9. Boundary layers

Flow around an arbitrarily-shaped bluff body

Outer flow (effectively potential, inviscid, irrotational)

9.1. Boundary layer thickness

- Outer flow solution (ideal): U
- Inner flow: *u*
- Arbitrary threshold to mark the viscous layer boundary:

$$y = \delta$$
 for $u(x, \delta) = 0.99 U$

• δ : BL thickess (or velocity BL thickness)

Displacement (stagnation) layer thickness

$$A_1 = A_2$$

$$\int_{0}^{\infty} \left(U - u \right) dy = U \delta^{*}$$
$$\delta^{*} = \int_{0}^{\infty} \left(1 - \frac{u}{U} \right) dy$$

Momentum thickness θ Similar to displacement thickness, but accounts for momentum transfer defect in BL:

$$\theta = \int_{0}^{\infty} \frac{u}{U} \left(1 - \frac{u}{U} \right) dy$$

9.2. Boundary layer equations

- Start with full Navier-Stokes (2D steady) near a flat surface
- Main assumption: thin boundary layer ($\delta/x \ll 1$)
- Order of magnitude analysis for terms of Navier-Stokes equation
 - $u \sim U$
 - $\partial/\partial x \sim 1/x$
 - $\partial u/\partial x \sim U/x$
 - $\partial/\partial y \sim 1/\delta$

• From contunuity equation...

$$\frac{U}{x} \sim \frac{\partial u}{\partial x} \sim \frac{\partial v}{\partial y} \sim \frac{v}{\delta}$$
$$v \sim U \frac{\delta}{x}$$

Examine the orders of terms in momentum equations

 $U \frac{U}{x} \frac{U\delta}{x} \frac{U}{\delta}$ $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{1}{\rho} \frac{\partial p}{\partial x}$ $\frac{U^{2}}{\rho}$ ' <u>&</u> ¹ \mathcal{U} 2 x x

Much smaller than U^2/x terms we keep in first equation

What remains of the continuity and momentum equations

Boundary layer equations

Notable scalings

Pressure – same as in outer (ideal) flow

Bernoulli equation for outer flow

$$\frac{p}{\rho} + \frac{U^2}{2} = const$$

Thus

$$-\frac{1}{\rho}\frac{d p}{dx} = U\frac{d U}{d x}$$

Plug this into momentum equation to get rid of pressure

Boundary conditions

$$u(x,0) = 0$$

$$v(x,0) = 0$$

$$u(x,y) \rightarrow U \text{ as } y \rightarrow \infty$$

9.3. Blasius solution

- Flat plate, U = const, p = const
- Boundary layer equations become

Reformulate for streamfunction ψ

$$u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$

Continuity satisfied automatically, momentum equation is

$$\frac{\partial \psi}{\partial y} \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial \psi}{\partial x} \frac{\partial^2 \psi}{\partial y^2} = v \frac{\partial^3 \psi}{\partial y^3}$$

No length scale!

Dimensional variables: $x, y, v, U \rightarrow n = 4$

Dimensionally independent units: L, t $\rightarrow k = 2$ For Buckingham's π -theorem, n - k = 2Look for

$$\psi/\nu = f(\pi_1, \pi_2)$$

Look for

$$\pi_1 = y^{a_{11}} U^{a_{21}} x^{a_{31}} v^{a_{41}}, \quad \pi_2 = y^{a_{12}} U^{a_{22}} x^{a_{32}} v^{a_{42}}$$

Construct a dimensional matrix

$$M = \begin{bmatrix} v & U & x & v \\ 1 & 1 & 1 & 2 \\ 0 & -1 & 0 & -1 \end{bmatrix} t$$

Find its kernel vectors $a_i = (a_{1i}, a_{2i}, a_{3i}, a_{4i}), i = 1,2:$ $Ma_i^{T} = (0,0)$ $a_1 + a_2 + a_3 + 2 a_4 = 0$

