							
	To find the values of a , b	•		-		second difference: 4, 4, 4 This gives us $a = 2$ as you							
	(i) Find the first and then					have to half 4 to get the quadratic part of the sequence.							
	First difference: 13, 19,					n	1	$\frac{1}{2}$	3	4	5		
	(ii) Half the second differ			-		t	4	7	14	25	40		
	(iii) Now set up a table to					$2n^2$	2	8	18	32	50		
	<u>n 1</u>	2	3	4	5	-	the line	ar part of	f the secu	ence <i>hn</i> +	$\cdot c$ subtract		
	t 5	18	37	62	93	the quadr					e subtract		
	$3n^2$ 3	12	27	48	75	$t-2n^2$	2	-1	-4	-7	-10		
	(iv) Now find the linear p	art of the sequ	sence $bn + c$ su	ubtract the qua	dratic part								
	from the sequence:	-		1		•		ind the <i>n</i>	<i>th</i> term of	the linea	ar sequence		
	$t - 3n^2$ 2	6	10	14	18	2, -1, -4,		1 2	1	• •			
	(v) At this stage you simp	•			-	This is de							
	will give $4n-2$ using the			om the table a	bove.	bn+c part as $-3n+5$. Therefore the final answer							
	The final answer is theref	ore $u_n = 3n^2 +$	4n - 2			is $u_n = 2n^2 - 3n + 5$. Now check it works with values!							
						1							

T ¹¹ 1 1 1		
Fibonacci Like Sequence	The original Fibonacci Sequence is: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 It starts with 0 and forms terms by adding the two numbers before it.	Example: Find the next 3 terms: 4, 10, 14 Answer: 24, 38, 62 (Just add the previous two terms)
Algebraic Fractions (Simplifying)	Look for the highest common factor of numbers and algebraic terms. The rules of indices and factoring expressions will help you simplify algebraic fractions.	Example: $\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{(x + 3)}{2}$
Algebraic Fractions (Multiplying)	The main thing to remember is to cancel as many common factors as you can. The question you get may or may not require some factoring.	Example 1: Simplify fully $\frac{3p^7}{q^3r} \times \frac{4r^2}{15pq}$ Answer: $\frac{4p^6r}{5q^4}$
	Any easier example could be "Simplify fully $\frac{8x^4}{y^3} \times \frac{x^2y^5}{4}$ ".	Example 2: Simplify fully $\frac{x^2 + 2x - 8}{2x - 6} \times \frac{x^2 + x - 12}{5x - 10}$
	Let's start with the 8 divided by 4. This will cancel to give $\frac{2x^4}{y^3} \times \frac{x^2y^3}{1}$.	Answer: Factor first: $\frac{(x+4)(x-2)}{2(x-3)} \times \frac{(x+4)(x-3)}{5(x-2)}$
	Now you can combine the powers of <i>x</i> and write the single fraction $\frac{2x^6y^5}{y^3}$.	Now cancel common factors: $\frac{(x+4)}{2} \times \frac{(x+4)}{5}$
	Lastly, simply have to cancel the terms in y to give a final answer of $2x^6y^2$. A harder example may need factoring such as $\frac{x^2 - x - 6}{4x + 8} \times \frac{x + 5}{x^2 - 9}$.	Finally, simplify to give $\frac{(x+4)^2}{10}$.
	(-2)(-12) = (-125)	Example 3: Simplify fully $\frac{2x^2 - 11x + 12}{x^2 - 25} \times \frac{(x+5)^2}{2x-8}$
	You need to factor as much as you can to give: $\frac{(x-3)(x+2)}{4(x+2)} \times \frac{(x+5)}{(x+3)(x-3)}.$	Answer: Factor $\frac{(2x-3)(x-4)}{(x+5)(x-5)} \times \frac{(x+5)(x+5)}{2(x-4)}$ Cancel common factors and simplify $\frac{(2x-3)(x+5)}{2(x-5)}$
	Now you can cancel the common factors of $(x+2)$ & $(x-3)$ to give $\frac{1}{4} \times \frac{(x+5)}{(x+3)}$.	Cancel common factors and simplify $\frac{(2x-3)(x+5)}{2(x-5)}$
	This can be tidied, giving a final answer of $\frac{(x+5)}{4(x+3)}$ in its simplest form.	<i>Try and leave the final answer factored where you can.</i>
<u>Algebraic Fractions</u> (Dividing)	The technique is similar to multiplying. To start with though you must invert the second fraction and multiply. At this stage you can start cancelling down!	Example: "Simplify fully $\frac{4p}{5q^2} \div \frac{2p^2r}{15q^3}$ "
	The example $\frac{6p^5}{q^2r} \div \frac{3r^4}{p^3q^5}$ could be written as $\frac{6p^5}{q^2r} \times \frac{p^3q^5}{3r^4}$. At this stage you	Answer: $\frac{4p}{5q^2} \times \frac{15q^3}{2p^2r} = \frac{2}{1} \times \frac{3q}{pr} = \frac{6q}{pr}$
	would use the techniques shown above in multiplying algebraic fractions. This would give a final answer of $2p^8q^3r^5$ in its simplest form. With any algebraic	E 1 2 "G" 1 C C 1 $(p-1) = p^2 - 1$ "
	fraction, look out for the difference of two squares or expressions that can be factored. An example could be $25x^2 - 9 \equiv (5x+3)(5x-3)$. This may allow you	Example 2: "Simplify fully $\frac{(p-1)}{q^2-q-6} \div \frac{p^2-1}{2q-6}$ "
	to cancel a factor that was not originally obvious. Factoring can also help reveal common factors. An example could be $10x-15 \equiv 5(2x-3)$. If you have the	Answer: $\frac{2}{(p+1)(q+2)}$
	factor $(2x-3)$ somewhere else in the fraction you could look to simplify.	(Look out for the difference of 2 squares as above)

<u>Algebraic Fractions</u> (Adding and	simply the LO	rmal fractions you CM of the expres	sions or terms in	Example 1: "Simplify fully $\frac{4p}{5q^2} + \frac{2r}{3}$ "				
<u>Subtracting)+Solvin</u> <u>g Equations with</u> Fractions		t's look at an exa				Answer: $\frac{4p(3)+2r(5q^2)}{15q^2} = \frac{12p+10q^2r}{15q^2}$		
<u>I ractions</u>	denominator	here would be th	e product of the o	lominators which	h can be written	154 154		
	as $3y^3z$. At	this stage you set	up a single fract	5 1				
	$5 y$ by y^3 . This	is will give $\frac{(2x)(2x)}{2}$	$\frac{3z) - (5y)(y^3)}{3y^3z}$ wh	Example 2: "Simplify fully $\frac{5}{(x-2)} - \frac{4}{(x-3)}$ " Answer: $\frac{5(x-3) - 4(x-2)}{(x-2)(x-3)} = \frac{x-7}{(x-2)(x-3)}$				
		nple could be: "S				Answer: $\frac{5(x-3)-4(x-2)}{(x-2)(x-3)} = \frac{x-7}{(x-2)(x-3)}$		
		will be $(x-1)(x-1)(x-1)$		-	_	Example 3: "Simplify fully $\frac{p}{p^2-9} + \frac{p-4}{p-3}$ "		
		fraction $\frac{1}{(x-1)(x-1)}$,	Answer: $\frac{p}{(p+3)(p-3)} + \frac{p-4}{(p-3)} = \frac{p+(p+3)(p-4)}{(p+3)(p-3)}$ which gives $\frac{p^2-12}{p^2-9}$ in simplified form. With Example 3 the difference of 2 squares was used to				
	(x+4) and the	the 7 by $(x-1)$. The 7 by $(x-1)$	his will give $-$					
	1	2x+8	+7x-7 This set					
	brackets and	simplify: $\frac{2x+8}{(x-1)}$	$\frac{1}{(x+4)}$. This wi					
	The common	denominator of .	x and x^2 is x^2 . Try	factor the denominator.				
Algebraic Proof		argument to just		Exam 1: Show that the difference between the squares				
	-	ist show that the	•		0	of 2 consecutive odd integers is always a multiple of 8. Answer: Let the first of the 2 numbers be $2n-1$ & the		
	certain values	s and conclude it	must be true for	all values. The w	ay to do this is			
	to write out a	nd manipulate al	gebraic expressio	ons and identities	to form your	second $2n+1$. Square each to give $(2n+1)^2 \& (2n-1)^2$.		
	proof. Let's s	tart with some ba	· ·		-			
	n	2n	2n+1 or	2n+2	2 <i>n</i> +3	Difference means subtract $\therefore (2n+1)^2 - (2n-1)^2$.		
			2 <i>n</i> -1			Expand brackets to give $4n^2 + 4n + 1 - (4n^2 - 4n + 1)$.		
	an integer	an even	an odd integer	the next even	the next odd	Simplify to $8n$ by cancelling the terms. Conclude with		
		integer		integer	integer after	the statement " $8n$ is a multiple of 8 ." true for all		
		• • • • •	1 / / /	after 2n	2 <i>n</i> +1	consecutive odd integers."		
		sions like those a	Example 2 : Show that product of any two odd					
		plifying and reface a concluding stat	numbers is always odd.					
		U U			Answer: Let the first number be $2n-1$ and the			
	the right. Simply showing isolated cases hold true by using numbers does not prove a statement is true for all values. You will not be awarded marks					second $2n+1$. Multiplying: $(2n-1)(2n+1) = 4n^2 - 1$		
	-	is. The only time	$4n^2$ is always even as it's a multiple of $4 \therefore 4n^2 - 1$ is					
	0	rue with a counte	odd for all values of <i>n</i> .					

