9. Boundary layers

Flow around an arbitrarily-shaped bluff body

Inner flow (strong viscous effects produce vorticity)

Outer flow (effectively potential, inviscid, irrotational)



9.1. Boundary layer thickness

» Quter flow solution (ideal): U
* Inner flow: u

 Arbitrary threshold to mark the viscous layer
boundary:

y=doforu(x,5)=0.99 U
* §: BL thickess (or velocity BL thickness)



Velocity boundary
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Displacement (stagnation) layer thickness
A=A,
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Momentum thickness 0
Similar to displacement thickness, but accounts
for momentum transfer defect in BL:

Tt



9.2. Boundary layer equations

« Start with full Navier-Stokes (2D steady) near a
flat surface

* Main assumption: thin boundary layer (6/x << 1)

* Order of magnitude analysis for terms of
Navier-Stokes equation

e u~U

* Olox ~ 1/x

* ou/ox ~ U/x
* 0/oy~1/0



 From contunuity equation...
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Examine the orders of terms in momentum
equations
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Much smaller than U?*/x terms we keep in first equation



What remains of the continuity and momentum
equations
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Pressure — same as in outer (ideal) flow

Bernoulli equation for outer flow

2
g (; —=const

Thus 1 d D U d U/ Plug this into momentum

equation to get rid of

p dx d x  Ppressure

Boundary conditions
u(x,0)=0
v(x,0)=0

u(x,y) >tasy —» «




9.3. Blasius solution

* Flat plate, U = const, p = const
 Boundary layer equations become
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Continuity satisfied automatically, momentum
equation is

op 0"y O azwzvﬁ_xp

0y 0x0y 0x 0y’ 0y’
No length scale!

Dimensional variables: x,y,v,U — n =4
Dimensionally independent units: L, t —> k=2

For Buckingham's n-theorem, n — k=2
Look for

y/v=f(n,,m,)



Look for
T[1 — yan Uazlxa31 Va41 , T[2 — yalz Uazzxa32 Va42

Construct a dimensional matrix

M =

Find its kernel vectors a. = (a,,a,.a,,a,), i = 1,2:
Ma. = (0,0)

a,ta,‘+a,+2a,=0
a,+a,=0



This simplifies to
a,+a,+a,=0

d,=—4dy
Let a, =1/2, then a, =-1/2 and

a,,ta,;=1/2
a,=1,a, =-1/2 would fit, so
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Look for

Re”
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Not how Blasius did it though...

Blasius approach -
Similarity variable — clearly n =y/6

How to nondimensionalize y?
Let v ~ f(n), then

Oy _dfon_,,1_ ,\/g
oy dnay 1 37

VX
For n = const, u = const (otherwise velocity profiles
would not be self-similar), thus y ~ x*A(n)

U

Rewrite this as y ~ Re '*f(n)

dimensional dimensionless



Easy to fix that...

v=VRe, f(n)
So, look for
Ux y
V= V\/—f Vv xIU \/vaf(\/\;x/(]

Plug this into momentum equation and BC to
get...

f’”-l—%ff"ZO Blasius equation

f(0)=r"(0)=0
f'(m)=1, n—ow



Solve numerically to get some notable results

For a plate of length x, drag coefficient

Drag force
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9.4. Falkner-Skan solutions

Look for solutions in the form (generalized from
Blasius solution)

U — r __JY
A A=

The corresponding streamfunction form is

P(x,y)=U(x)E(x)f (n)

Continuity satisfied, plug y into x-momentum
equation...
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The momentum equation becomes...
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x-dependent parts

For a similarity solution to exist, must have:

% ddx (U§)=const
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The Falkner-Skan approach (counterintuitive but
neat)

* Choose a, B

* Solvea=...,B=...for U, & does U(x)
correspond to any useful outer flow?

* If yes, solve this system for f with chosen o, 3
f!!l+(xffll_|_ﬁ!1_(fl)2]:O
f(0)=s"(0)=0
f')=1,m—w

 Combine U, y, fto construct streamfunction:

w<x,y>=U<x>z<x>f($x>)



Example: o = 1/2, B = 0: Blasius solution



9.5. Flow over a wedge
ca=1,0<B<1:
o U(x)=nUx"', V=0-wedge flow!

\\




9.6. Stagnation-point flow
ca=1, B=1:

* Same as previous problem, but nf3 = =:

X g
Stagnation point

Boundary layer solution is the same
as exact Hiemenz solution!




9.7. Flow in a convergent channel
ca=0, B=1:

* U(x)=-c/x, V=0-limit case (Re — ) for
convergent wedge flow!

* No BL solution for divergent flow exists (which
is physically correct!)



9.8. Approximate solution for a flat surface

* A demonstration of the
widely applicable
integral method
developed by von
Karman (later refined
by Ernst Pohlhausen)

Theodore von Karman, 1881-1963



Flow over a flat plate, U = p = const
BL equations for this case...

ou 5\/:0
Ox 0y
ou ou O’ u

| =V
“ox oy 9y’
Rewrite first term in momentum equation...
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Momentum equation becomes

0
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Integrate this in y from surface to BL edge
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Note that

u‘y:O: v‘yzO:O No slip on surface

— Transition to outer flow
u |y =8 U at BL edge is continuous

81/[ . O Transition to outer flow
T~ — at BL edge is smooth
@y y=20
Define surface shear stress T, as
L
’ 8)/ y=0
The integral becomes
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Integrate continuity equation to evaluate the Uv
term in momentum equation

y=0
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Substitute this into the momentum equation -

5(x)
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Leibniz integral rule

For an integral of f{x,y) with variable limits,

8f __13(x) 5
6x ay= dx a{)fdy
s )L 1 ,a>i,—j
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' Gottfried Wilhelm Leibniz
Step reckoner by G.W. Leibniz (1673) — mechanical (1646-1716)
computer for addition and multiplication



Apply Leibniz integral rule to momentum equation
integral...
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Momentum equation integral is...