 $a_{2}+a_{4}=0$

This simplifies to

L

$$a_1 + a_3 + a_4 = 0$$

$$a_2 = -a_4$$

Let $a_{21} = 1/2$, then $a_{41} = -1/2$ and

$$a_{11} + a_{31} = 1/2$$

$$a_{11} = 1, a_{31} = -1/2$$
 would fit, so

$$\pi_1 = y U^{1/2} x^{-1/2} v^{-1/2} = \frac{y}{\sqrt{\frac{v}{U}}} \sim \frac{y}{\delta}$$

Let $a_{12} = 0$, $a_{32} = 1$, then $a_{42} = -1$, $a_{22} = 1$:

$$\pi_2 = \frac{Ux}{v} = Re_x \sim \frac{x^2}{\delta^2}$$

Look for

 $\frac{\Psi}{V} = Re_x^n f\left(\frac{y}{\delta}\right)$

Not how Blasius did it though...

Blasius approach -

Similarity variable – clearly $\eta = y/\delta$ How to nondimensionalize ψ ?

Let
$$\psi \sim f(\eta)$$
, then

$$u = \frac{\partial \psi}{\partial y} \sim \frac{d f}{d \eta} \frac{\partial \eta}{\partial y} = f' \frac{1}{\delta} = f' \sqrt{\frac{U}{vx}}$$

For $\eta = const$, u = const (otherwise velocity profiles would not be self-similar), thus $\psi \sim x^{1/2} f(\eta)$

Rewrite this as $\psi \sim Re_x^{1/2} f(\eta)$

dimensional dimensionless

Easy to fix that... $\frac{\psi}{\mathbf{v}} = \sqrt{Re_x} f(\eta)$

So, look for

$$\psi = v \sqrt{\frac{Ux}{v}} f\left(\frac{y}{\sqrt{vx/U}}\right) = \sqrt{Uxv} f\left(\frac{y}{\sqrt{vx/U}}\right)$$

Plug this into momentum equation and BC to get...

$$f''' + \frac{1}{2}ff'' = 0 \quad \text{Blasius equation}$$
$$f(0) = f'(0) = 0$$
$$f'(\eta) \rightarrow 1, \ \eta \rightarrow \infty$$

Solve numerically to get some notable results For a plate of length *x*, drag coefficient

9.4. Falkner-Skan solutions

Look for solutions in the form (generalized from Blasius solution)

$$u(x, y) = U(x) f'(\eta), \quad \eta = \frac{y}{\xi(x)}$$

Outer flow solution

The corresponding streamfunction form is $\psi(x, y) = U(x)\xi(x)f(\eta)$

Continuity satisfied, plug ψ into *x*-momentum equation...

$$\frac{\partial \psi}{\partial y} \frac{\partial^2 \psi}{\partial x \partial y} - \frac{\partial \psi}{\partial x} \frac{\partial^2 \psi}{\partial y^2} = U \frac{dU}{dx} + v \frac{\partial^3 \psi}{\partial y^3}$$

The momentum equation becomes...

$$f''' + \left[\frac{\xi}{\nu}\frac{d}{dx}(U\xi)\right]ff'' + \left[\frac{\xi^2}{\nu}\frac{dU}{dx}\right]\left(1 - (f')^2\right) = 0$$
x-dependent parts

For a similarity solution to exist, must have:

$$\alpha = \frac{\xi}{v} \frac{d}{dx} (U\xi) = const$$
$$\beta = \frac{\xi^2}{v} \frac{dU}{dx} = const$$

The Falkner-Skan approach (counterintuitive but neat)

- Choose α , β
- Solve $\alpha = ..., \beta = ...$ for *U*, ξ : does *U*(*x*) correspond to any useful outer flow?
- If yes, solve this system for f with chosen α , β $f''' + \alpha f f'' + \beta [1 - (f')^2] = 0$ f(0) = f'(0) = 0 $f'(\eta) \rightarrow 1, \eta \rightarrow \infty$
- Combine *U*, *y*, *f* to construct streamfunction: $\psi(x, y) = U(x)\xi(x)f\left(\frac{y}{\xi(x)}\right)$

