1. Plan

Objectives

1 To use a composition of reflections
2 To identify glide reflections

Examples

1 Recognizing the Transformation
2 Composition of Reflections Across Parallel Lines
3 Composition of Reflections in Intersecting Lines
4 Finding a Glide Reflection Image
5 Classifying Isometries

Math Background

The four distinct isometry types can be divided into two sets: the direct, or sense-preserving, set that contains translations and rotations; and the opposite, or sense-reversing, set that contains reflections and glide reflections. The theorems in this lesson summarize the abstract algebra group properties of these isometries.

More Math Background: p. 468D

Lesson Planning and Resources

See p. 468E for a list of the resources that support this lesson.

Check Skills You'll Need
For intervention, direct students to:

Drawing Reflection Images

Lesson 9-2: Example 2
Extra Skills, Word Problems, Proof Practice, Ch. 9

Finding a Translation Image

Lesson 9-1: Example 3
Extra Skills, Word Problems, Proof
Practice, Ch. 9

Compositions of Reflections

What You'll Learn

- To use a composition of reflections
- To identify glide reflections
. . . And Why
To classify isometries, as in Example 5

Check Skills You'll Need

Given points $R(-1,1), S(-4,3)$, and $T(-2,5)$, draw $\triangle R S T$ and its reflection image in each line. 1-3. See back of book.

1. the y-axis
2. the x-axis
3. $y=1$

Draw $\triangle R S T$ described above and its translation image for each
translation. 4-6. See
4. $(x, y) \rightarrow(x, y-3) \quad$ 5. $(x, y) \rightarrow(x+4, y)$
6. $(x, y) \rightarrow(x+2, y-5)$
7. Copy the figure at the right. Draw the image of the figure for a reflection across $\overleftrightarrow{D G}$

See back of book.
New Vocabulary • glide reflection

1 Compositions of Reflections

If two figures are congruent, there is a transformation that maps one onto the other. If no reflection is involved, then the figures are either translation or rotation images of each other.

\#xADIPL Recognizing the Transformation

The two figures are congruent. Is one figure a translation image of the other, a rotation image, or neither? Explain.

The orientations of these congruent figures do not appear
to be opposite, so one is a translation image or a rotation image of the other.

- Clearly, it's not a translation image, so it must be a rotation image.
- Quick Check

The two figures are congruent. Is one figure a translation image of the other, a rotation image, or neither? Explain. Neither; the figures do not have the same orientation.

Any translation or rotation can be expressed as the composition of two reflections.

Key Concepts

Theorem 9-1

A translation or rotation is a composition of two reflections.

The examples that illustrate Theorems 9-2 and 9-3 suggest a proof of Theorem 9-1 (how to find two reflections for a given translation or rotation).

Difierentiated Instruction soutions tor All Leamers

Special Needs L1

For Example 4, have students trace $\triangle T E X$ and illustrate the translation. Students then fold the paper to find its reflection.

Below Level L2

Before students read the theorems in this lesson, have them try compositions of reflections using geometry software or paper and pencil.

Key Concepts

Theorem 9-2

A composition of reflections across two parallel lines is a translation.

Theorem 9-3

A composition of reflections across two intersecting lines is a rotation.

(2) $\operatorname{zxADIPLE}$ Composition of Reflections Across Parallel Lines

Find the image of R for a reflection across line ℓ followed by a reflection across line m. Describe the resulting translation.

Real-World (Connection
Each mirror shows a reverse image. But bend the mirrors like this and you get compositions of reflections.

Reflect in ℓ.

Reflect in m.

R is translated the distance and direction shown by the green arrow. The arrow is perpendicular to lines ℓ and m with length equal to twice the distance from ℓ to m.
Quick Check
Draw lines ℓ and m as shown above. Draw R between ℓ and m. Find the image of R for a reflection across line ℓ and then across line m. Describe the resulting translation. See back of book.

3 ExandPle Composition of Reflections in Intersecting Lines

Lines a and b intersect in point C and form acute $\angle 1$ with measure 35 . Find the image of R for a reflection across line a and then a reflection across line b. Describe the resulting rotation.

Reflect in a.

R rotates clockwise through the angle shown by the green arrow. The center of rotation is C and the measure of the angle is twice $m \angle 1$, or 70 .

