
  

9. Boundary layers

Flow around an arbitrarily-shaped bluff body

Outer flow (effectively potential, inviscid, irrotational)

Inner flow (strong viscous effects produce vorticity)

Boundary layer  (BL)

BL separates

Wake 
region 
(vorticity, 
small 
viscosity)



  

9.1. Boundary layer thickness

● Outer flow solution (ideal): U
● Inner flow: u 
● Arbitrary threshold to mark the viscous layer 

boundary:
y = d for u (x, d) = 0.99 U     

● d: BL thickess (or velocity BL thickness) 
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A1 = A2

d*
Stagnation layer:

Accounts for 
mass flow defect 
due to BL



  

Displacement (stagnation) layer thickness

A1=A2

∫
0

∞

(U−u)dy=U δ*

δ*=∫
0

∞ (1− u
U )dy

Momentum thickness q
Similar to displacement thickness, but accounts 
for momentum transfer defect in BL:

θ=∫
0

∞ u
U (1− u

U )dy



  

9.2. Boundary layer equations

● Start with full Navier-Stokes (2D steady) near a 
flat surface

● Main assumption: thin boundary layer (d/x << 1)
● Order of magnitude analysis for terms of 

Navier-Stokes equation
● u ~ U 
● /x ~ 1/x
● u/x ~ U/x
● /y ~ 1/d



  

● From contunuity equation...
∂u
∂ x
∼
∂ v
∂ y

U
x
∼ ∼

v
δ

v∼U δ
x

Examine the orders of terms in momentum 
equations



  

u ∂ u
∂ x
+v ∂ u
∂ y
=−1
ρ
∂ p
∂ x
+ν(∂2 u
∂ x2+

∂2 u
∂ y2)

u ∂ v
∂ x
+v ∂ v
∂ y
=−1
ρ
∂ p
∂ y
+ν(∂2 v
∂ x2+

∂2 v
∂ y2)

U
x

U U δ
x

U
δ

U
x2

U
δ2

U δ
x2U U δ

x
U δ
x δ

U δ
x3

U δ
xδ2

U 2

x
U 2

x

U 2δ
x2

U
xδ

U 2δ
x2

<<

Much smaller than U2/x terms we keep in first equation

p = p(x)  !



  

What remains of the continuity and momentum 
equations

∂u
∂ x
+
∂ v
∂ y
=0

u ∂ u
∂ x
+v ∂ u
∂ y
=−1
ρ

d p
d x
+ν ∂

2 u
∂ y2

Boundary layer equations

Notable scalings
U 2

x
∼ν U
δ2 ,

ν
U
δ2

U 2

x

thus δ∼√ νU x

Rеx=
U x
ν ∼

x2

δ2≫1



  

Pressure – same as in outer (ideal) flow

Bernoulli equation for outer flow

p
ρ+

U 2

2
=const

Thus
−

1
ρ

d p
dx
=U d U

d x
Plug this into momentum 
equation to get rid of 
pressure

Boundary conditions
u(x,0) = 0
v(x,0) = 0

u(x,y)  U as y  



  

9.3. Blasius solution

● Flat plate, U = const, p = const
● Boundary layer equations become

∂u
∂ x
+
∂ v
∂ y
=0

u ∂ u
∂ x
+v ∂ u
∂ y
=ν ∂

2u
∂ y2

Reformulate for streamfunction y

u=∂ψ
∂ y

, v=−∂ψ
∂ x



  

Continuity satisfied automatically, momentum 
equation is

∂ψ
∂ y
∂2ψ
∂ x∂ y

−∂ψ
∂ x
∂2ψ
∂ y2=ν

∂3ψ
∂ y3

No length scale!

Dimensional variables: x,y,n,U   n = 4

Dimensionally independent units: L, t   k = 2

For Buckingham's p-theorem, n – k = 2
Look for

y/n = f(p1,p2)



  

Look for
π1= ya11U a 21 xa31 νa 41 , π2= ya12U a 22 xa32 νa 42

Construct a dimensional matrix

M=[1 1 1 2
0 −1 0 −1]

y         U          x              n
L

t

Find its kernel vectors ai = (a1i,a2i,a3i,a4i), i = 1,2:   
        Mai

T = (0,0)

a1+a2+a3+2 a4=0
a2+a4=0



  

a11 = 1, a31 = -1/2 would fit, so  

This simplifies to 
a1+a3+a4=0

a2=−a4

a11+a31=1/2

π1= yU 1/2 x−1 /2 ν−1/2=
y

√ νU x
∼

y
δ

Let a21 = 1/2, then a41 = -1/2 and 

Let a12 = 0, a32 = 1, then a42 = -1, a22 = 1:

π2=
Ux
ν =Rеx∼

x2

δ2



  

ψ
ν =Rеx

n f ( y
δ)

Look for 



  

Not how Blasius did it though...