Functions	A function is just a rule that maps one number to another. A function will have	Example 1: $f(x) = 3x - 1$.
(Evaluating)	an input (such as x) and an output (such as y). An example could be $y = 2x$.	Find (or evaluate) (a) $f(5)$, (b) $f(-1)$ and (c) $f(p)$.
	Instead of writing $y = 2x$ you could use function notation and write $f(x) = 2x$.	Answer: (a) 14, (b) -4 and (c) 3 <i>p</i> -1
	f(x) just means "y is a function of x". You can evaluate functions by	Example 1: $g(x) = 1 - 4x$. Given that $g(t) = 15$, find
	substituting numbers in. If $f(x) = 2x$ you can say $f(5) = 2(5)$ which of course	the value of <i>t</i> .
	means $f(5) = 10$. Evaluate simply tells you to swap <i>x</i> for the number(s) given.	Answer: Don't worry about it being $g(x)$! Simply
	You can work backwards and find an input for functions given an output. An	substitute in to give $15 = 1 - 4t$. Solving for t , $4t = -14$
	example using $f(x) = 2x$ could be: Find the value of <i>a</i> such that $f(a) = 14$. All	and $t = -\frac{7}{2}$
	you need to do is substitute $x = a$ in and solve: $2a = 14$ which of course	2
Functions	gives $a = 7$. A composite function simply requires you to substitute one function into	Example 1: Using the functions $f(x) = 1 - x$ and
(Composite)	another. If you have two functions, for example, $f(x) = x^2 - 1$ and $g(x) = 3x$ you	$g(x) = x^2$ find: (a) gf(5) (b) fg(1) (c) ff(p)
	can form the composite functions $fg(x) \circ gf(x)$. (You could have $ff(x)$ if you	
	liked). $fg(x)$ means "do g first and then f " whereas $gf(x)$ means "do f first and	Answer: (a) gf(5) (b) fg(1) = 0 (c) ff(p) = $(1-p)^2$
	then g ". An example could be: Find (a) $fg(2)$ and (b) $gf(2)$. Answer: (a) Start	Example 2: $f(x) = x + 2$, $g(x) = \frac{1}{x}$ and $h(x) = x^3$.
	with $g(2)$. Using the function, $g(2) = 6$. Now do $f(6)$. This will give $f(6) = 35$.	Find fhg(0.5)
	For part (b) start with $f(2)$. This gives $f(2) = 3$. Now do $g(3) = 9$.	Answer: $fhg(0.5) = 10$
Functions (Inverse)	The inverse function $f^{-1}(x)$ undoes the effect of the original function $f(x)$. To	Example: $f(x) = (1-2x)^5$ Find the inverse $f^{-1}(x)$.
	find the inverse function of a function, write the equation out as $y = f(x)$ swap	Answer: Let $y = (1-2x)^5$. Now swap the x's and y's
	the x 's and y 's over in the original function and then set about making y the	over to give $x = (1-2y)^5$. Rearrange to give
	subject by rearranging.	$1-\frac{5}{3}\sqrt{x}$ $1-\frac{5}{3}\sqrt{x}$
	An example could be $f(x) = \sqrt{1 + x^3}$.	$y = \frac{1 - \sqrt[5]{x}}{2}$. The final answer will be $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$
	Write $y = \sqrt{1 + x^3}$, now swap to give $x = \sqrt{1 + y^3}$. Now rearrange to give	
	$y = \sqrt[3]{x^2 - 1}$. At this stage you need to write $f^{-1}(x) = \sqrt[3]{x^2 - 1}$.	A function can only have an inverse if it's 1-2-1 for the set of values you are considering. You will study this
	It's important you give your final answer in the form $f^{-1}(x)$	later on.

Using a Calculator

	0		
<u>Using a Casio</u>	Using a calculator effectively can really help in exams. Some basic tips:		
<u>Calculator</u>	Make sure you are in Degrees and Math mode. The letter D will be at the top of	L. C.	
	the screen (Shift mode 3 gets you there) and the word Math. Find		D and Math are circled to the right!
	the $S \Leftrightarrow D$ button to convert from a fraction to a decimal. Shift followed		-
	by $\times 10^x = \pi$. Hit, , , & it will convert the answer into hours, minutes & seconds		

Statistics

Mean from a Table Wh (Estimated and (i) Actual) (ii) (iii) (iii) (iii) (iii)	Then grouped Find the mid Multiply Fre i) Add these v	data is used v point of each equency by M values up. (Sh at total (450) t Frequency 8 10 6 24	ve get an est class. (Show lidpoint. (Sho own in the T	imated m on in the 3 own in the Total box o	the an average 3^{rd} column be e 4^{th} column on the right) uency (24). (elow)	The mean of 3,4,7, If the data is not g (i) Multiply the fre (ii) Add all of these (iii) Divided this (1 Goals in Game 0	rouped we get an a quency by given v e values up.	actual mean. alues.	
(iii H 1 3 Median Value The	i) Divided that Height in cm $0 < h \le 10$ $10 < h \le 30$ $30 < h \le 40$ Total Total	t total (450) b Frequency 8 10 6 24	by the sum of Midpoint 5 20 35	$\frac{\text{f the frequ}}{\text{F} \times \text{M}}$ $\frac{\text{F} \times \text{M}}{8 \times 5 = 4}$ $10 \times 20 = 2$	uency (24). ($\frac{1}{0}$ Estim		Goals in Game	Frequency 3	F × Goals	
H 1 2 Median Value The	Height in cm $0 < h \le 10$ $10 < h \le 30$ $30 < h \le 40$ Total me middle value	Frequency 8 10 6 24	Midpoint 5 20 35	$F \times M$ $8 \times 5 = 4$ $10 \times 20 = 2$	0 Estim		0		3×0=0	
Median Value The	$0 < h \le 10$ $10 < h \le 30$ $30 < h \le 40$ Total Total	8 10 6 24	5 20 35	8×5=4 10×20=2	0 Estim	atad Maan	1	5		
Median Value The	$\frac{10 < h \le 30}{30 < h \le 40}$ Total	6 24	35	10×20=2	1 . 1		1		5×1=5	
Median Value The	$\frac{30 < h \le 40}{\text{Total}}$ ne middle val	6 24	35		$2(0) + 10^{10}$: 450 ÷ 24 =	2	4	4×2=8	
Median Value The	Total ne middle val	24		UX.).)—Z	1075	em	3	1	1×3=3	
			ignore:	450			Total Actual Mean goals	13 s scored per game:	$16 \div 13 - 1.23$	
		D 4 41 - 11 -	4 - £	· · · · · · · · · · · · · · · · · · ·			ę	1 0	10 . 13 – 1.25	
(another average) If t	there are two						Find the median: 4,5,2,3,6,7,6 in order 2,3,4, <u>5</u> ,6,6,7. The Median = 5			
Mode / Modal The								4 , Mode = 4. Check for multiple modes!		
	The number/class/item that appear most times in a list. 'Most Frequent'The highest value subtract the lowest value. (A measure of spread)					3, 31, 26, 102, 37,		1		
	A pie chart is a circle which means there are 360°. If you are drawing one						If there are 40 peop			
div	divide 360 by the total frequency. This will tell you how many degrees to use						be worth 9° of the			
		1	~	-	-	or to draw one!	each number in the	L	1 2	
							degrees for each se	•		
Time Series GraphsTimeandthe	Look out for right angles! ¼ = 90° =25% of the data. 120° is a third of the data! degrees for each section of the table. Time Series Graphs simply shows data collected over time. Time is plotted on the horizontal axis. Points are plotted and straight lines connect the points. Image: Series Graphs (100%) These look similar to frequency polygons but are very different. Image: Series Graphs (100%) Image: Series Graphs (100%)						equency Polygon			
	Frequency Polygons are similar to histograms and show the frequency for grouped data. They are plotted at midpoints of the class. Connect with lines.					Height (cm)				
	A moving average gives a summary and trend for the data over time. They are plotted at the midpoint of the 3 months (as per example)						Mari	ng Average		
L I I I I I I I I I I I I I I I I I I I	Month Ja		Mar	Apr	May	June	-20			
	Sales 18 16 22 24 20 19					S a	Time Series			
	hen calculatir	0 1					l ¹⁰			
	Months	Jan, Feb &			Mar, Apr &	1 · · ·	-10			
		Mar	& A	Apr	May	Jun	5			
	3 Point Moving Average	$\frac{18+16+22}{3} = 18$	$\frac{16+22+2}{3}$	$\frac{24}{2} = 20.7$	$\frac{22+24+20}{3} = 22$	$\frac{24+20+19}{3} = 21$	3	F M A M Month		

Scatter Graphs and Correlation (and Line of Best Fit)	Scatter graphs plot data in pairs (bivariate). This might be the temperature and ice cream sales or the age of a car and the value of the car. Positive Correlation : As one value increases , the other increases . Negative Correlation : As one value increases the other decreases . No Correlation : There is no linear relationship between the two. If you are asked to find estimates from a scatter graph you must draw a line of best fit and read up and across from it.	a b c c a a a x x x a a a x x x x a <
<u>Line of Best Fit</u> $\overline{x}, \overline{y}$	The line of best fit passes through $\overline{x}, \overline{y}$ where \overline{x} = mean of $x \& \overline{y}$ = mean of y	Find \overline{x} , \overline{y} and draw the line of best fit through this point.
<u>Outliers</u>	Points on the scatter graph that don't follow the pattern of the other points	An example is shown on the second graph above
Interpolation and Extrapolation	Interpolation is using the line of best fit to estimates values within the data set. Extrapolation is using the line of best fit to estimates values outside the data set. You must be careful when extrapolating as the estimate may not be accurate The points will either be wrongly collected or anomalies. The diagram to the right shows an example of a region where you could interpolate & extrapolate.	Fourier Correlation
Pictograms	Pictograms are a convenient visual way of representing data. They are similar to bar charts. Make sure you have a key (as shown to the right). You can use half a picture but don't try and do $\frac{1}{4}$ s of thirds! Some questions will require you to work backwards and find missing values instead of drawing them. Use the key to help you with this.	Example: The pictogram below shows 10 black 12 red, 2 green & 16 others for the colours of car surveyed Black Red Red Green Gr
Standard and Back	Standard Back to Back	Example: Use the back to back stem and leaf diagram
to Back Stem and Leaf Diagrams	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	to the left to find the median score and range for the boys. Answer: Median = 13 and Range = 34-2=32. Tip! Always remember your key and note how the key differs on either side of the back to back example.
Two Way Tables	Two way tables allow us to model situations where there are two variables involved. In the example to the right there is gender and whether the person is left or right handed. Just fill out the information step by step using the values given either in the table or the question and make sure all of the totals add up for each row and column! Often one value is given in the question. Check this as you may think you are missing some information. You may be asked to work out some questions on probability or fractions from the table. Make sure you read the question correctly! A question might be "One person is chosen at random. What is the probability that the person is left handed girl?" You would simply find the number of left handed girls (which is 6) and divide that by the total (which is 100). The probability would be 6/100 or you could simplify the fraction to give 3/50. Another could be "What fraction of the boys are RH?" answer 48/58 or 24/29	Question: Complete the 2 way table below.Left HandedRight HandedTotalBoys1058Girls