Quick Check 3 Repeat Example 3, but begin with R in a different position. See back of book.

Lesson 9-6 Compositions of Reflections

Advanced Learners L4

After Example 2, have students find the image of R reflected across line ℓ and then across line m, when $\ell \perp m$, and develop a theorem for this composition of reflections.

English Language Learners ELL

Watch for students who confuse the vocabulary terms. In Example 1, make sure students undestand the transformation of 5 is not a translation and the transformation of Hi is not a reflection.

Guided Instruction

ExaNPLE Error Prevention
Students may think that each R should look like a translation of the original R. Have them use paper folding to see why the orientation of the second R must be different from the first and third Rs.

Additional Examples

Judging by appearances, is one figure a translation image or a rotation image of the other? Explain.

translation; congruent with same orientation
(2) Find the image of the figure for a reflection across line ℓ and then across line m.

0
The letter D is reflected across line x and then across line y. Describe the resulting rotation.

D rotates 86° clockwise about the center of rotation A.

Guided Instruction

Additional Examples

$\triangle A B C$ has vertices $A(-4,5)$, $B(6,2)$, and $C(0,0)$. Find the image of $\triangle A B C$ for a glide reflection where the translation is $(x, y) \rightarrow$ $(x, y+2)$ and the reflection line is $x=1$. $A^{\prime}(6,7), B^{\prime}(-4,4)$, and $C^{\prime}(2,2)$

Tell whether the orientations are the same or opposite. Then classify the isometry.

opposite; reflection in vertical line

Resources

- Daily Notetaking Guide 9-6 L3
- Daily Notetaking Guide 9-6Adapted Instruction

Closure

Name four isometries. Then choose two, and explain which composition of transformations results in each. Glide reflection, reflection, rotation, translation; sample: Glide reflection is the composition of a translation and a reflection in a line \| to the translation vector; rotation is the composition of two reflections.

Two plane figures A and B can be congruent with opposite orientations. Reflect A and you get a figure A^{\prime} that has the same orientation as B . Thus, B is a translation or rotation image of A^{\prime}. By Theorem 9-1, two reflections map A^{\prime} to B . The net result is that three reflections map A to B.
This is summarized in what is sometimes called the Fundamental Theorem of Isometries.

Theorem 9-4 Fundamental Theorem of Isometries

In a plane, one of two congruent figures can be mapped onto the other by a composition of at most three reflections.

If two figures are congruent and have opposite orientations (but are not simply reflections of each other), then there is a slide and a reflection that will map one onto the other. A glide reflection is the composition of a glide (translation) and a reflection across a line parallel to the direction of translation.

ExAMPLE Finding a Glide Reflection Image

Coordinate Geometry Find the image of $\triangle T E X$ for a glide reflection where the translation is $(x, y) \rightarrow(x, y-5)$ and the reflection line is $x=0$.

Real-World (Connection
A computer can translate an image and then reflect it, or vice versa. The two rabbit images are glide reflection images of each other.

Translate $\triangle T E X$.

Reflect the image in $x=0$.

Quick Check

Use $\triangle T E X$ from Example 4 above.
a. Find the image of $\triangle T E X$ under a glide reflection where the translation is $(x, y) \rightarrow(x+1, y)$ and the reflection line is $y=-2$. See above.
b. Critical Thinking Would the result of part (a) be the same if you reflected $\triangle T E X$ first, and then translated it? Explain. Yes; if you reflected it and then moved it right, the result would be the same.

You can map one of any two congruent figures onto the other by a single reflection, translation, rotation, or glide reflection. Thus, you are able to classify any isometry.

Theorem 9-5

Isometry Classification Theorem
There are only four isometries. They are the following.

Reflection	Translation	Rotation	Glide reflection	
R	R	R	R	

Example Classifying Isometries

Each figure is an isometry image of the figure at the left. Tell whether their orientations are the same or opposite. Then classify the isometry.

EXERCISES
For more exercises, see Extra Skill, Word Problem, and Proof Practice.

Practice and Problem Solving

A Practice by Example
Example 1

Example 2
(page 507)

The two figures in each pair are congruent. Is one figure a translation image of the other, a rotation image, or neither? Explain.1-3. See margin.

1. \square
2.

DYE
3.

Find the image of each letter for a reflection across line ℓ and then a reflection across line \boldsymbol{m}. Describe the resulting translation or rotation.
4.