Blasius approach - 

Similarity variable – clearly h = y/d

How to nondimensionalize y?

Let y ~ f(h), then 

u=∂ψ
∂ y
∼ d f

d η
∂η
∂ y
= f ' 1
δ= f ' √ U

ν x
For h = const, u = const (otherwise velocity profiles 
would not be self-similar), thus y ~ x1/2f(h) 

Rewrite this as y ~ Rex
1/2f(h)  

dimensional    dimensionless



  

Easy to fix that...
ψ
ν =√Rеx f (η)

So, look for 

ψ=ν√U x
ν

f ( y
√ν x/U )=√U x ν f ( y

√ν x /U )
Plug this into momentum equation and BC to 
get...

f ' ' '+1
2

f f ' '=0

f (0)= f ' (0)=0
f ' (η)→1, η→∞

Blasius equation



  

Solve numerically to get some notable results

For a plate of length x, drag coefficient 

CD=
F

1
2
ρU 2 x

≈
1.328
√Rеx

Drag force

δ
x
≈

5
√Rеx



  

9.4. Falkner-Skan solutions

Look for solutions in the form (generalized from 
Blasius solution)

u (x , y)=U (x) f ' (η) , η= y
ξ(x)

Outer flow solution

The corresponding streamfunction form is
ψ( x , y )=U (x)ξ(x ) f (η)

Continuity satisfied, plug y into x-momentum 
equation...



  

x-dependent parts

∂ψ
∂ y
∂2ψ
∂ x∂ y

−∂ψ
∂ x
∂2ψ
∂ y2=U dU

dx
+ν∂

3ψ
∂ y3

The momentum equation becomes...

f ' ' '+[ ξν d
dx (U ξ )] f f ' '+[ ξ2

ν
d U
dx ](1−( f ' )2)=0

For a similarity solution to exist, must have:

α=ξν
d

d x
(U ξ)=const

β=
ξ2

ν
d U
d x
=const



  

The Falkner-Skan approach (counterintuitive but 
neat)
● Choose a, b
● Solve a = , b =   …  … for U, x: does U(x) 

correspond to any useful outer flow?
● If yes, solve this system for f  with chosen a, b

 

● Combine U, y, f to construct streamfunction:
 

f ' ' '+α f f ' '+β [1−( f ' )2]=0
f (0)= f ' (0)=0
f ' (η)→1,η→∞

ψ( x , y )=U (x)ξ(x ) f ( y
ξ( x))



  

Example: a = 1/2, b = 0: Blasius solution



  

9.5. Flow over a wedge
● a = 1, 0 < b < 1:
● U(x) = nUxn-1, V = 0 – wedge flow!

n=1+ β
2−β

pb

x

y



  

9.6. Stagnation-point flow
● a = 1,  b = 1:
● Same as previous problem, but pb = p:

x

y

S
ta

gn
at

io
n 

po
in

t 

Boundary layer solution is the same 
as exact Hiemenz solution!



  

9.7. Flow in a convergent channel
● a = 0,  b = 1:
● U(x) = -c/x, V = 0 – limit case (Re  ) for 

convergent wedge flow!
● No BL solution for divergent flow exists (which 

is physically correct!)



  

9.8. Approximate solution for a flat surface

● A demonstration of the 
widely applicable 
integral method 
developed by von 
Kármán (later refined 
by Ernst Pohlhausen)

Theodore von Kármán, 1881-1963 



  

From continuity 
equation

Flow over a flat plate, U = p = const
BL equations for this case...