Example: $\alpha = 1/2$, $\beta = 0$: Blasius solution

9.5. Flow over a wedge

•
$$\alpha = 1, 0 < \beta < 1$$
:

9.6. Stagnation-point flow

• $\alpha = 1, \beta = 1$:

9.7. Flow in a convergent channel

- $\alpha = 0, \ \beta = 1$:
- U(x) = -c/x, $V = 0 \text{limit case } (Re \to \infty)$ for convergent wedge flow!
- No BL solution for divergent flow exists (which is physically correct!)

9.8. Approximate solution for a flat surface

 A demonstration of the widely applicable integral method developed by von Kármán (later refined by Ernst Pohlhausen)

Theodore von Kármán, 1881-1963

Flow over a flat plate, U = p = constBL equations for this case...

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2}$$

Rewrite first term in momentum equation...

$$u\frac{\partial u}{\partial x} = \frac{1}{2}\frac{\partial}{\partial x}\left(u^{2}\right) = \frac{\partial}{\partial x}\left(u^{2}\right) - u\frac{\partial u}{\partial x} =$$
$$= \frac{\partial}{\partial x}\left(u^{2}\right) + u\frac{\partial v}{\partial y}$$
From continuity equation

Momentum equation becomes

$$\frac{\partial}{\partial x} (u^2) + u \frac{\partial v}{\partial y} + v \frac{\partial u}{\partial y} = v \frac{\partial^2 u}{\partial y^2}$$
$$\frac{\partial}{\partial y} (uv)$$

Integrate this in *y* from surface to BL edge

$$\int_{y=0}^{\delta} \left[\frac{\partial}{\partial x} \left(u^2 \right) + \frac{\partial}{\partial y} \left(u v \right) \right] dy = v \int_{y=0}^{\delta} \frac{\partial^2 u}{\partial y^2} dy$$

$$\int_{y=0}^{\delta} \frac{\partial}{\partial x} (u^2) dy + uv \Big|_{y=0}^{y=\delta} = v \frac{\partial u}{\partial y} \Big|_{y=0}^{y=\delta}$$

Note that

$$\begin{split} u \Big|_{y=0} &= v \Big|_{y=0} = 0 \quad \text{No slip on surface} \\ u \Big|_{y=\delta} &= U \quad \begin{array}{c} \text{Transition to outer flow} \\ \text{at BL edge is continuous} \\ \hline \frac{\partial u}{\partial y} \Big|_{y=\delta} &= 0 \quad \begin{array}{c} \text{Transition to outer flow} \\ \text{at BL edge is smooth} \\ \text{shear stress } \tau_0 \text{ as} \end{split}$$

Define surface

$$\tau_0 = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}$$

The integral becomes

$$\int_{y=0}^{\delta} \frac{\partial}{\partial x} (u^2) dy + U v(x, \delta) = -\frac{\tau_0}{\rho}$$

Integrate continuity equation to evaluate the Uv term in momentum equation

$$\int_{y=0}^{y=\delta} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dy = 0$$

$$\int_{y=0}^{y=\delta} \frac{\partial u}{\partial x} dy + v \Big|_{y=0}^{y=\delta} = 0$$

$$v(x, \delta) = -\int_{y=0}^{y=\delta} \frac{\partial u}{\partial x} dy$$

Substitute this into the momentum equation -

$$\int_{y=0}^{\delta(x)} \frac{\partial}{\partial x} (u^2) dy - U \int_{y=0}^{\delta(x)} \frac{\partial u}{\partial x} dy = -\frac{\tau_0}{\rho}$$

Leibniz integral rule

For an integral of f(x,y) with variable limits,

$$\int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial x} dy = \frac{d}{dx} \int_{\alpha(x)}^{\beta(x)} f dy - f(x, \beta) \frac{d\beta}{dx} + f(x, \alpha) \frac{d\alpha}{dx}$$