6.

6.

Lesson 9-6 Compositions of Reflections509

1. rotation
2. translation
3. Neither; the figures do not have the same orientation.

3. Practice

Assignment Guide

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 8, 23, 24, 27, 36.

Exercises 4-6 Before students begin, ask: How can you tell that the composition of reflections will result in a translation? Lines ℓ and m are parallel.

Differentiated Instruction Resources

GPS Guided Problem Solving	LB
Enrichment	LA
Reteaching	LT
Adapted Practice	LT
Practice	LB

Practice 9-5 \qquad

5.

M is translated across line \boldsymbol{m} twice the distance between ℓ and m.

Connection to Algebra

Exercises 12, 13 Help students discover that the image of (x, y) is (y, x) in the reflection line $y=x$ and is $(-y,-x)$ in the reflection line $y=-x$.

Tactile Learners

Exercises 16-23 Suggest that students trace each original figure and manipulate their tracings to help them understand how the transformations were made.

Exercise 26 If students select answer choice A, they most likely read $x=-2$ incorrectly as $y=-2$.

Auditory Learners

Exercise 27 Ask several

 volunteers to read their explanations to the rest of the class and answer questions about the math terminology they used.Exercises 31-34 A kaleidoscope produces repeated reflections in intersecting mirrors. Consequently, the images are reflected isosceles triangles.

Exercise 45 Encourage students to provide several descriptions to help them realize that the glide and reflection are not unique, although the lines of reflection must be parallel.

Apply Your Skills
24. glide reflection; $(x, y) \rightarrow(x-2, y-2)$, refl. in $y=x-1$
25. rotation; 180° about the pt. $\left(0, \frac{1}{2}\right)$
27. Odd isometries can be expressed as the composition of an odd number of reflections. Even isometries are the composition of an even number of reflections.
nline Homework Help
Visit: PHSchool.com Web Code: aue-0906

Find the glide reflection image of $\triangle P N B$ for the given translation and reflection line. 10-15. See back of book.
10. $(x, y) \rightarrow(x+2, y) ; y=3$
11. $(x, y) \rightarrow(x, y-3) ; x=0$
12. $(x, y) \rightarrow(x+2, y+2) ; y=x$
13. $(x, y) \rightarrow(x-1, y+1) ; y=-x$

14. $(x, y) \rightarrow(x, y-1) ; x=2 \quad$ 15. $(x, y) \rightarrow(x-2, y-2) ; y=x$

Each figure is an isometry image of the figure at the left. Tell whether their orientations are the same or opposite. Then classify the isometry.
16.

opp.; reflection
17. opp.; glide reflection
17.

18.

same; translation
20.

22.

23.

The two figures are congruent. Name the isometry that maps one onto the other.
24.

25.

26. Multiple Choice Which transformation maps the black triangle onto the blue triangle? C
(A) a translation $(x, y) \rightarrow(x, y-3)$ followed by a reflection across $x=-2$
(B) a rotation of 180° about the origin
(C) a reflection across $y=-\frac{1}{2}$
(D) a reflection across the y-axis followed by a 180° rotation about the origin

27. Writing Reflections and glide reflections are odd isometries, while translations and rotations are even isometries. Use what you learned in this lesson to explain why these categories make sense. See left.
28. Open-Ended Draw $\triangle A B C$. Then, describe a reflection, a translation, a rotation, and a glide reflection, and draw the image of $\triangle A B C$ for each transformation. Check students' work.
29. For center of rotation P, does an x° rotation followed by a y° rotation give the same image as a y° rotation followed by an x° rotation? Explain. See margin.
30. Does an x° rotation about a point P followed by a reflection in a line ℓ give the same image as a reflection in ℓ followed by an x° rotation about P ? Explain. No; explanations may vary.
29. Yes; a rotation of x° followed by a rotation of y° is equivalent to a rotation of $(x+y)^{\circ}$.
46. If $\overline{X Y}$ is reflected in line ℓ, then ℓ is the \perp bis. of $\overline{X X^{\prime}}$ and $\overline{Y Y^{\prime}}$, so
$\overline{X X^{\prime}} \| \overline{Y Y^{\prime}}$ and $X X^{\prime} Y Y^{\prime}$ is an isosc. trap. Therefore $\overline{X Y} \cong \bar{X}^{\prime} \boldsymbol{Y}^{\prime}$.
47. $\overline{X X^{\prime}} \| \overline{Y Y^{\prime}}$ and $\overline{X X^{\prime}} \cong \overline{Y Y^{\prime}}$, so $X X^{\prime} Y^{\prime} Y$ is a \square. Therefore, $\overline{X Y} \cong \overline{X^{\prime} Y^{\prime}}$.
48. If $\overline{X Y}$ is rotated x° about pt. R, then $\overline{R X} \cong \overline{R X^{\prime}}$ and $\overline{R Y} \cong \overline{R Y^{\prime}}$. Also, $m \angle X R Y$