∂u
∂ x
+
∂ v
∂ y
=0

u ∂ u
∂ x
+v ∂ u
∂ y
=ν ∂

2u
∂ y2

Rewrite first term in momentum equation...

u ∂ u
∂ x
=

1
2
∂
∂ x
(u2)= ∂

∂ x
(u2)−u ∂ u

∂ x
=

=
∂
∂ x
(u2)+u ∂v

∂ y



  

∂
∂ y
(u v )

∂
∂ x
(u2)+u ∂v

∂ y
+v ∂u
∂ y
=ν ∂

2 u
∂ y2

Momentum equation becomes

Integrate this in y from surface to BL edge

∫
y=0

δ

[ ∂∂ x
(u2)+ ∂

∂ y
(u v)]dy=ν ∫

y=0

δ ∂2 u
∂ y2 dy

∫
y=0

δ ∂
∂ x
(u2)dy+uv∣y=0

y=δ
=ν
∂u
∂ y ∣y=0

y=δ



  

Note that
u∣y=0=v∣y=0=0 No slip on surface

u∣y=δ=U Transition to outer flow 
at BL edge is continuous

Define surface shear stress t0 as

τ0=μ
∂u
∂ y∣y=0

The integral becomes

∫
y=0

δ ∂
∂ x
(u2)dy+U v (x ,δ)=−

τ0
ρ

∂u
∂ y∣y=δ=0 Transition to outer flow 

at BL edge is smooth



  

Integrate continuity equation to evaluate the Uv 
term in momentum equation

∫
y=0

y=δ

(∂u
∂ x
+∂ v
∂ y)dy=0

∫
y=0

y=δ
∂u
∂ x

dy+v∣y=0
y=δ=0

v (x ,δ)=−∫
y=0

y=δ
∂u
∂ x

dy

Substitute this into the momentum equation - 

∫
y=0

δ(x)
∂
∂ x
(u2)dy−U ∫

y=0

δ(x)
∂u
∂ x

dy=−
τ0
ρ



  

Leibniz integral rule

Step reckoner by G.W. Leibniz (1673) – mechanical 
computer for addition and multiplication

Gottfried Wilhelm Leibniz 
(1646-1716)

For an integral of f(x,y) with variable limits,

∫
α(x)

β(x)
∂ f
∂ x

dy= d
dx ∫α(x)
β(x)

f dy−

− f (x ,β) dβ
dx
+ f (x ,α) d α

dx



  

Apply Leibniz integral rule to momentum equation 
integral...

∫
y=0

δ(x)
∂
∂ x
(u2)dy−U ∫

y=0

δ(x)
∂
∂ x

u dy=−
τ0
ρ

d
dx ∫y=0

δ(x)

u2 dy−u2∣y=δ d δ
dx
−

−U [ d
dx ∫y=0

δ(x)

u dy−u∣y=δ
d δ
dx ]=−τ0

ρ

d
dx ∫y=0

δ(x)

u2 dy−U 2 d δ
dx
−U d

dx ∫y=0

δ (x)

u dy+U 2 d δ
dx
=−
τ0
ρ



  

Momentum integral for Blasius BL

Momentum equation integral is...

d
dx ∫y=0

δ(x)

u2 dy−U d
dx ∫y=0

δ (x)

udy=−
τ0
ρ

...or...

− d
dx ∫y=0

δ (x)

(u2−U u)dy= d
dx ∫y=0

δ (x)

u (U−u)dy=
τ0
ρ

Physical meaning: momentum change in BL is 
due to surface shear 



  

General procedure for the von Kármán-
Pohlhausen method

● Represent the unknown velocity profile with a 
polynomial (a general profile should have a 
polynomial series expansion?)

● Fit the polynomial constants to match known 
boundary conditions

u(x,0) = 0
u(x,d) = U
u/y(x,d) = 0

● Can impose further boundary conditions (as 
needed to determine polynomial coefficients)



  

x

y

d

∂u
∂ y∣y=δ= ∂

2 u
∂ y2∣

y=δ

=…=0

Apply momentum equation at y = 0

[u ∂u
∂ x
+v ∂ u
∂ y ]y=0

=ν ∂
2 u
∂ y2∣

y=0

=0

Additional boundary conditions 



  

(For more BC, apply derivatives of momentum 
equation, etc.) 

● Apply the BC to determine polynomial 
coefficients (as functions of d)

● Plug the velocity profile polynomial into 
momentum integral, integrate, solve resulting 
ODE for d = d(x)

● Find drag coefficient, etc. 
Similar procedure can be applied to free-
surface and other flows (replace unknown 
functions with polynomials, satisfy BC, satisfy 
conservation eqs.) 