(Definitions)	 A Population is a set of items of interest. A Census is a survey that covers the entire population. A Sample is a small selection of items from the population. (10% + is ideal) In a Random Sample each item has the same chance of being chosen. A sample is Biased if individuals or groups from the population are not represented in the sample. 	Example: A random sample could be picking the names of 10 people out of a hat that has 100 names in. Each person has an equally likely chance of being picked.			
Simple Random	In a random sample each item has an equal chance of being chosen. This may	Example: This could be picking the names of 10			
<u>Samples</u>	be using a table of random numbers	people out of a hat from a class of 30 students.			
	When a stratified sample is taken it's proportional to the population it comesfrom. Each strata (or layer) will provide a number of items for the sample basedin its size relative to the overall population.To find out how many items from each strata are needed, simply multiply thenumber in the strata by the (sample size ÷ population).When you have a value, write it in your answer and round it up or down ifnecessary. Make sure when you round your values you end up with the correctnumber in the sample!In the example to the right the first and the last numbers have been roundeddown and the middle number rounded up. This gives the 70 required. Use logicif you need to round.Number in smaple = Number in layer × 	Example: A sample stratified by year group of 70 is taken. Find out how many students from each year should be in the sample:YearNumber of Students Year 7Year 7210 Year 9Year 9190Answer: You need 70 in the sample out of a total of 630 students. \therefore multiply each strata value by $\frac{70}{630}$ Year 7210 $210 \times \frac{70}{630} = 23.33.$ 23 23 $230 \times \frac{70}{630} = 25.55.$ Year 9190 $190 \times \frac{70}{630} = 21.11$ Year 9190 $190 \times \frac{70}{630} = 21.11$			
	These two calculations are essentially the same thing.	Year 9 190 $_{190 \times \frac{70}{630} = 21.11}$ 21			
Cumulative	Cumulative frequency is a running total. Study the frequency table below.	Example: Complete the cumulative frequency table.			
<u>Frequency</u> Table	Age Frequency	Height Frequency Cumulative Frequency			
<u></u>	$0 < a \le 10$ 15	$0 < h \le 5$ 4			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	$40 < a \le 50$ 10	$20 < h \le 30$ 9			
	You can add a 3^{rd} column to show the running total (cumulative frequency).	$30 < h \le 50$ 23			
	Age Frequency Cumulative Frequency	Answer:			
	$0 < a \le 10$ 15 15	Height Frequency Cumulative Frequency			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$0 < h \le 5$ 4 4			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	The CF shows there are 15 people aged 0-10, 50 people aged 0-40 and 60	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	people aged 0-50. Simply add the totals before to get the cumulative frequency.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			

<u>Cumulative</u> <u>Frequency Graph</u>	Using a completed cumulative frequency table (as shown previously) allows you to draw a cumulative frequency curve . The points are plotted at the end of the class interval (upper class boundary) and a sweeping curve is drawn through the points as show to the right. The class interval is drawn on the horizontal axis and the cumulative frequency on the vertical axis. Make sure you label each axis correctly.	$\begin{array}{c} 40 \\ 30 \\ CF \\ 20 \\ 10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ Height \end{array}$
Lower Quartile (Q1), Median (Q2), Upper Quartile (Q3) and IQR (See previous and next video) Drawing Box Plots	Lower Quartile (Q1): 25% of the values in the data set are less than the value of the LQ. To find an estimated value \div the data set (44 here) by 4 and read across and down on the graph as shown to the right. (In the case shown it will be from the 11 th value). The LQ is not 11. It's ~18-19 in the case to the right! Median (Q2): 50% of the values in the data set are less than the value of the median. To an estimated value \div the data set (44 here) by 2 and read across and down on the graph as shown to the right. (In the case shown it will be from the 22 nd value). The median is not 22. It's about 30 in the case to the right! Upper Quartile (Q3): 75% of the values in the data set are less than the value of the UQ. To find an estimated value \div the data set by 4 and \times 3 and read across and down on the graph as shown to the right. (In the case shown it will be from the 33 rd value). The UQ is not 33. It's about 38 in the case shown! Interquartile Range IQR: represents the 'middle 50% of the data set. The IQR is found by calculating the Upper Quartile - Lower Quartile (Q3-Q1). In the case shown an estimated will be 37-18 = 19. This shows that 50% of the items in the data set were within a range of 19 units. A box plot is a convenient, visual way of representing the 5 main summary statistics. The lowest value , the lower quartile , the median , the upper quartile and the highest value are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency curve if you are also given a maximum and minimum value either in the question or you can work it out. The first vertical line is the lowest value, the 2 nd the LQ, the 3 rd is the median, the 4 th is the UQ and the final vertical line is the highest value in the data. The range can be found by calculating the higher value – lowest value. The Range and IQR are measures of spread and the median is an average.	A box plot could be drawn off the bottom of this CF curve using the lines from the LQ, M and UQ but you will need the lowest and highest values too. Example: The students in class X1 sat maths test. The test was out of 25. The highest score was 19, the lowest score was 8, the median score was 14, the lower quartile was 10 and the upper quartile was 17. Draw a box plot to represent the information. Answer:
<u>Comparing Box</u> <u>Plots</u>	Box plots allow the reader to way of compare data sets. When two or more box plots are drawn on the same scale or set of axis they can be compared and commented on.	Example: The students in class Y1 also sat the maths test. Compare the results of the two classes using the box plots below.

	The two areas to focus when comparing box plots are:				Y1
	 (1) The average using the median. (2) The spread of the data using the IQR (and range to a lesser extent). The higher the median value the higher the average is. The lower the median the lower the average is. The smaller the IQR the more consistent the observations are, the wider the 				X1 20 22 comparisons in
	IQR the less consistent they are. Small box = consistent, Large box = less consistent.When comparing box plots you must compare them in context. You cannot	higher Mediar	than Y1. A s dents in X1 v as their medi	tatement cou were more su an score was	ccessful in the shigher by 1
	simply say "The median is higher" you need to use this in context. Talk about scores, heights, minutes etc.	the spread of c "The students terms of their <i>You could also</i>	lata using the in Y1 were m score as the IO make referent the range, 25	IQR. A state ore consistence QR was 4 vs ace to the hig % and 75%	ement could be nt than X1 in 7" ghest and of the data but
Drawing Histograms	Histograms look similar to bar charts. The 3 main differences between them are	Example: Draw a histogram using the previous table. Answer: You need to add two columns and find the			
	(1) The area of the bar is proportional to the frequency of that class. (2) The grouped continuous data is in classes of unequal widths. (3) Histograms show			wo columns	and find the
	frequency density and not frequency on the vertical axis.	frequency den Height	Frequency	Class	Frequency
	To draw a histogram You need the frequency density. Frequency Density is calculated by dividing the frequency by the class width (size or interval).	lieigin	(F)	Width (CW)	Density (FD)
		$0 < h \le 10$	8	5	$8 \div 5 = 1.6$
	You can say $FD = \frac{F}{CW}$.	$10 < h \le 30$	6	20	$6 \div 20 = 0.3$
	(The classes (height) below have widths of 10,20,15 and 25)	$30 < h \le 45$	15	15	$15 \div 15 = 1$
	Histograms are drawn from continuous grouped data like the following table.	$45 < h \le 70$	5	25	$5 \div 25 = 0.2$
	Height(cm)Frequency $0 < h \le 10$ 8 $10 < h \le 30$ 6 $30 < h \le 45$ 15 $45 < h \le 70$ 5	FD			
	In the example to the right, we will draw a histogram for the data above. When drawing the histogram, make sure frequency density (NOT FREQUENCY) goes on the vertical axis and the height (or any continuous measure) goes on the horizontal axis. Make sure you use a good scale for the histogram and draw them accurately. The bars must be proportional to the frequency.	Frequency den the classes on	ısity always g	oes on the ve	ertical axis and

<u>Interpreting</u> <u>Histograms</u>	You may be asked to interp asked to find out information histogram that has been dra You can simply rearrange to either the frequency or the	Example: The histogram below shows information about the heights of a number of plants. Given that there were 4 plants less than 5cm tall, find the number of plants that were more than 5cm tall.		
	Frequency Density	Frequency	Class Width	FD
	$FD = \frac{F}{CW}$	$FD \times CW = F$	$CW = \frac{F}{FD}$	
	Remember, the area of the To find the frequency you	1 1	frequency of the interval.	Answer: Here the FD = 0.8 for the
	(1) Count squares(2) Multiply the frequency		interval $0 < h \le 5$. Using $FD \times CW = F$ you get $0.8 \times 5 = 4$. This means there is no scale factor to deal	
	Check that the scale factor is 1:1. With more challenging questions there may			with. To find the number of plants for $5 < h \le 15$ you calculate $1.2 \times 10 = 12$ and for $15 < h \le 30$ you calculate $2.4 \times 15 = 36$. This gives a total of $12 + 36 = 48$

Probability

	i i obability	
Simple Probability	The number of things you want to happen divided by the number of things that	Probability of rolling a 4 on a fair 6 sided die is 1/6
(Theoretical)	could happen . 1 head on a fair coin, 2 sides so the probability of head = $\frac{1}{2}$	There is one 4 and 6 different numbers.
Listing Outcomes	Listing outcomes systematically makes working with probability easier. You	Example: Bob picks two items from Coke, Sweets,
Systematically and	can often just use thee the first letter of each word. Think 'combinations' here.	Burger and Ice Cream. List the possible combinations:
Sample Spaces	Sample spaces show all the possible outcomes of 2 events.	Answer: CS, CB, CI, SB, SI, BI
Basic Notation	P(A) just means 'the probability of A happening'	Example: There are 8 balls in a bag. 5 are Green and
	P(A') means 'the probability of A not happening'. This is called the complement	the rest are Red. Find: (a) $P(Green)$ (b) $P(Green')$ (c)
	of A and it can be read as A dashed.	<i>P(Red)</i> . Answer: (a) 5/8 (b) 3/8 (c) 3/8
Mutually Exclusive	If two events are mutually exclusive they cannot happen at the same time.	Example: Bob either catches the bus or the train to
Events and the OR	For mutually exclusive events $P(A \text{ or } B) = P(A) + P(B)$ (The OR Rule). You	work. The probability of him catching the bus is 0.4.
Rule for Addition	just add the two probabilities. It looks confusing but it's easy!	Find the probability that he doesn't catch the bus.
	The probability of something not happening is "1 minus the probability of it	Answer: 1 - 0.4 = 0.6
	happening" or more technically $P(A') = 1 - P(A)$	The probability of picking and card that is red and a
	The probabilities of all possible outcomes in an event will always add to 1.	spade from a pack of cards are mutually exclusive.
Relative Frequency	This is how many times something happens ÷ by the number of trials that took	Example: The probability a football team wins a game
and Expected	place in the experiment. To find the number of expected outcomes just \times the	is 0.2. How many games would you expect them to win
Outcomes	probability by the number of trials. This is different to theoretical probability.	out of 40? Answer: $0.2 \times 40 = 8$, so about 8 games.