$$
\begin{aligned}
& +m \angle Y R X^{\prime}=m \angle Y R X^{\prime} \\
& +m \angle X^{\prime} R Y^{\prime}=x^{\circ}, \text { so } \\
& \angle X R Y \cong \angle X^{\prime} R Y^{\prime} . \text { So } \\
& \triangle X R Y \cong \triangle X^{\prime} R Y^{\prime} \text { by SAS } \\
& \text { and } \overline{X Y} \cong \overline{X^{\prime} Y^{\prime}} \text { by } \\
& \text { CPCTC. }
\end{aligned}
$$

To learn more about kaleidoscopes, see p. 513.
35. rotation; center C, \angle of rotation 180°
36. glide reflection;
$(x, y) \rightarrow(x+11, y)$, $y=0$
37. translation;
$(x, y) \rightarrow(x-9, y)$
38. reflection; $y=0$
39. reflection; $x=4$
40. reflection; $x=-\frac{1}{2}$
41. rotation; center $(3,0)$, \angle of rotation 180°
42. glide reflection; $(x, y) \rightarrow(x, y+4)$, $x=4$
43. translation;
$(x, y) \rightarrow(x-11, y-4)$
44. rotation; center (0,2), \angle of rotation 180°

Challenge
45. Sample: Translate the red R so that one point moves to its corresponding point on the blue R. Then reflect across a line passing through that point.

Kaleidoscopes The vibrant images of a kaleidoscope are produced by compositions of reflections in intersecting mirrors. Determine the angle between the mirrors in each kaleidoscope image.
31. 60°

32. 60°

33.

34. 30°

Identify each mapping as a reflection, translation, rotation, or glide reflection. Find the reflection line, translation rule, center and angle of rotation, or glide translation and reflection line.
35. $\triangle A B C \rightarrow \triangle E D C$ 35-44.
36. $\triangle E D C \rightarrow \triangle P Q M$
37. $\triangle M N J \rightarrow \triangle E D C$
38. $\triangle H I F \rightarrow \triangle H G F$
39. $\triangle P Q M \rightarrow \triangle J L M$
40. $\triangle M N P \rightarrow \triangle E D C$
41. $\triangle J L M \rightarrow \triangle M N J$

42. $\triangle P Q M \rightarrow \triangle K J N$
43. $\triangle K J N \rightarrow \triangle A B C$
44. $\triangle H G F \rightarrow \triangle K J N$
45. Describe a glide and a reflection that maps the red R to the blue R . See left.

R

For the given transformation mapping $\overline{X Y}$ to $\overline{X^{\prime} Y^{\prime}}$, give a convincing argument why $\overline{X Y} \cong \overline{X^{\prime} Y^{\prime}} .46-48$. See margin p. 510 .
46. a reflection
47. a translation
48. a rotation
49. The definition states that a glide reflection is the composition of a translation and a reflection. Explain why these can occur in either order. See margin.
50. For lines of reflection r and s, does a reflection in r followed by a reflection in s give the same image as a reflection in s followed by a reflection in r ? Explain. See margin
$\boldsymbol{P} \rightarrow \boldsymbol{P}^{\prime}(\mathbf{3}, \mathbf{1})$ for the given translation and reflection line. Find the coordinates of \boldsymbol{P}.
51. $(x, y) \rightarrow(x-3, y) ; y=2(6,5)$
52. $(x, y) \rightarrow(x, y-3) ; y=2(1,2)$
53. $(x, y) \rightarrow(x-3, y-3) ; y=x$
54. $(x, y) \rightarrow(x+4, y-4) ; y=-x$
$(2,6)$
Lesson 9-6 Compositions of Reflections
49. Answers may vary. Sample: since a reflection moves a pt. in the direction \perp to the translation, the order does not matter.
50. No; explanations may vary. Sample: If $(1,1)$ is reflected over the line $y=x$ and then the x-axis, the image is
$(1,-1)$. If the reflections
are reversed, the image
is $(-1,1)$.