Step reckoner by G.W. Leibniz (1673) – mechanical computer for addition and multiplication

Gottfried Wilhelm Leibniz (1646-1716)

Apply Leibniz integral rule to momentum equation integral...

$$\int_{y=0}^{\delta(x)} \frac{\partial}{\partial x} (u^2) dy - U \int_{y=0}^{\delta(x)} \frac{\partial}{\partial x} u dy = -\frac{\tau_0}{\rho}$$
$$\frac{d}{dx} \int_{y=0}^{\delta(x)} u^2 dy - u^2 |_{y=\delta} \frac{d\delta}{dx} - U \left[\frac{d}{dx} \int_{y=0}^{\delta(x)} u dy - u |_{y=\delta} \frac{d\delta}{dx} \right] = -\frac{\tau_0}{\rho}$$
$$\int_{y=0}^{\delta(x)} u^2 dy - U^2 \frac{d\delta}{dx} - U \frac{d}{dx} \int_{y=0}^{\delta(x)} u dy + U^2 \frac{d\delta}{dx} = -\frac{\tau_0}{\rho}$$

 $\frac{d}{dx}$

Momentum equation integral is...

$$\frac{d}{dx} \int_{y=0}^{\delta(x)} u^2 dy - U \frac{d}{dx} \int_{y=0}^{\delta(x)} u dy = -\frac{\tau_0}{\rho}$$

$$-\frac{d}{dx}\int_{y=0}^{\delta(x)} \left(u^2 - Uu\right) dy = \frac{d}{dx}\int_{y=0}^{\delta(x)} u\left(U - u\right) dy = \frac{\tau_0}{\rho}$$

Momentum integral for Blasius BL

Physical meaning: momentum change in BL is due to surface shear

General procedure for the von Kármán-Pohlhausen method

- Represent the unknown velocity profile with a polynomial (a general profile should have a polynomial series expansion?)
- Fit the polynomial constants to match known boundary conditions

$$u(x,0)=0$$

$$u(x,\delta) = U$$

$$\partial u/\partial y(x,\delta) = 0$$

 Can impose further boundary conditions (as needed to determine polynomial coefficients)

Additional boundary conditions

(For more BC, apply derivatives of momentum equation, etc.)

- Apply the BC to determine polynomial coefficients (as functions of $\delta)$
- Plug the velocity profile polynomial into momentum integral, integrate, solve resulting ODE for $\delta = \delta(x)$
- Find drag coefficient, etc.

Similar procedure can be applied to freesurface and other flows (replace unknown functions with polynomials, satisfy BC, satisfy conservation eqs.) For a flat-plate BL, look for

$$\begin{aligned} u &= a_0 + a_1 y + a_2 y^2 \\ u(0) &= 0 \\ u(\delta) &= U \\ \frac{\partial u}{\partial y} \bigg|_{y=\delta} = 0 \end{aligned}$$

This only works for zero pressure gradient!

From BC at
$$y = 0$$
, $a_0 = 0$
 $\frac{\partial u}{\partial y} = a_1 + 2 a_2 y$, $\frac{\partial u}{\partial y}\Big|_{y=\delta} = a_1 + 2 a_2 \delta = 0$

Thus from second BC at $y = \delta$,

$$a_1 = -2a_2\delta$$

Now use first BC at $y = \delta$

$$u(\delta) = a_0 + a_1 \delta + a_2 \delta^2 = U$$

$$a_2 \left(-2 \delta^2 + \delta^2\right) = U$$

$$a_2 = -\frac{U}{\delta^2}, \quad a_1 = 2\frac{U}{\delta}$$

Polynomial expression for *u* to plug into momentum integral

$$\frac{u}{U} = 2\frac{y}{\delta} - \left(\frac{y}{\delta}\right)^2 = 2\eta - \eta^2$$
$$\eta = \eta(x, y) = \frac{y}{\delta(x)} \quad \text{We've seen this one} \\ \text{before...}$$