Frequency Trees	These show how many times two or more events happen. NOT a tree diagram!	Outcomes on branches, frequency at the end of branch!			
Tree Diagrams for	Use a tree diagram to help work out the probability of more than one event.	Pick 2			
Probability	All branches must sum to 1 when you add downwards $(0.2 + 0.8 = 1 as)$	Pick 1			
	shown in the example to the right). If you are modelling conditional	0.2 ^B 0.8			
(For video see	probability check that your probabilities on the second branches reflect any				
Independent Events	changes. An example could be sweets in a bag. If you have 7 mints out of 10 in	0.8 0.2 8			
and Conditional	a bag of sweets on the first pick and you choose one then there will only be 6	G			
Probability)	mints left out of 9 sweets. The probabilities of independent events don't change	0.8 G			
Independent Events	If two or more events are said to be independent, the outcome of a previous	Independent could be replacing a counter in a bag after			
and <i>Conditional</i>	event doesn't influence the probability of the next. The question may tell you	picking it. Conditional would be where the counter			
Probability.	that the events are independent. Anything 'without replacement' is conditional.	wasn't replaced.			
The AND and OR	OR means you need to Add the probabilities and AND means Multiply them.	Using the Tree Diagram above:			
Rule in Probability	Be careful with the wording. Two chocolates for example is chocolate AND	$P(B \text{ and } B) = 0.2 \times 0.2 = 0.04$ $P(1 \text{ of each}) = (0.2 \times 0.8)$			
(See previous videos	chocolate. Two mints or Two Toffee means you would have to add once you	$P(G \text{ and } G) = 0.8 \times 0.8 = 0.64$			
for tutorial).	have multiplied! Check to see if the problem is independent or conditional!	$+(0.2 \times 0.8) = 0.32$			
Set Notation	A represents the Set A and its elements. A set is just a collection of items	Set <i>A</i> are the even numbers less than 10:			
	A'(A dashed) means the elements not in Set A (the complement or NOT A)	$A = \{2, 4, 6, 8\}$			
	\in means 'is an element of a set'. (This is just a value in the set)	Set <i>B</i> are the prime numbers less than 10:			
	{ } Shows the items (or numbers) in the set.				
		$B = \{2, 3, 5, 7\}$			
	ξ Universal Set (All values being considered (even if they are not in A or B))	$4 \in A$ simply means 4 is in Set A			
	$A \cup B$ (The Union) is A or B or both.	$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$ These are in either or both!			
	$A \cap B$ (The Intersection) is both A and B	$A \cap B = \{2\}$ This is the single value in both sets!			
	$A \cap B \mid B$ is both A and B given it's already in B	$A + B = \{2\}$ This is the single value in both sets:			
Venn Diagrams	You can use Venn diagrams to represent sets and to calculate probabilities.	$\begin{array}{c} A \cup B \\ \hline A & \hline B \hline \hline A & \hline B \\ \hline A & \hline B \hline \hline A \\ \hline A & \hline B \hline \hline A & \hline A \\ \hline A & \hline A & \hline A \\ \hline A & \hline A & \hline A \\ \hline A \\ \hline A & \hline A \\ \hline A \\ \hline A & \hline A \\ \hline A$			
(Shading) 2 and 3	You may be asked to shade Venn Diagrams as shown below and to the right.				
circles.	$\begin{array}{c c} A \cup B & A \cap B \\ \hline A & B & \zeta & \hline A & B & \zeta \end{array}$				
		$(A \cap B)'$ $(A \cup B)'$ $A \cup B'$			
	The Union The Intersection 'A or B or Both' 'A and B'				
Venn Diagrams	Finding the Outside Value Finding the Intersection Value	40 People Go to a Party. 50 People Go to a Party.			
(Problem Solving)	(1) Write the 'both' value in (1) Put the 'neither' value outside	28 take Coke, 19 take 34 take Coke, 19 take			
	intersection (middle of Venn). (2) Take the number of 'neither' from	Fanta & 10 take both . Fanta & 10 take neither			
	(2) Find what's left over for the two the total number of items.	How many take neither ? How many take both ?			
	'only' parts and fill those in (3) Add the 2 'Coke' and 'Fanta'	Coke Fanta			
	individually. values together.	$\left(\begin{array}{c}18 \\ 10\end{array}\right) 9 \left(\begin{array}{c}16 \\ 18\end{array}\right) 7 \left(\begin{array}{c}18 \\ 18\end{array}\right) 7 \left(18\right) 7 \left($			
	(3) What's left over goes on the (4) Subtract the added amount to get				
	outside to give the 'neither' value. how many go in the 'both'	The answer is 3The answer is 9			

Geometry and Measures

Area of Rectangle	The area is the space inside a shape. Multiply the two side lengths.Area = Length × Width $Width$ $Perimeter = 2(Length + Width)$ The perimeter is the distance around the outside. Add each side length! Some	Example: Find the area of a rectangle with side lengths 3cm and 5cm. Answer: $A = 3 \times 5$ which gives $15cm^2$. Remember the units for area are always something 'squared' Example: Find the perimeter of the rectangle above.
<u>Area of</u> <u>Parallelogram</u>	rectangles only show two lengths, make sure you are adding all four sides! Treat these like a rectangle. Base × Perpendicular Height. Not the slant height! It will be the same for a rhombus. A rhombus has 4 sides of equal length. h Area = base × height	Answer: $P = 3+3+5+5$ which gives $16cm$. Not $16cm^2$ Example: Find the area of a parallelogram below. $\int \frac{1}{5cm} acm$ Answer: $Area = 5 \times 3 = 15cm^2$ (Again units are squared)
Area of a Triangle	Multiply the base by the height and half your answer. Please half the answer!	Example: Find the area of a triangle with a base of 5cm and a height of 4cm. Answer: $Area = \frac{4 \times 5}{2}$ which gives $10cm^2$
$\frac{Area of a Triangle}{(Using \frac{1}{2}ab\sin(C))}$	To find the area of a triangle where the base and perpendicular height is given you can use the method above. If it's not possible to do this use the formula below. $Area = \frac{1}{2}ab\sin(C)$	Example: Find the area of the triangle below: $7.8 \xrightarrow{9.6} 9.6$ Answer: $a = 7.8$, $b = 9.6$ and $C = 85^{\circ}$. Using the formula: $Area = \frac{1}{2}(7.8)(9.6)\sin(85^{\circ})$ which gives $Area = 44.8u^2$ correct to 1 decimal place.
<u>Area of a Kite</u>	Use the same method as you do for a triangle. Height × Width and half answer. The area is half that of a rectangle with the same dimensions. $\frac{h}{w} \qquad A = \frac{h \times w}{2}$	Example: Find the area of the kite below. $ \frac{8mm}{4mm} _{3mm} $ Answer: $Area = \frac{8 \times 3}{2} = 12mm^2$
Area of a Trapezium	Add the two parallel sides , multiply it by the height and half your answer. If you can't remember this split it up into rectangles and triangles if you can. $h = \frac{a+b}{2} \times h$	Example: Find the area of the parallelogram below. $4 \boxed{\int_{5}^{3} A = \frac{3+5}{2} \times 4}$ Answer: + top & bottom, × by 4 and half it to give 16u ²

<u>Area/Perimeter of</u> <u>Compound</u> /Composite Shapes	Simply split the shape into smaller shapes where there area or perimeter is easier to work out. Look out for missing lengths. You may need to find them! There are a number of different ways you can split most composite/compound shapes up. Use whichever method is easiest. Loads of possible splits on them! =	Example: Find the area & perimeter of the shape below Area: Split it up into 2. lcm 2cm 4cm 2cm
<u>Circle Parts</u>	 Diameter: A line through the centre from circumference to circumference Radius: A line from centre to circumference. (Half the length of a diameter) Centre: The middle of the circle. This will be shown with an <i>O</i> and/or a dot. Tangent: A line that touches the circumference. (Doesn't go through circle) Chord: A line like a diameter but it doesn't go through the centre. Arc (Major or Minor): A small part of the circumference. Sector (Major or Minor): A part of the area of the circle (enclosed by 2 radii) Segment (Major or Minor): A rea trapped between chord and circumference. 	Circumference Radius Centre Sector Diameter Chord Segment Tangent
<u>Area</u> and <u>Circumference</u> of a Circle	Area = πr^2 which just means pi × radius × radius Area = Space inside. Just multiply the radius by the radius by π . The units will be something 'squared'. Circumference = πd which is just pi × the diameter. Circumference = Distance around the outside. The units are NOT squared	Example: Find the area and circumference of a circle with a radius of 5 <i>cm</i> . Answer: If the radius was 5 <i>cm</i> then $A = \pi \times 5^2 = 78.5cm^2$ If the radius was 5 <i>cm</i> then $C = \pi \times 10 = 31.4cm$ <i>If you don't have</i> π <i>on your calculator use 3.14</i> .
Arc Length and Area of a Sector	The arc is just part of the circumference . The sector is part of the area . Take the angle given as a fraction of $360^{\circ} \& \times$ formulae shown above for each. Example	Example: Find (a) The minor arc length <i>AB</i> and (b) The area of the sector <i>OAB</i> from the diagram to the right.
	$ \begin{array}{c} O & r \\ \theta \\ Arc \ Length = \frac{\theta}{360} \times \pi r^{2} \\ Arc \ Length = \frac{\theta}{360} \times 2\pi r \end{array} $	Answer: (a) Arc $AB = \frac{115}{360} \times \pi \times 8 = 8.03cm$ (b) Sector Area: $OAB = \frac{115}{360} \times \pi \times 16 = 16.1cm^2$
Volume of a Cuboid (Capacity)	The volume is the amount of space inside a 3D shape. To find the volume (or capacity) you simply multiply the area of cross section by the length . You can choose any cross section on a cuboid. You <i>could</i> also just multiply each length! The units will be something cubed such as cm ³ ,m ³ ,km ³	Example: Find the volume of the cuboid below. $2cm \frac{1}{5cm} \frac{7}{7cm}$
	$a \underbrace{c}_{b} V = a \times b \times c$	Answer: $V = 2 \times 5 \times 7$ which gives $V = 70 cm^3$

Surface Area of a Cuboid	The surface area is the area of the outside of a 3D shape. Find the area of each face and add them up. Check if it is open or closed top. If it's open it will only have 5 faces. Think about a dice. You can touch all six faces. The total surface area would just be 6 times the area of each face. Units is always 'squared' $a = b = a = (2 \times a \times b) + (2 \times a \times c) + (2 \times b \times c)$	Example: Find the surface area of the cuboid below. $2cm \frac{1}{5cm} \frac{7}{7cm}$ Answer: $A = 2(2 \times 5) + 2(2 \times 7) + 2(5 \times 7)$ $A = 118cm^{2}$
Sketching the Net of a Cuboid (and other 3D Shapes)	Just think what the box/cube/prism would look like if you unfolded it. Don't forget the lid if it has one. Dimensions must be accurate and have a label. The example shown to the right is a net of a $2 \text{ cm} \times 2 \text{ cm} \times 3 \text{ cm}$ closed cuboid. An open topped cube will have 5 faces, a closed top will have 6. There are different possible ways of drawing nets. You don't need to draw any flaps!	2cm $2cm$ $2cm$ $2cm$ $2cm$ $2cm$ $2cm$ $2cm$ $3cm$ $2cm$
<u>Volume of a Prism</u> <u>Surface Area of a</u> <u>Triangular Prism</u>	This is the same as the cuboid when finding the volume. Area of the cross section \times length . Be very careful with triangular prisms. Make sure you half your answer when finding the area of the cross section. For cylinders you will need the area of a circle. If you are already given the area simply multiply that by the length. Answer will be in something cubed such as cm ³ $V = Area \times Length$	Example 1: Find the volume of the prism below. $3cm \underbrace{3cm}_{2cm} \underbrace{4cm}_{2cm}$ Answer: The area of the cross section is $3cm^2$ (Remember to half it!)
Volume of a	Length	The volume will just be $3 \times 4 = 12cm^3$ Example: Find the volume of the cylinder below:
<u>Volume of a</u> <u>Cylinder</u>	A cylinder is a prism. You would use the method shown above. The cross section is simply a circle. Find the area of that circle using $A = \pi r^2$ and	Example: Find the volume of the cynnider below:
<u>Surface Area of a</u> Cylinder	section is simply a circle. Find the area of that circle using $A = \pi r^2$ and multiply the answer by the height of the cylinder. The formula is $V = \pi r^2 h$. $h = \frac{1}{r} V = \pi r^2 h$	Answer: $V = \pi \times 2^2 \times 5$ which can be written as $V = 20\pi u^3$ or $62.8u^3$
Volume of a Cone	A cone is not a prism as it doesn't have a constant cross section. The formula	Example: Find the volume of the cone below.
	used is $V = \frac{1}{3}\pi r^2 h$. Just find the volume of a cylinder and divide by 3. A cylinder is just $V = \pi r^2 h$ which is the area of a circle × the height. (A prism!)	$8m \qquad \qquad$

