

Chapter 9 Chemical Names and Formulas

- 9.1 Naming lons
- 9.2 Naming and Writing Formulas for Ionic Compounds
- 9.3 Naming and Writing Formulas for Molecular Compounds

9.4 Naming and Writing Formulas for Acids and Bases

9.5 The Laws Governing How Compounds Form

9.4 Naming and Writing **Formulas for Acids and Bases**

What's the name of the acid responsible for the crisp taste in this drink?

There's a certain acid that gives many soft drinks their crisp, enjoyable taste.

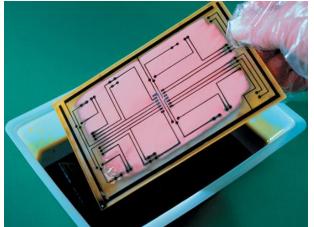
H_3PO_4 - phosphoric acid.

PEARSON

Names and Formulas of Acids

How do you determine the name and formula of an acid?

- Acids are a group of ionic compounds with unique properties.
- Acids can be defined in several ways, but for now:
 - An <u>acid</u> is a compound that <u>contains one or</u> more hydrogen atoms,
 - AND produces hydrogen ions when dissolved in water.


4

HO

Η''

Acids have many uses . . .and many are natural.

Sulfuric acid is often used to etch circuit boards.

Citric acid is found in fruit.

Ascorbic acid is vitamin C

tamp

- An acid consists of an anion combined with as many hydrogen cations as needed to make the molecule electrically neutral.
- The chemical formulas of acids are generally written as:
 - H_nX,
 - H is the hydrogen atom
 - X is a monatomic or polyatomic anion
 - *n* is the number of hydrogen cations.

 Three rules to name an acid with the general formula H_nX dissolved in water.

Rule 1

- When the name of the anion ends in -*ide*, the acid name begins with the prefix *hydro*-
- The anion has the suffix -*ic*
- and is followed by the word acid.
 - HCI (X = chloride) <u>hydro</u>chlor<u>ic</u> <u>acid</u>.
 - HF (X = fluoride) <u>hydro</u>fluor<u>ic acid</u>

Rule 2

- When the anion name ends in -ite, the acid name is the anion with the suffix -ous,
- followed by the word **acid**.
 - H_2SO_3 (X = sulfite) sulfur<u>ous acid</u>.
 - HNO₂ (X = nitrite) nitrous acid

Recall that "-ite" is an oxyanion (contains oxygen).

Rule 3

- When the anion name ends in -ate, the acid name is the anion with the suffix -ic,
- followed by the word **acid**.
 - HNO₃ (X = nitrate) nitr<u>ic acid</u>.
 - H₃PO₄ (X = phosphate) phosphor<u>ic</u> <u>acid</u>

Recall that "-ate" is an oxyanion (contains oxygen).

Writing Formulas of Acids

- To write the <u>empirical (or chemical) formula</u> for an acid, use the rules in reverse.
- Then, balance the ionic charges just as you would for any ionic compound.

Writing Formulas of Acids

Practice 1 . . .

What is the empirical formula for <u>hydro</u>bromic acid?

- 1."Hydro" tells us to use rule 1
- 2.Use the suffix "**ide**" on the anion, therefore "**brom<u>ide</u>**" will be the anion.
- 3.It is an acid, so a hydrogen cation (H⁺) is present.
- 4.H forms a 1+ cation (H⁺)
- 5.Br forms a 1- anion (Br-)
- 6.Therefore, formula for hydrobromic acid is HBr

Writing Formulas of Acids

Practice 2 . . .

What is the empirical formula for phosphorous acid?

- 1."ous" tells us to use rule 2
- 2.Use the suffix "**ite**" on the anion, therefore "**phosph<u>ite</u>**" will be the anion. "**ite**" also tells us it is an oxyanion.
- 3.It is an acid, so a hydrogen cation (H⁺) is present.
- 4.H forms a 1+ cation (H⁺)
- 5. The phosphite oxyanion forms a 3- anion (PO_3^{3-})
- 6. Therefore, formula for phosphorous acid is H₃PO₃

Writing Formulas of Acids

Practice 3 . . .

What is the empirical formula for sulfuric acid?

- 1."**ic**" tells us to use rule 3
- 2.Use the suffix "ate" on the anion, therefore "sulfate" will be the anion. "ate" also tells us it is an oxyanion.
- 3.It is an acid, so a hydrogen cation (H⁺) is present.
- 4.H forms a 1+ cation (H⁺)
- 5. The sulfate oxyanion forms a 2- anion (SO_4^{2-})
- 6.Therefore, formula for phosphorous acid is H₂SO₄

Names and Formulas of Bases

How do you determine the name and formula of a base?

- A <u>base</u> is an ionic compound that produces hydroxide anions (OH¹⁻) when dissolved in water.
- The common base sodium hydroxide (NaOH) is used in making cleaners, soap, and paper.
- It is composed of sodium cations (Na⁺) and hydroxide anions (OH⁻).

To write the formula for a base . . .

 Write the symbol for the metal cation
 followed by the formula for the hydroxide ion.

3. Balance the ionic charges.

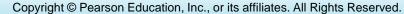
9.4 Naming and Writing Formulas for Acids and Bases ► Names and Formulas of Bases
Example 1:

- What is the empirical formula for Aluminum hydroxide?
 - Aluminum hydroxide has the aluminum cation (Al³⁺) and the hydroxide anion (OH⁻).
 - Crisscross Al³⁺OH⁻.
 - aluminum hydroxide is Al(OH)₃.

Example 2:

- What is Fe(OH)₂?
 - Reverse crisscross to get the charges $Fe(OH)_2$
 - This results in a cation: Fe²⁺, and anion: OH⁻
 - Fe²⁺ is iron(II); OH⁻ is hydroxide
 - Therefore, Fe²⁺OH⁻ is iron(II) hydroxide

Is the naming of a base more similar to the naming of an acid or to the naming of other ionic compounds?



Is the naming of a base more similar to the naming of an acid or to the naming of other ionic compounds?

Unlike acids, bases are named in the same way as other ionic compounds.

9.4 Naming and Writing Formulas for Acids and Bases > Vocab and probs	
Chapter 9 Problems: sect9.1 – 4, 5, 6, 7; sect9.2 – 23, 24, 25; sect9.3 – 30, 31; sect9.4 – 43, 44, 45	
Vocabulary : must have the 1) word/phrase, 2) de	
Section 1	Section 2
1. Monatomic ion	2. Binary compound
Section 4	Section 5
3. Acid	Law of definite proportions
4. Base	Law of multiple proportions

9.4 Naming and Writing Formulas for Acids and Bases

END OF 9.4