Rewrite the momentum integral a bit...

$$\frac{d}{dx} \int_{y=0}^{\delta(x)} u (U-u) dy = U^2 \frac{d}{dx} \int_{y=0}^{\delta(x)} \frac{u}{U} \left(1 - \frac{u}{U}\right) dy = \frac{\tau_0}{\rho}$$

Plug in expression for u/U

$$\frac{d}{dx} \int_{y=0}^{\delta(x)} \frac{u}{U} \left(1 - \frac{u}{U} \right) dy = \frac{d}{dx} \int_{y=0}^{\delta(x)} \left(2\eta - \eta^2 \right) \left(1 - 2\eta + \eta^2 \right) dy$$

Evaluate the integral

$$\int_{y=0}^{\delta(x)} (2\eta - \eta^2) (1 - 2\eta + \eta^2) dy =$$

=
$$\int_{y=0}^{\delta(x)} (2\eta - \eta^2 - 4\eta^2 + 2\eta^3 + 2\eta^3 - \eta^4) dy$$

Collect terms

$$= \int_{y=0}^{\delta(x)} \left(-\eta^4 + 4\eta^3 - 5\eta^2 + 2\eta \right) dy$$

Variable substitution $y \rightarrow \eta$, $y = \delta \eta$, $dy = \delta d\eta$ and $y = \delta \rightarrow \eta = 1$

Plug the evaluated integral back...

$$U^2 \frac{d}{dx} \left(\frac{2}{15} \delta \right) = \frac{\tau_0}{\rho}$$

Use the definition of surface shear stress

$$\tau_0 = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}$$

Recall that

$$u = U\left(2\frac{y}{\delta} - \left(\frac{y}{\delta}\right)^{2}\right)$$

$$\frac{\partial u}{\partial y} = U\left(\frac{2}{\delta} - 2\frac{y}{\delta^{2}}\right), \quad \frac{\partial u}{\partial y}\Big|_{y=0} = 2\frac{U}{\delta}$$

Plug that into the ODE for δ

$$U^{2} \frac{d}{dx} \left(\frac{2}{15} \delta \right) = \frac{\mu}{\rho} \frac{2U}{\delta}$$

A more compact form

$$\delta' \delta = 15 \frac{v}{U}$$
$$\frac{1}{2} \left(\delta^2 \right)' = 15 \frac{v}{U}$$

Integrate...

$$\delta^2 = 30 \frac{v x}{U} + C$$

Since at x = 0 $\delta = 0$, C = 0 and

$$\delta = \sqrt{30 \frac{v x}{U}}$$

Note that

Compare with exact result: $\frac{\delta}{x} \approx \frac{5}{\sqrt{Re_x}}$

Error < 10%, despite a very crude approximation

9.9. General momentum integral

Similar reasoning, but for an arbitrary BL with non-zero pressure gradient in the *x*-direction

Momentum equation (with pressure eliminated using Bernoulli equation for outer flow)...

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = U\frac{dU}{dx} + v\frac{\partial^2 u}{\partial y^2}$$

...can be similarly rewritten as...

$$\frac{\partial}{\partial x} \left(u^2 \right) + \frac{\partial}{\partial y} \left(uv \right) = U \frac{d U}{d x} + v \frac{\partial^2 u}{\partial y^2}$$

Integrate this in *y* from 0 to δ to obtain

$$\frac{d}{dx} \left(U^2(x) \theta \right) + U \delta^* \frac{dU}{dx} = \frac{\tau_0}{\rho}$$

where

$$\delta^* = \int_0^\infty \left(1 - \frac{u}{U} \right) dy \quad \text{Displace}$$

cement thickness

$$\theta = \int_{0}^{\infty} \frac{u}{U} \left(1 - \frac{u}{U} \right) dy$$

Momentum thickness

9.10. von Kármán – Pohlhausen approximation

- Consider velocity profile in the form of a 4th order polynomial (allows to account for nonuniform freestream velocity and nonzero pressure gradient)
- Apply five boundary conditions to find coefficients (two added conditions – second derivatives at y = 0 and y = δ)
- Plug resulting polynomial into expressions for $\delta^{*},\,\theta,\,\tau_{_{0}}$
- Substitute results into general momentum integral, solve ODE for $\delta(x)$