Surface Area of a Cone	The curved surface of a cone is given as $A = \pi lr$ where <i>r</i> is the radius and <i>l</i> is the slant height. This doesn't include the area of the base. You may need to use Pythagoras to find the slant height if you are given the perpendicular height. $A = \pi lr$ If you have a solid cone and need the base too add the area of the end circle to your answer!	Example: Find the curved surface area of the cone below: $5m / 5m / 3m$
<u>Volume of a</u> <u>Pyramid</u>	This is similar to the volume of a cone. Again a pyramid is not a prism as there is no constant cross section. Just find the area of the base, multiply by the height & \div by 3 or if you like: $V = \frac{1}{2}bh$. This works for triangular based too!	Answer: $A = \pi \times 5 \times 3$ which gives $15\pi m^2$ or $48.1m^2$ Example: Find the volume of the pyramid below.
	3 h $Volume = \frac{1}{3}(a \times b \times h)$	Answer: $V = \frac{1}{3} \times 6 \times 6 \times 7$ which gives $21\pi cm^3$
<u>Frustums</u>	A frustum is either a cone or a pyramid with the top removed. To find the volume simply find the volume of the original large cone or pyramid and then take away the volume of the smaller cone/pyramid you removed from the top. (1) Check you have the radius and perpendicular height. If you have the slant height you will need Pythagoras Theorem or trigonometry. (2) You may need to use similar triangles to find a missing radius or height.	Example: Find the volume of the frustum below. \downarrow_{24cm} \downarrow_{24cm} \downarrow_{12cm} \downarrow_{12cm}
	h_1 h_2 r_1 Total Volume - Smaller Cone Volume = Volume of Frustum	Answer: $V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12) = 700\pi cm^3$ (<i>This is just the volume of the large cone – small cone</i>) N.B You could also find the surface area if required!
Volume of a Sphere	A sphere is just a perfect ball! If the sphere has radius <i>r</i> the volume is given as $V = \frac{4}{3}\pi r^3$. Just substitute the values in. Your answer will be in units cubed. Look out for hemispheres. This is just half a sphere so half your answer.	Example 1: Find the volume of a sphere with diameter 10cm. Answer: Radius = 5cm. $\therefore V = \frac{4}{3} \times \pi \times 5^3 = \frac{500\pi}{3} cm^3$
	Look out for hemispheres. This is just han a sphere so han your answer. $V = \frac{4}{3}\pi r^{3}$ $V = \frac{2}{3}\pi r^{3}$ $V = \frac{2}{3}\pi r^{3}$	Example 2: Find the volume of a hemisphere with radius 4mm. Answer: $V = \frac{2}{3} \times \pi \times 4^3 = \frac{128\pi}{3} mm^3$ (You could just find the sphere and half your answer)

<u>Surface Area of a</u> <u>Sphere</u>	The surface area of a sphere is given as $A = 4\pi r^2$. It's the area of the outside! Just square the radius and multiply it by 4π . Look out for hemispheres. These will need the surface area $(A = 2\pi r^2) + a$ possible additional circle on the top. $A = 4\pi r^2$ $A = 4\pi r^2$ $A = 2\pi r^2 + \pi r^2$ _{Sphere}	Example 1: Find the surface area of a sphere with radius 3cm. Answer: $A = 4\pi(3)^2 = 36\pi cm^2$ (Remember cm^2 for area) Example 2: Find the surface area of a solid hemisphere with radius 6m. Answer: $A = 2\pi(6)^2 + \pi(6)^2 = 3\pi(6)^2 = 108\pi m^2$ (On this example you could have just used $A = 3\pi r^2$)
3D Shapes Solids	Faces=Flat Surfaces Edges=Where Faces Meet Vertices=Where Edges Meet	A Cube has 6 faces, 8 vertices and 12 edges
Congruent Shapes	Congruent shapes are identical. They are the same shape and the same size . Some shapes will be rotated or reflected (their orientation changed) but still congruent to another shape shown. All of the triangles below are congruent!	Example: The 2 shapes marked × are congruent.
<u>Similar Shapes</u>	Same shape, different size. The proportion is the same for each side length. Check each side length is a multiple of the other shape. Adding or subtracting a fixed value to each side length doesn't keep the proportion. Think scale factors	Example: Below the shapes: $x = similar \ y = congruent$
Problem Solving with Similar Shapes/Similar Triangles	To find a missing length look at the corresponding side lengths and then take one of two approaches. (<i>The first approach is less ideal for harder examples</i>): 4.5 cm 4.5 cm 4.5 cm 4.5 cm 4.5 cm x x x x x x x x x x	Example: Find the value of x in the diagram below. AB = 5cm $BC = 2cm$ $BE = 3cm$ $CD = xcm$ Answer: Split the triangles and use similarity. $\frac{x}{7} = \frac{3}{5}$ which gives xcm $x = \frac{7 \times 3}{5}$ and simplifies to $x = 4.2$ (One way of doing it!!)

Congruent Triangles	There are 4 ways ye	ou can prove that tw	o triangles are cong	ruent (identical).	Example 1: B_B	Example 2:
	SSS (Side/Side/Side)	RHS (Right Angle/ Hypotenuse/ Side)	SAS (Side/Angle/Side)	ASA (Angle/Side/Angle)	$\begin{array}{c c} & E & 10 \text{cm} \\ \hline & & & \\ A & & & \\ A & & & \\ \hline & & & \\ 10 \text{cm} & & \\ D & & \\ \hline & & & \\ & & & \\ \end{array}$	10cm F 8cm 10cm
	All sides are of equal length for both triangles.	The hypotenuse and one side length are the same for both RA triangles.	Two side lengths are the same AND the enclosed angle for both triangles	Two angles are the same size and a corresponding side for both triangles.	AB = DE $AC = DF$ $BC = EF$	A = BF $AB = DF$ $AB = DF$
	Angle Side Side is shown below. Triar	not sufficient (unless ngle <i>ABC</i> can be drav	prove congruency. " s it's RHS!) to prove wn 2 different ways	congruency as	$\therefore \text{ The two triangles are congruent by SSS.}$ Example 3:	 ∴ The two triangles are congruent by RHS Example 4:
	equal sides and one $10cm$		B $6cm$ $10cm$	A 7cm 8cm 95 ^s 7cm B 8cm F	$A \underbrace{\begin{array}{c} 61\\ 73\\ 73\\ B \end{array}}^{C} \underbrace{\begin{array}{c} D \\ 73\\ 73\\ 73\\ 73\\ 61\\ 61\\ 73\\ 73\\ 61\\ 73\\ 73\\ 61\\ 73\\ 73\\ 61\\ 73\\$	
	$A \xrightarrow{46^{\circ}}_{C} A \xrightarrow{46^{\circ}}_{C} A \xrightarrow{46^{\circ}}_{C} A \xrightarrow{46^{\circ}}_{C} A$ You will often have to construct an argument using one of the 4 choices above being clear in your work. Some examples are shown to the right. Each makes references to the equal sides or angles and has a conclusion that includes either SSS, RHS, SAS or ASA. The 4 possible scenarios are shown to the right.				$AB = DF$ $BC = DE$ $\angle ABC = \angle EDF$ $\therefore \text{ The two triangles are congruent by SAS.}$	BC = DF ∠ABC = ∠EDF ∠ACB = ∠EFD ∴ The two triangles are congruent by AAS.
<u>Similar Solids</u> -	sizes. Their proport area or volume scal Let's start with an e	ion remains. The ea e factor that connect asy example. Let's s	t they are the same <u>s</u> siest thing to do is fi ts the solids and put ay Cuboid A and Cu ice the length of Cul	nd either the linear, them in a table.	Example 1: Two mathematishown below. Find the volution 10cm	time of the smaller doll.
	This means that the		or $2^2 = 4$		Volume = 120cm Linear Scale Factor Area Scale Factor Volume Scale Factor All you need to do now is n	$ \begin{array}{rcl} & & & = ? \\ & & & & 6/10 = 0.6 \\ & & & & 0.6^2 \\ & & & & 0.6^3 \\ \end{array} $
	given the area scale	e factor, square root	it to get the linear sc root it to get the line	ale factor. If you	-	cale factor to find the volume