4. Assess \& Reteach

LewerPoint

Use the diagram for
Exercises 1-3.

1. Find the image of L for a reflection across line a and then across line b.

2. Find the image of L for a reflection across line a and then across line c.

3. Describe the rotation in Exercise 2. 180° rotation with center of rotation at the intersection of lines a and c
4. $\overline{P Q}$ has endpoints $P(4,15)$ and $Q(-6,10)$. Find the image of $\overline{P Q}$ for a glide reflection where the translation is $(x, y) \rightarrow$ ($x, y-8$) and the reflection line is $x=0$. Check that students' images have endpoints $P^{\prime}(-4,7)$ and $Q^{\prime}(6,2)$.
5. Name the four types of isometries. glide reflection, reflection, rotation, translation

Alternative Assessment

Have each student use a right scalene triangle preimage to show

- that two reflections result in either a translation or a rotation, and
- that three reflections result in either a reflection or a glide reflection.
Students may use compass, straightedge, ruler, and protractor.

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 527
- Test-Taking Strategies, p. 522
- Test-Taking Strategies with Transparencies

57. [2] $V(-5,2), T(-4,0)$, $Y(-1,3)$ glided give $V^{\prime}(-2,-1), T^{\prime}(-1,-3)$, $Y^{\prime}(2,0)$. These vertices reflected over $y=-x$ give $V^{\prime \prime}(1,2), T^{\prime \prime}(3,1)$, $Y^{\prime \prime}(0,-2)$.
[1] incorrect method or answer
58. [4] a.

b. Suppose pt. A in F is x units from s. Thus, A reflected across s gives A^{\prime}, x units right of s. A^{\prime} is then $P Q-x$ units left of t. Thus, A^{\prime} reflected across t gives $A^{\prime \prime}, P Q-x$ units right of t. Thus, the total distance travelled is $P Q-x+P Q+$ $x=2 P Q$.

Multiple Choice

Short Response
ended Response
55. Find the image of $P(11,-5)$ for the translation $(x, y) \rightarrow(x-12, y-6)$ followed by a reflection in $x=0$. A
A. $(1,-11)$
B. $(-1,11)$
C. $(1,11)$
D. $(-1,-11)$
56. A reflection in the y-axis followed by a reflection in the x-axis does NOT give the same result as which of the following transformations? H
F. a reflection in the x-axis followed by a reflection in the y-axis
G. a rotation of 180°
H. a rotation of 90° followed by a reflection in the x-axis
J. a reflection in the line $y=x$ followed by a reflection in the line $y=-x$
57. Find the image of $\triangle V T Y$ for the given glide reflection. Show all your steps. translation: $(x, y) \rightarrow(x+3, y-3)$ reflection line: $y=-x$ See margin.

58. Copy the diagram with $s \| t$.
a. Draw the image of F for a composition of two reflections. Reflect first in line s and then in line t. a-b. See margin.
b. Explain why the resulting image is the same image as found by translating F in a direction parallel to $\overline{P Q}$ through a distance $2 \cdot P Q$.

Mixed Review

$G 0$
for
Lesson 9-5 Coordinate Geometry A figure has a vertex at (-2, 7). If the figure has the given type of symmetry, state the coordinates of another vertex of the figure.
59. line symmetry about the x-axis
61. point symmetry about the origin
60. line symmetry about the y-axis
$(2,-7)$
62. line symmetry about the line $y=x$
$(7,-2)$

Lesson 7-4

Lesson 5-4 Identify the two statements that contradict each other.
66. I. $\triangle A B C$ is right. I and II
67. I. In right $\triangle A B C, m \angle B=90$.
II. $\triangle A B C$ is equiangular.
I and III
II. In right $\triangle A B C, m \angle A=80$.
III. $\triangle A B C$ is isosceles.
III. In right $\triangle A B C, m \angle C=90$.

512 Chapter 9 Transformations
[3] correct composition, vague explanation
[2] part (a) only
[1] composition is partially correct