  

For a flat-plate BL, look for
u=a0+a1 y+a2 y2

u (0)=0
u (δ)=U
∂u
∂ y ∣y=δ=0

This only works for zero 
pressure gradient!

From BC at y = 0, a0 = 0
∂ u
∂ y
=a1+2 a2 y , ∂ u

∂ y∣y=δ=a1+2 a2δ=0

a1=−2 a2δ

Thus from second BC at y = d,



  

Now use first BC at y = d

u (δ)=a0+a1δ+a2δ
2=U

0       -2a2d

a2(−2δ2+δ2)=U

a2=−
U
δ2 , a1=2 U

δ

u
U
=2 y
δ −( y
δ)

2

=2 η−η2

Polynomial expression for u to plug into 
momentum integral

η=η(x , y)= y
δ(x)

We've seen this one 
before...



  

d
dx ∫y=0

δ(x)

u (U−u )dy=U 2 d
dx ∫y=0

δ(x) u
U (1− u

U )dy=
τ0
ρ

Rewrite the momentum integral a bit...

Plug in expression for u/U
d
dx ∫y=0

δ(x) u
U (1− u

U )dy= d
dx ∫y=0

δ(x)

(2η−η2)(1−2η+η2)dy

Evaluate the integral

∫
y=0

δ( x)

(2 η−η2)(1−2η+η2)dy=

=∫
y=0

δ(x)

(2η−η2−4η2+2η3+2η3−η4)dy



  

Collect terms

=∫
y=0

δ(x)

(−η4+4η3−5η2+2η)dy

Variable substitution y  h, y = dh, dy = d dh and 
y = d  h = 1

=δ ∫
η=0

1

(−η4+4η3−5η2+2 η)d η=

=δ(−1
5
η5+η4−

5
3
η3+η2)0

1

=

=δ(−1
5
+1−5

3
+1)=δ 2

15



  

Plug the evaluated integral back...

U 2 d
dx ( 2

15
δ)= τ0ρ

Use the definition of surface shear stress

τ0=μ
∂u
∂ y∣y=0

u=U (2 y
δ −( y
δ)

2)
Recall that

∂ u
∂ y
=U (2δ−2 y

δ2) , ∂ u
∂ y∣y=0

=2 U
δ



  

U 2 d
dx ( 2

15
δ)=μρ 2U

δ

Plug that into the ODE for d

A more compact form

δ ' δ=15 ν
U

1
2
(δ2)'=15 ν

U

δ2=30 ν x
U
+C

Integrate...



  

Since at x = 0 d = 0, C = 0 and

δ=√30 ν x
U

Note that

δ
x
=√30 ν

U x
= √30
√Rеx

≈ 5.48
√Rеx

Compare with exact result:
δ
x
≈

5
√Rеx

Error < 10%, despite a very crude approximation



  

9.9. General momentum integral

Similar reasoning, but for an arbitrary BL with 
non-zero pressure gradient in the x-direction 
Momentum equation (with pressure eliminated 
using Bernoulli equation for outer flow)...

u ∂ u
∂ x
+v ∂ u
∂ y
=U d U

d x
+ν ∂

2 u
∂ y2

...can be similarly rewritten as...
∂
∂ x
(u2)+ ∂

∂ y (uv )=U d U
d x
+ν ∂

2 u
∂ y2



  

Integrate this in y from 0 to d to obtain

d
dx
(U 2(x )θ)+U δ* dU

dx
=
τ0
ρ

where
δ*=∫

0

∞ (1− u
U )dy

θ=∫
0

∞ u
U (1− u

U )dy

Displacement thickness

Momentum thickness



  

9.10. von Kármán – Pohlhausen 
approximation
● Consider velocity profile in the form of a 4th 

order polynomial (allows to account for 
nonuniform freestream velocity and nonzero 
pressure gradient)

● Apply five boundary conditions to find 
coefficients (two added conditions – second 
derivatives at y = 0 and y = d)

● Plug resulting polynomial into expressions for 
d*, q, t0

● Substitute results into general momentum 
integral, solve ODE for d(x) 



  

Boundary-layer separation

u ∂ u
∂ x
+v ∂ u
∂ y
=−1
ρ

d p
d x
+ν ∂

2 u
∂ y2

BL momentum equation

Apply this equation at y = 0

0=−1
ρ

d p
d x
+ν ∂

2u
∂ y2∣

y=0

Pressure gradient of the outer flow determines 
velocity profile curvature on the surface!