Metric Enlargements	$mm \rightarrow cm$	÷10	$mm^2 \rightarrow cm^2$	$\div 10^2 = 100$	$mm^3 \rightarrow cm^3$	$\div 10^3 = 1000$	Example : Co	nvert 300 <i>cr</i>	n^3 into m^3	
	mm ← cm	×10	$mm^2 \leftarrow cm^2$	$\times 10^2$	$mm^3 \leftarrow cm^3$	$\times 10^3$	Answer: 300-			
	$cm \rightarrow m$	÷100	$cm^2 \rightarrow m^2$	$\div 100^{2}$	$cm^3 \rightarrow m^3$	$\div 100^3$			sions of a recta	ingle (for
	$cm \leftarrow m$	×100	$cm^2 \leftarrow m^2$	$\times 100^2$	$cm^3 \leftarrow m^3$	$\times 100^{3}$			-	n in m^2 you may
	$mm \rightarrow m$	÷1000	$mm^2 \rightarrow m^2$	$\div 1000^{2}$	$mm^3 \rightarrow m^3$	$\div 1000^{3}$			rt rather than a	
	$mm \leftarrow m$	×1000	$mm^2 \leftarrow m^2$	$\times 1000^{2}$	$mm^3 \leftarrow m^3$	$\times 1000^{3}$	answer will be	the same.		
Angle Types	Acute angles Right angles Obtuse angles Reflex angles If you are ask	are exactly 9 es are greater s are greater	n 90°, 90°, (Often sh • than 90° but than 180° and	own by a sma less than 180 less than 360	all square on a	no value)	Acute	Right	Obtuse	Reflex
	and then mar	k the larger of	angle round th	he other side!						
Basic Angle Facts	The angles or The angles ar Look out for a Some questio An example r	ound a point right angles! ns will need	add to 360°. These have a algebra to sol	little square ve for an unk	and often no angle.	numbers on!	xy	/		d a c b
	them and solv	ve: $2x + 3x =$	180° so $5x =$	180° and $x =$	$=36^{\circ}$		x + y = 13	30°	a+b+	$-c+d=360^{\circ}$
Opposite Angles	Opposite angles are equal . Remember also that the angles on a straight line add to 180° and angles around a point add to 360°. This will help you with some multi-step problems later on.							$\frac{x}{y}$		
Alternate Angles	Alternate ang	les are equal	. These look l	ike a letter Z.	x = x & y =	y of course!				
	(Do not use t Often you will answer. There	ll be asked to	state with a r	eason why ye	ou have giver	your		x x	,	
Corresponding Angles	Correspondin (Do not use t Often you wil answer. There Some student alternate angl	the term 'F a ll be asked to e is often mo s may see tw	angles' in an o state with a r re than one w vo angles as co	exam. You n reason why ye ay to explain prresponding	nust use Corrou have given how you four instead of sel	your nd the angle. ecting			$\frac{y}{x}$	
Co-interior Angles	Co-interior ar	ngles add to	180° . $x + y = -\frac{1}{2}$	$=180^{\circ}$ These	e look like the	letter C			\rightarrow	
	(Do not use t Often you wil answer. Chec unless they =	he term 'C and the second seco	angles' in an state with a r er makes sens	exam. You r eason why ye e. Clearly x+	nust use Co- ou have giver y are not the	nterior) your same size		$\frac{x}{y}$		
	unicos uney –	JU . Studell	is onen meon	cony just say	opposite all	5103.		/		

Bearings	 Bearings are just angles! Here are the rules you must use with bearings: (1) Measure from North (Draw a north line at each point to help you) (2) Measure clockwise (Using a protractor or by using angle facts) (3) Your answer must have 3 digits (An angle of 40° has a bearing of 040°) The first diagram shows the bearing of 3 water vehicles from a harbour. The second diagram shows how to find the bearing of one place from another. B from A is measured at A and A from B is measured at B (Use north lines) Just fill out all missing angles. Sometimes you can use angle facts above instead of measuring the angle. Co-interior angles add to 180° as shown above. 	Boat 250° Ship 130° Raft 050° Boat Ship Ship The bearing of <u>B</u> from <u>A</u> The bearing of <u>A</u> from <u>B</u> Boat Boat Boat Boat Boat Boat Boat Boat
Exterior Angles of a Regular Polygon	For regular polygons divide 360° by the number of sides. This will give you the size of each exterior angle. This is shown on the straight line to the right. d The regular hexagon shown has an exterior angle of 60° As $360^\circ \div 6 = 60^\circ$ The interior angles of 120° are also shown. This was found by subtracting the exterior angle from 180° as angles on a straight line add to 180° If you are unsure, interior is inside and exterior is outside !	120* 60*
Interior Angles of	To find an interior angle subtract the exterior angle from 180° as shown above.	Use the diagram above to help you! You could also use
Regular Polygon	Add all the angles for the sum. The number of angles = number of sides.	$(n-2) \times 180$ to find the sum of the interior angles.
<u>Circle Theorem 1</u>	Angles in a semicircle have a 90° angle at the circumference. Make sure the	Example: Find the value of x and y in the circle below.
<u>(Angles in a semi-</u> <u>circle)</u>	diameter does pass through the centre (this may have an <i>O</i> on). You may be asked questions involving Pythagoras in examples involving semi circles.	1,1/2 3.8
		Answer: Angles in a semicircle $\therefore y = 90^{\circ}$. Angles in a triangle add to $180^{\circ} \therefore x = 52^{\circ}$
<u>Circle Theorem</u>	The opposite angles in a cyclic quadrilateral sum (add) to 180°.	Example: Find the value of <i>x</i> and <i>y</i> in the circle below.
<u>(Angles in a</u> <u>Quadrilateral)</u>	Make sure each vertex of the quadrilateral touches the circle. $a+c=180^{\circ}$ $b+d=180^{\circ}$	Answer: Opposite angles add to 180° $\therefore x = 97^{\circ}$ $y = 88^{\circ}$.
<u>Circle Theorem</u> (The Arrow)	The angle at the centre is double that at the circumference. Look for an <i>O</i> .	Example: Find the value of <i>x</i> in the circle below.
		Answer: <i>x</i> is half of 104° at the centre $\therefore x = 52^{\circ}$

<u>Circle Theorem</u> (The Bow/Angles in the Same Segment)	The angles at the top of the bow are the same. The angles at the bottom of the bow are the same. You don't need the lines to go through the centre.	Example: Find the value of <i>x</i> and <i>y</i> in the circle below. y x 42^{y} Answer: Using the bow, $y = 31^{\circ}$ and $x = 42^{\circ}$
Circle Theorem	When a tangent meets a radius it meets at right angles. You can say the angle	Example: Find the value of <i>x</i> and <i>y</i> in the circle below.
<u>(Tangent)</u>	between the radius and the tangent is 90° or that they are perpendicular.	3 cm 4 cm
	When two tangents are drawn from a point to the circle their lengths are equal.	Answer: $x = 90^{\circ}$ and using Pythagoras Theorem. $y = 5$
<u>Circle Theorem</u> <u>(The Alternate</u> <u>Segment Theorem)</u>	The angle <i>a</i> between the tangent and the chord is the same size as the angle <i>a</i> in the alternate segment. This is true for <i>b</i> and <i>b</i> too. One way to spot these is to look for the two angles 'opening to the left' which are <i>b</i> . These will be the same. The two angles opening to the right will both have the value of <i>a</i> .	Example: Find the value of <i>x</i> and <i>y</i> in the circle below. Answer: $y = 38^{\circ}$ and $x = 52^{\circ}$ using the alternate segment theorem. Look at the way the angles open up if you are struggling . <i>x</i> and 52° to the right, <i>y</i> and 38° to the left.
All Circle Theorem	Combining theorems to solve multistep problems.	Rotate your paper to help you spot different theorem.
<u>The Equation of a</u> <u>Tangent to a Circle</u>	The tangent to a circle is a straight line that touches the circle and is perpendicular (at right angles) to the radius at that given point. To find the equation of a tangent to a circle at a given point: (i) Find the gradient of the radius using the centre of the circle and the given point as your two points. (See the section on gradient previously) (ii) Use the negative reciprocal for the gradient of the tangent (see parallel and perpendicular lines section) (iii) Use the equation of a straight line ($y = mx + c$) with your gradient and the point you are given in the question. (See the section on $y = mx + c$)	Example: Find the equation of the tangent to the circle $x^2 + y^2 = 25$ at the point (4, 3). Answer: (1) The centre of the circle is (0,0) and passes through the point (4,3). The gradient of the radius is $\frac{3-0}{4-0} = \frac{3}{4}$. (2) The gradient of the tangent will be $-\frac{4}{3}$ as it's the negative reciprocal of the gradient of the radius.

		(3) Substituting into $y = mx + c$ with the point (4, 3) and a
	4,3	gradient of $-\frac{4}{3}$ you get: $3 = -\frac{4}{3}(4) + c$ which
		gives $c = \frac{25}{3}$ and as a result the equation of the tangent is $y = -\frac{4}{3}x + \frac{25}{3}$. A diagram is shown to the left.
Types of Triangles	 Right Angle Triangles have one 90° angle in. Look out for the square in these Isosceles have 2 equal sides and 2 equal base angles. Look for notation! Equilateral have 3 equal sides and 3 equal angles (60°) Look for notation! Scalene have different size sides and angles. No notation. You can spot isosceles and equilateral by the small lines on their sides. 	Right Angled Isosceles Equilateral Scalene
Parallel and Perpendicular Lines	Parallel lines never meet and have a fixed distance between them. Perpendicular lines are at right angles. There is a 90° angle between them. If two straight lines are parallel the value of <i>m</i> in the equation $y = mx + c$ will be the same for both lines. $y = 3x - 1$ and $y = 3x + 2$ as their gradients are equal.	Parallel Perpendicular
Angle and Line Bisectors	 Angle Bisector: Cuts the angle in half. Open the compass up. Place the sharp end on the vertex. Mark a point on each line Without changing the compass put the compass on each point and mark a centre point. Get a ruler and draw a line through the vertex and centre point. Line Bisector (Perpendicular Bisector): Cuts the line in half and at right angles Put the sharp end on Point A. Open the compass up past half way on the line. Mark a point above and below the line. Without changing the compass do the same from B. Draw a straight line through the points. You MUST leave your construction marks on all bisection questions! 	Line Bisector Angle Bisector
Loci and Regions	A locus is just a path of points or region that follows a rule. For the locus of points closer to <i>B</i> than <i>A</i> you will create a perpendicular bisector as above and shade to the right of the line as shown to the right. For the locus of points less than or more than a fixed distance from <i>A</i> use a compass with the given radius to draw a circle. You may have to combine loci.	Example: Draw the locus of points no more than 3cm from <i>A</i> and no more than 2cm from <i>B</i> . Answer: Draw a circle with radius 3cm from <i>A</i> and one with radius 2cm from <i>B</i> . Shade inside as it's no more than! (If it were more than it would have been outside!)