Boundary-layer separation

BL momentum equation

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{d p}{d x} + v\frac{\partial^2 u}{\partial y^2}$$

Apply this equation at y = 0

$$0 = -\frac{1}{\rho} \frac{d p}{d x} + v \frac{\partial^2 u}{\partial y^2} \bigg|_{y=0}$$

Pressure gradient of the outer flow determines velocity profile curvature on the surface!

Non-negative dp/dx: non-positive curvature of velocity profile throughout BL

Now suppose we have negative dp/dx:

curvature of velocity profile near the boundary will be positive \mathbf{A}^{y}

same curvature near the BL edge must approach zero from the negative direction (otherwise – no smooth transition to outer flow!)

A point of inflection must exist in velocity profile (where curvature changes sign)

Velocity profiles for increasing adverse pressure gradient

Separated boundary layers

Roshko, early 1950s

Vorobieff & Ecke, XIIth century

Flometrics.com, 2011

9.12. Boundary layer stability

Consider a narrow strip of a boundary layer and a small perturbation to steady-state velocity and pressure:

$$\begin{aligned} u(x, y, t) &= u(y) + u'(x, y, t) \\ v(x, y, t) &= v'(x, y, t) \\ p(x, y, t) &= p(x) + p'(x, y, t) \end{aligned}$$
$$\begin{aligned} \left| \frac{u'}{u} \right| \ll 1, \quad \left| \frac{v'}{u} \right| \ll 1, \quad \left| \frac{p'}{p} \right| \ll 1 \end{aligned}$$

Perturbation – same scale as v (which is small), so consider entire v as perturbation (no loss of generality) Plug these *u*, *v*, *p* into Navier-Stokes (not BL) equations

Linearize

Introduce a perturbation streamfunction

$$u' = \frac{\partial \psi}{\partial y}, \quad v' = -\frac{\partial \psi}{\partial x}$$

Continuity eliminated, rewrite the momentum equations in terms of $\boldsymbol{\psi}$

Cross-differentiate *x*-momentum equation in *y*, *y*-momentum equation in x

Get rid of the pressure term...

Result: 4^{th} order linear PDE for ψ Consider the streamfunction in the form

$$\psi = \psi(y) e^{i\alpha(x-ct)}$$

- c speed of perturbation propagation
- α perturbation wavenumber ($\alpha = 2\pi/\lambda$)
- If c is real (Im c = 0), perturbation is *neutrally* stable (propagates but does not grow)
- If Im c < 0, perturbation is decaying

If Im c > 0, perturbation grows and the **boundary** layer is unstable

Plugging the variable-separated form of y into the momentum equation reduces it to a 4th order ODE

$$(u-c)(\psi''-\alpha^2\psi)-u''\psi=\frac{\nu}{i\alpha}(\psi^{(4)}-2\alpha^2\psi''+\alpha^4\psi)$$

The Orr-Somerfeld equation

Boundary conditions

 $\psi(0) = \psi'(0) = 0$ (perturbations go to zero on body surface)

 $\psi(y) \rightarrow 0, \psi'(y) \rightarrow 0, y \rightarrow \infty$ (perturbations decay away from the boundary layer)

For every wavelength α , solve for c, determine stability

Results of stability analysis

Note. We look for a 2D perturbation... but what if the flow first becomes unstable in zdirection? Such instability exists, but luckily, the flow is less stable to xy perturbations

Effects of local pressure gradient on stability

Favorable pressure gradient expands stability region, adverse pressure gradient shrinks it