  

Non-negative dp/dx: non-positive curvature of 
velocity profile throughout BL

x

y

d
u∣y=δ=U

u

x

y

d
∂u
∂ y∣y=0

= ∂
2u
∂ y2∣

y=0

=0

∂ u
∂ y

x

y

d
∂2 u
∂ y2∣

y=0

=0

∂2 u
∂ y2



  

Now suppose we have negative dp/dx: 
curvature of velocity profile near the boundary will 
be positive
same curvature near the BL edge must 
approach zero from the negative 
direction (otherwise – no smooth 
transition to outer flow!) 

x

y

d
∂2 u
∂ y2∣

y=0

=0

∂2 u
∂ y2



  x

y

d
∂2 u
∂ y2∣

y=0

=0

∂2 u
∂ y2

x

y

d
∂u
∂ y∣y=0

= ∂
2u
∂ y2∣

y=0

=0

∂ u
∂ y

x

y

d
u∣y=δ=U

u

A point of inflection must exist in velocity profile 
(where curvature changes sign)



  x

y

d
u∣y=δ=U

u

Velocity profiles for increasing adverse pressure 
gradient

x

y

d
u∣y=δ=U

u

x

y

d
u∣y=δ=U

u

x

y

d
u∣y=δ=U

u

Reverse flow

Separated BL
∂u
∂ y∣y=0

=0

Separation occurs!



  

Separated boundary layers

Roshko, early 1950s Vorobieff & Ecke, XIIth century

Flometrics.com, 2011 



  

9.12. Boundary layer stability

Consider a narrow strip of a boundary layer and a 
small perturbation to steady-state velocity and 
pressure:

u (x , y , t)=u( y)+u ' (x , y , t)
v (x , y , t)=v ' (x , y ,t )
p (x , y , t)= p( x)+p ' (x , y , t)

Perturbation 
– same scale 
as v (which is 
small), so 
consider 
entire v as 
perturbation
(no loss of 
generality)

∣u '
u ∣≪1, ∣v '

u ∣≪1, ∣ p '
p ∣≪1



  

Plug these u, v, p into Navier-Stokes (not BL) 
equations
Linearize 
Introduce a perturbation streamfunction  

u '=∂ψ
∂ y

, v '=−∂ψ
∂ x

Continuity eliminated, rewrite the momentum 
equations in terms of y
Cross-differentiate x-momentum equation in y, y-
momentum equation in x
Get rid of the pressure term...



  

Result: 4th order linear PDE for y
Consider the streamfunction in the form 

ψ=ψ( y )eiα(x−ct )

c – speed of perturbation propagation

a – perturbation wavenumber (a = 2p/l    )
If c is real (Im c = 0), perturbation is neutrally 
stable (propagates but does not grow)
If Im c < 0, perturbation is decaying 
If Im c > 0, perturbation grows and the boundary 
layer is unstable



  

(u−c)(ψ' '−α2ψ)−u ' ' ψ= ν
iα
(ψ(4)−2α2ψ ' '+α4ψ)

The Orr-Somerfeld equation

Plugging the variable-separated form of y into the 
momentum equation reduces it to a 4th order ODE

Boundary conditions

y(0) = y'(0) = 0 (perturbations go to zero on  
body surface) 

y(y)  0, y'(y) 0, y   (perturbations decay  
away from the boundary layer)

For every wavelength a, solve  for c, determine 
stability  



  

Results of stability analysis

Rе=δ
*U
ν

Rеc≈520

0.34

ad*

Note. We look for a 2D perturbation...            
but what if the flow first becomes unstable in z-
direction? 
Such instability exists, but luckily, the flow is less 
stable to xy perturbations

For n = 0    , Orr-
Sommerfeld 
equation becomes 
Rayleigh equation



  

Effects of local pressure gradient on stability

Λ=δ
2

ν
dU
dx

Pressure parameter 
(Pohlhausen, von Kármán)

Rе=δ
*U
ν

ad*

L =

Favorable pressure gradient expands stability 
region, adverse pressure gradient shrinks it



  



  