Translating a Shape (A Transformation)	Translate means to move the shape. There is no change in its size or its orientation. Vectors are used to give information about the 'movement' The top number tells you to move right or left. Right is + and left is The bottom number tells you to move up or down. Up is + and down is <i>If coordinates are used for the translation just treat them like vectors.</i>	(a) $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$ is right 2 and up 3 (b) $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ is left 1 and up 2 (c) $\begin{pmatrix} 3 \\ -5 \end{pmatrix}$ is right 3 and down 5 (d) $\begin{pmatrix} 0 \\ 4 \end{pmatrix}$ is just up 4
Rotating a Shape (Transformation)	The size of the shape doesn't change. The shape is simply turned about a point. You will be given (i) A direction (ii) An angle and (iii) A centre of rotation.	 (a) Rotate Shape A 90° clockwise about (0,1) (b) Rotate Shape B 270° anti clockwise about (0,0)
Reflecting a Shape (Transformation)	Think about standing looking in a mirror. Learn lines such as $x = 2$ (vertical), $y = -1$ (horizontal) & $y = x$ (diagonal). Use a mirror if you are unsure.	(a) Reflect Shape A in the <i>x</i> axis.(b) Reflect Shape A in the line <i>x</i> = 2.
Enlarging a Shape (Basic examples) (Transformation)	You will be given a Scale Factor and no centre of enlargement. Multiply each side length of the shape by the scale factor. A scale factor of 2 is twice as big $(\times \text{ by } 2)$, not + 2 to each side. See below for centre of enlargement examples.	SF of $3 = 3$ times larger (× EACH side length by 3) SF of $\frac{1}{2}$ = half the size (÷ EACH side length by 2) SF of 1 = no change in the size of the shape
<u>Enlargements Given</u> <u>a centre of</u> <u>Enlargement</u> <u>(Including Negative</u> <u>and Fractional)</u>	If the scale factor is positive both shapes will be the same side of the centre of enlargement. If the SF is negative the two shapes will be either side of the centre. Negative enlargements will look like they have been rotated. One way to do this is with guidelines & the other way is to do it with vectors. SF 2 is twice as big & twice as far away from the centre of enlargement.	A to B is an enlargement SF 2 about the point (2,1) A to B is an ellargement SF - 12 about the point (7,6)
<u>Finding the centre of</u> <u>Enlargement</u>	Draw guidelines through each corresponding vertex of the two shapes with a pencil and ruler. Each line will pass through the centre of enlargement when done accurately as shown to the right. Be careful with negative enlargements when finding the corresponding corners as the shape will be a different way round.	A to B is an enlargement SF 2 about the point (2.1)
<u>Combining</u> Transformations	Perform 2 transformations and then state the single transformation that maps thee original shape to the final shape. You may need to use resultant vectors.	To find the resultant vector you can add the 2 vectors you used in the translations given.
Naming	Rotations will be the same size but often a different way around. (orientation)	(Centre, direction and angle required for Rotations)
Transformations	Translations have simply been moved. No change to size or orientation.	(The vector is required for Translations)
(The 4 choices)	Reflections will sometimes have the same orientation depending on the shape. Enlargements will be the same shape but either larger or smaller!	(The reflection line for Reflections) Look out for $y = x$ (The scale factor is required for Enlargements)
Line Symmetry	How many mirror lines can you draw on the shape? Regular shapes will have the same number of sides as they do symmetry lines and rotational symmetry. Be careful with patterns within shapes. This will change the symmetry! Parallelograms seem to catch people out too!	
Rotational Symmetry	How many times does the shape (and pattern if applicable) look the same when you turn it through 360 °? This gives us the order of rotational symmetry. Be careful with patterns. Regular shapes without patterns will have the same number of sides as their rotational symmetry. Use tracing paper if you need. A circle without a pattern will have an undefined number!	$ \begin{array}{c cccc} \hline & & & \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline \\ \hline$

<u>Plans and</u> <u>Elevations</u>	 These types of drawing take 3D drawings and produce 3 different 2D drawings. Plan View: From above. Think 'birds eye view' Side Elevation: A 2D shot from the side of the object. Front Elevation: A 2D shot from the side of the object. You will be told which is the front and/or side. Remember to put the units on! 	Original 3D Drawing 2D Drawings Image: Constraint of the second
Metric Units (See Video on converting units)	Length: mm, cm, m and km. 1km = 1000m = 100'000cm = 1'000'000mm Mass: mg, g, kg, tonnes 1kg = 1000g Volume: ml, cl, 1 1 litre = 1000ml	Man's height ~ 1.8-2m, credit card ~ 0.8mm thick Adults weight 70kg, a small cake = 150g Glass of coke is about 250ml
<u>Speed, Distance,</u> <u>Time</u>	Speed = Distance \div TimeDistance = Speed \times TimeTime = Distance \div SpeedRemember the correct units!	(a) Speed is 4mph, Time is 2 hours, Find the Distance. $D = S \times T$ so $4 \times 2 = 8$ miles. (b) Time is 5 hours, Distance = 12km, Find the Speed $S = D \div T$ so $12 \div 5 = 2.4$ kph
Distance/Time Graphs	Distance/Time graphs show the distance covered and the time taken as shown to the right. Distance is on the vertical axis and time is on the horizontal. You can find the speed from the gradient of the line (Distance \div Time). The steeper the line, the quicker the speed. If there is a flat line (horizontal to the time axis) the object is stationary. On the example to the right the speed on the first section is $4 \div 2 = 2$ km/h, the second 0km/h and the third $4 \div 4 = 1$ km/h	Distance (Km)
<u>Velocity Time</u> <u>Graphs</u>	 Velocity/Time Graphs show the speed of an object over a given time. Velocity is on the vertical axis and time is on the horizontal. You can find the acceleration from the gradient of the line (Speed ÷ Time). The steeper the line the quicker the acceleration. If the line goes up it's acceleration, if it goes down it's deceleration and if it's flat then there is no acceleration and a constant speed. The area under the graph is the distance covered. This can be found by either finding the area of the trapezium or adding the areas of rectangles and triangles. 	Velocity (m/s) $\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}{\frac{1}$
Density, Mass, Volume	Density = Mass \div VolumeMass = Density \times VolumeVolume = Mass \div Density Remember the correct units.	(a) Density is $8kg / m^3$, Mass is $2kg$, Find the Volume. $V = M \div D$ so $2 \div 8 = \frac{1}{4} m^3$ (b) Volume is $20cm^3$, Mass is $30g$, Find the Density $D = M \div V$ so $30 \div 20 = 1.5 g / cm^3$
Pressure	Pressure = Force \div AreaForce = Pressure \times AreaArea = Force \div Pressure(Force is measured in Newtons (N))	(a) Force is 12N, Area = $3m^2$. Find the Pressure P = F \div A so $12 \div 3 = 4N/m^2$ (b) Area = $1.2m^2$, Pressure = $4.8N/m^2$. Find the Force F = P \times A so $1.2 \times 4.8 = 5.76N$

Kinematics	You can use the contant acceletaion equ	ations (or SUVAT equations) to	Example 1: A car starts from	m rest and accelerates for		
(Constant	calculate the motion of an object. This c		at $3ms^{-2}$ for 5 seconds. Find	the velocity of the car after		
Acceleration	The equations used	Where	5 seconds.	,		
Equations SUVAT)	(1) $v = u + at$	s = displacement	Answer:			
	(2) $s = ut + \frac{1}{2} at^2$	u = initial velocity	S U = 0 V =	? $A = 3$ $T = 5$		
	(2) $s = ut + \frac{1}{2}at^2$	v = final velocity	You need $v = u + at$. Substitu	ute the 3 values in to find		
	(3) $v^2 = u^2 + 2as$	a = acceleration	the 4 th : $v = 0 + 3(5)$. This giv	es the answer of $v = 15ms^{-1}$		
		t = time	Example 2: A car travels 15	50m. The initial velocity of		
		the second se	the car is $8ms^{-1}$ and after 150	-		
	You will be given 3 pieces of information		Find the acceleration of the			
	correct equation. Simply write SUVAT		Answer:			
	(as shown to the right), fill the given val		S = 150 U = 8 V =	12 $A = ?$ T		
	The units used generally speaking are: <i>s</i>		You need $v^2 = u^2 + 2as$. Sub	stitute the 3 values in to		
	The notation ms^{-1} for velocity and ms^{-2} f		find the 4^{th} : This gives $12^2 =$	$8^2 + 2a(150)$.		
	Displacement is like distance but has dir		Now solve for <i>a</i> .			
	Velocity is like speed but again has dire					
	Acceleration is the rate of change of velocity with respect to time. This is vector too! <i>All values but time can be negative</i> .			$a = \frac{12^2 - 8^2}{2(150)}$ which simplifies to $a = 0.267 m s^{-2}$		
Vectors and Vector	()	guive.		Marsila fa Martan		
<u>Notation, Equal</u> <u>Vectors, Magnitude</u> <u>of a Vector</u>	(4) \rightarrow $AB = B - A.$ To find the direction vector vector of A from the position vector of \rightarrow $AB = -BA$ (Vectors have direction and The magnitude (length of a vector) AB i	metres to the right and 4 metres up. \rightarrow r <i>AB</i> simply subtract the position <i>B</i> . It's just a line segment! magnitude). s <i>AB</i> . Just use Pythagoras Theorem!	Position & Direction Vector $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \xrightarrow{B} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \xrightarrow{E} \overrightarrow{EF} = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \xrightarrow{A} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \xrightarrow{C} \overrightarrow{CD} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \xrightarrow{E} \xrightarrow{EF} = \begin{pmatrix} -1 \\ -2 \end{pmatrix} \xrightarrow{E} \xrightarrow{EF} EF$	S Magnitude of a vector $\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \xrightarrow{B} \begin{pmatrix} 8 \\ 6 \end{pmatrix}$ $\begin{pmatrix} A \\ \begin{pmatrix} 5 \\ 4 \end{pmatrix} AB = \sqrt{(8-5)^2 + (6-4)^2}$ $ AB = \sqrt{13}$		
<u>Vectors (Adding,</u>	You can add $\begin{pmatrix} 2\\1 \end{pmatrix} + \begin{pmatrix} 5\\4 \end{pmatrix} = \begin{pmatrix} 7\\5 \end{pmatrix}$ subtract $\begin{pmatrix} 2\\4 \end{pmatrix} = \begin{pmatrix} 2\\5 \end{pmatrix}$	$\binom{8}{-}\binom{2}{-}\binom{6}{-}$ & × them $\binom{3}{-}\binom{6}{-}$		Scalar multiples		
Subtracting and Multiplying and	$1 \cdot (4) \cdot (5)$ subtract ((3) (1) (2) (3) (4) (8)				
Resultant Vectors)	The resultant vector is just a direct vector		\overrightarrow{AC} \overrightarrow{AC}	a 2a		
	the rightyou to get to C from A either via	B or directly. This can be written as		-a		
	$\rightarrow \rightarrow \rightarrow$		B	u v		
		le laws as the 3 vectors make a triangle	\rightarrow			
	You can multiply a vector by a scalar as	shown to the far right.	A AB			

	Collinear points are points on the same straight line as shown below. AX = kAB (where k is just a scalar enlargement) shows that line lines AX and AB are parallel. As they both pass through A it can be said that they are collinear, or if you like, are all on the same line. To show 3 points are collinear you must show that one vector is a multiple of the other AND that both vectors pass through one of the points. Showing the two vectors are parallel is not enough as parallel vectors could be anywhere on 'the grid'.	You have seen in a previous example that $\overrightarrow{AB} = b - a$. All you need to do is show that $\overrightarrow{PQ} = k(b-a)$. $\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$ which will give $\overrightarrow{PQ} = -\frac{1}{2}a + \frac{1}{2}b$ which in turn will tidy to $\overrightarrow{PQ} = \frac{1}{2}(b-a)$. This is a vector parallel to \overrightarrow{AB} and half its length.
Pythagoras Theorem for Right Angle Triangles	Pythagoras Theorem is used to find missing lengths in right angled triangles when 2 side lengths are given. The triangle must be a right angled triangle. $a^2 + b^2 = c^2$ a a b a & b are the 2 shorter sides and <i>c</i> is the hypotenuse (longest). Make sure you label each correctly. Neither shorter side can be longer than the hypotenuse! Make sure you square root the answer to find the length. You + when you need the hypotenuse & - when you need a shorter side.	Finding Hypotenuse 3 ADD! 4 $a = 3, b = 4, c = x$ $a^2 + b = c^2$ $9 + 16 = x^2$ $25 = x^2$ 5 = x a = y, b = 8, c = 10 $a^2 = c^2 - b^2$ $y^2 = 100 - 64$ $y^2 = 36$ y = 6
<u>3D Pythagoras</u> <u>Theorem</u>	Pythagoras Theorem in 3D is used to find missing lengths in cuboids. Use the same principles as 2D. $a^2 + b^2 + c^2 = d^2$. Here <i>d</i> is the diagonal of the box.	Example: Find the longest pencil that can fit in a pencil tin with dimensions 12cm, 13cm and 9cm. The pencil tin is in the shape of a cuboid. Answer: Length = $\sqrt{12^2 + 13^2 + 9^2}$ which gives 19.8cm correct to 1dp. If you are given a cube the side lengths are the same. If you are working backwards set $3x^2 = to$ the diagonal.

Algebraic Fractions (Page 23) Algebraic Proof (Page 24) Angles (Basic Angle Facts) (Page 39) Angles (Interior and Exterior Angles in Polygons) (Page 40) Angles (Opposite Angles) (Page 39) Angles (Types of Angle) (Page 39) Angles in Parallel Lines (Alternate Angles) (Page 39) Angles in Parallel Lines (Co-interior Angles) (Page 39) Angles in Parallel Lines (Corresponding Angles) (Page 39) Area of a Circle (Page 34) Area Under a Curve (Page 21) Asymptotes (Page 18) Averages (Mean From a Table) (Page 26) Averages (Mean) (Page 26) Averages (Median) (Page 26) Averages (Mode) (Page 26) Bearings (Page 40) Best Buys (Page 6) BIDMAS/BODMAS (Order of Operations) (Page 4) Bisection of an Angle and a Line (Page 42) Box Plots (Comparing) (Page 29) Box Plots (Drawing) (Page 29) Brackets (Expanding Double Brackets) (Page 8) Brackets (Expanding Single Brackets) (Page 8) Capture/Recapture Method (Page 28) Circle Theorems (Page 40) Circles (Arc Length) Page 34) Circles (Area of a Sector) (Page 34) Circles (Area) (Page 34) Circles (Circumference) (Page 34) Circles (Parts) (Page 34) Completing the Square (Page 9) Composite Shapes (Area) (Page 34) Composite Shapes (Perimeter) (Page 34) Cone (Curved Surface Area) (Page 36) Congruent Shapes (Page 37) Congruent Triangles) (Page 38) Correlation (Page 27) Cube Numbers (Page 1) Cuboids (Surface Area of a Cuboid) (Page 35) Cuboids (Volume of a Cuboid) (Page 34) Cumulative Frequency (Graphs) (Page 28) Cumulative Frequency (Tables) (Page 28) Cylinder (Volume of a Cylinder) (Page 35) Decimals (Converting Recurring Decimals to Fractions) (Page 5) Decimals (Multiplying) (Page 4) Decimals to Fractions (Page 2) Density/Mass/Volume (Page 44) Equations (Equation of a Tangent to a Circle) (Page 41) Equations (Equations with Fractions) (Page 10) Equations (Linear & Non Linear Simultaneous Eqs) (Page 13) Equations (Simultaneous Linear Equations) (Page 11) Equations (Solving by Iteration) (Page 13) Equations (Solving Linear Equations) (Page 10) Equations (Solving Quadratic Equations (Page 11/12)

Algebra (Terminology) (Page 7)

Index

Equations (The Equation of a Circle) (Page 12) Equations (The Equation of a Straight Line) (Page 15) Estimations and Approximations (Page 2) Exponential Functions (Page 4) Expressions (Simplifying) (Page 7) Extrapolation (Page 27) Factorising (Quadratics) (Page 8) Factorising (Single Brackets) (Page 8) Factorising (The Difference of 2 Squares) (Page 9) Factors (Page 1) Formulae (Rearranging) (Page 10) Formulae (Substituting Into) (Page 10) Formulae (Writing) (Page 10) Fractions (Adding) (Page 3) Fractions (Dividing) (Page 3) Fractions (Finding a Quantity) (Page 3) Fractions (Multiplying) (Page 3) Fractions (Ordering) (Page 2) Fractions (Simplifying) (Page 2) Fractions (Subtracting) (Page 3) Fractions to Decimals (Page 2) Fractions to Percentages (Page 2) Frustums (Page 36) Functions (Composite) (Page 25) Functions (Inverse) (Page 25) Functions (Notation and Evaluating) (Page 25) Gradient of a Line (Page 15) Graphs (Cubic Graphs) (Page 17) Graphs (Distance/Time Graphs) (Page 44) Graphs (Graph Recognition) (Page 16) Graphs (Quadratic Graphs from a Table) (Page 16) Graphs (Sketching Quadratic Graphs) (Page 16) Graphs (Solving Simultaneous Equations) (Page 11) Graphs (Straight line (linear) Graphs) (Page 14) Graphs (The Graph of a Circle) (Page 12) Graphs (Transformations) (Page 19) Graphs (Transforming Trig Graphs) (Page 48) Graphs (Trigonometric Graphs) (Page 48) Graphs (Velocity/Time Graphs) (Page 44) Growth and Decay (Page 4) HCF (Page 1) Histograms (Drawing) (Page 30) Histograms (Interpreting) (Page 31) Identities (Page 7) Inequalities (Quadratic Inequalities) (Page 19) Inequalities (Reading and Writing) (Page 18) Inequalities (Set Notation) (Page 18) Inequalities (Shading Regions) (Page 18) Integers (Page 1) Interest (Simple and Compound) (Page 4) Interpolation (Page 27) Intervals and bounds (Page 2) IOR (Page 28) Iteration (Page 13) Kinematics (SUVAT) (Page 45) Kite (Area) (Page 33)

LCM (Page 1) Length of a Line Segment (Page 14) Listing Outcomes Systematically (Page 31) Loci and Regions (Page 42) Lower Quartile (Page 28) Metric Measures (Page 39) Metric Units (Page 44) Midpoint of a Line (Page 14) Moving Averages (Page 26) Multiples (Page 1) Negative Numbers (Adding and Subtracting) (Page 4) Negative Numbers (Multiplication & Division) (Page 4) Nets (Sketching the Net of a Solid) (Page 35) Parallel and Perpendicular Lines (Page 15) Parallelograms (Area) (Page 33) Percentages (Change) (Page 3) Percentages (Reverse %) (Page 3) Percentages (Find 10%, 5% and 1%) (Page 3) Percentages (Find a Quantity) (Page 3) Percentages (Increasing and Decreasing by a %) (Page 3) Percentages to Decimals (Page 2) Perpendicular Lines (Page 15) Pictograms (Page 27) Pie Charts (Page 26) Plans and Elevations (Page 44) Powers (Adding and Subtracting) (Page 7) Pressure (Page 44) Prime Numbers (Page 1) Prism (Volume of a Prism) (Page 35) Probability (AND & OR Rules) (Page 32) Probability (Basic) (Page 31) Probability (Experimental Probability) (Page 31) Probability (Independent Events) (Page 32) Probability (Mutually Exclusive Events) (Page 31) Probability (Notation) (Page 31) Probability (Of Something Not Happening) (Page 31) Probability (Tree Diagrams) (Page 32) Product of Prime Factors (Page 1) Proportion (Basic) (Page 6) Proportion (Direct and Inverse) (Page 6) Proportion (Graphs) (Page 7) Pyramid (Volume of a Pyramid) (Page 36) Pythagoras Theorem 2D (Page 47) Pythagoras Theorem 3D (Page 47) Quartiles (Page 28) Range of a Data Set (Page 26) Rational and Irrational Numbers (Page 1) Ratios (Simplifying) (Page 6) Ratios (1:n and n:1) (Page 6) Ratios (Already Shared) (Page 6) Ratios (To Fractions and to percentages) (Page 6) Reciprocal (Page 1) Rectangles (Area) (Page 33) Rectangles (Perimeter) (Page 33) Relative Frequency (Page 31) Rounding to 1 DP (Page 2)

Rounding to 1 SF (Page 2) Rounding to 2 DP (Page 2) Rounding to 2 SF (Page 2) Rules of Indices (Fractional Powers) (Page 8) Rules of Indices (Negative Powers) (Page 7) Rules of indices (Raising to a Power) (Page 8) Rules of Indices (Zero Power) (Page 8) Sampling (Definitions) (Page 27) Scatter Graphs and Line of Best Fit (Page 27) Sequences (Basic Number Patterns) (Page 22) Sequences (Fibonacci Sequences) (Page 23) Sequences (Notation) (Page 22) Sequences (nth Term of a Linear Sequence) (Page 22) Sequences (nth Term of a Quadratic Sequence) (Page 22) Set Notation (Page 32) Similar Shapes (Page 37) Similar Solids (Page 38) Similar Triangles (Page 37) Solids (Page 37) Speed/Distance/Time (Page 44) Spheres and Hemispheres (Area) (Page 37) Spheres and Hemispheres (Volume) (Page 36) Square Numbers (Page 1) Square Roots (Page 1) Standard Form (Calculating) (Page 4) Standard Form (Writing) (Page 4) Stem and Leaf Diagrams (Page 27) Stratified Sample (Page 28) Surds (Adding and Subtracting) (Page 5) Surds (Multiplying and Dividing) (Page 5) Surds (Rationalising the Denominator) (Page 5) Surds (Simplifying) (Page 5) Symmetry (Line) (Page 43) Symmetry (Rotational) (Page 43) Tangents to Curves (Page 20) Time Series Graphs (Page 26) Transformations (Page 43) Trapezium (Area) (Page 33) Tree Diagrams and Frequency Trees (Page 32) Triangle (Area) (Page 33) Triangles (Types of Triangle) (Page 42) Trigonometry (Graphs of Trig Functions) (Page 48) Trigonometry (Ratios SOH/CAH/TOA) (Page 48) Trigonometry (Special Values) (Page 48) Trigonometry (The Cosine Rule) (Page 49) Trigonometry (The Sine Rule) (Page 49) Two Way Tables (Page 27) Upper and Lower Bounds (Page 2) Upper Quartile (Page 28) Using a Calculator (Page 35) VAT (Page 4) Vectors (Adding, Subtracting and Multiplying) (page 45) Vectors (Geometry) (Page 46) Vectors (Parallel and Collinear Vectors) (Page 46) Vectors (Resultant Vectors) (page 45) Venn Diagrams (Page 32)

Date	Topic I need to work on	What have I done about it?	Teacher Suggestions	Update	Has progress been made?
		•			