5(x) S (x)
d ) d T
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Momentum integral for Blasius BL

Physical meaning: momentum change in BL is
due to surface shear



General procedure for the von Karman-
Pohlhausen method

» Represent the unknown velocity profile with a
polynomial (a general profile should have a
polynomial series expansion?)

* Fit the polynomial constants to match known
boundary conditions

u(x,0)=20
u(x,0)=U
ou/oy(x,0) =0

 Can impose further boundary conditions (as
needed to determine polynomial coefficients)



Additional boundary conditions
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Apply momentum equation at y =0
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(For more BC, apply derivatives of momentum
equation, etc.)

* Apply the BC to determine polynomial
coefficients (as functions of o)

* Plug the velocity profile polynomial into
momentum integral, integrate, solve resulting

ODE for 6 = 6(x)
* Find drag coefficient, etc.

Similar procedure can be applied to free-
surface and other flows (replace unknown
functions with polynomials, satisfy BC, satisfy
conservation egs.)



For a flat-plate BL, look for

— 2 This only works for zero
u=a,+a, yt+a,y

pressure gradient!

u(0)=0
u(d)=U
ul _,
8,)/ y=0
FromBCaty=0,4q,=0
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Thus from second BC at y =9,

a,=—2a,o0



Now use first BC at y =9
u(d)=a,+a,d+a,8’=U

0 -2a,0

Polynomial expression for u to plug into

momentum integral
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Rewrite the momentum mtegral a bit...
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Collect terms
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Plug the evaluated integral back...

Uzd ( 2 5):&

dx\ 15 P

Use the definition of surface shear stress




Plug that into the ODE for 6

Nz(zé)_uzU

del157] P O

A more compact form

Integrate...

5'8=15-%
U




Sinceatx=06=0, C=0 and

f5=\/3ov—’C
U

Note that
Qz\/30 v o \/3__0N 5.48
X U x \/Rex \/R—gx
Compare with exact result:
S O
x +Re,

Error < 10%, despite a very crude approximation



9.9. General momentum integral

Similar reasoning, but for an arbitrary BL with
non-zero pressure gradient in the x-direction

Momentum equation (with pressure eliminated

using Bernoulli equation for outer flow)...

ou 6 Ou d U 82 U
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...can be similarly rewritten as...
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Integrate this in y from 0 to 6 to obtain

d LdU T
E(Uz( x)0)+U S —=7

where o
6 f ( 1 — —) dy Displacement thickness
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% ( 1 — %) dy Momentum thickness



9.10. von Karman — Pohlhausen

approximation

 Consider velocity profile in the form of a 4"
order polynomial (allows to account for

nonuniform freestream velocity and nonzero
pressure gradient)

* Apply five boundary conditions to find
coefficients (two added conditions — second

derivatives at y =0 and y = 0)
* Plug resulting polynomial into expressions for
6%, 0, T,

» Substitute results into general momentum
integral, solve ODE for o(x)



Boundary-layer separation

BL momentum equation
ou, Odu__1dp 0’ u

u -V
ox Oy P dx 0y’

Apply this equation at y =0
ldp 0’ u

pd.x ayzy:()
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Pressure gradient of the outer flow determines
velocity profile curvature on the surface!



Non-negative dp/dx. non-positive curvature of
velocity profile throughout BL

AV AV AV
>




Now suppose we have negative dp/dx:

curvature of velocity profile near the boundary will
be positive AY

same curvature near the BL edge must
approach zero from the negative

direction (otherwise — no smooth 85 =0
transition to outer flow!)




A point of inflection must exist in velocity profile
(where curvature changes sign)

AV AY AY




Velocity profiles for increasing adverse pressure
gradient

AY AV AV

X

Separation occurs!



Separated boundary layers

Roshko, early 1950s Vorobieff & Ecke, Xllth century

Flometrics.com, 2011



9.12. Boundary layer stability

Consider a narrow strip of a boundary layer and a
small perturbation to steady-state velocity and
pressure:

u(x, . t)=u(y)+u'(x, y,t)  -somescas
V(x,y’t):\/’(x,y,t)Nzfn‘e}ll?gzlcc;hls
consider
plx,y.)=p(x)+p'(x.p,t) ez
(no loss of
generality)
I/l’ V’ pr




Plug these u, v, p into Navier-Stokes (not BL)
equations

Linearize
Introduce a perturbation streamfunction

,_o0Yy ., 0y
=, Yy =
oy ox
Continuity eliminated, rewrite the momentum
equations in terms of vy

u

Cross-differentiate x-momentum equation in y, -
momentum equation in x

Get rid of the pressure term...



Result: 4" order linear PDE for y
Consider the streamfunction in the form

Y=y(y)e

c — speed of perturbation propagation

ioc(x—ct)

o — perturbation wavenumber (o = 21/A)

If ¢ is real (Im ¢ = 0), perturbation is neutrally
stable (propagates but does not grow)

f Im ¢ <0, perturbation is decaying

f Im ¢ > 0, perturbation grows and the boundary
layer iIs unstable



Plugging the variable-separated form of y into the
momentum equation reduces it to a 4" order ODE

=)l —aty)—u ="y 20’y oty
The Orr-Somerfeld equation
Boundary conditions

v(0) = y'(0) = 0 (perturbations go to zero on
body surface)

v(y) = 0, y'(y)— 0, y — « (perturbations decay
away from the boundary layer)

For every wavelength o, solve for ¢, determine
stability



Results of stability analysis

For v = 0, Orr- o
Sommerfeld
equation becomes i
Rayleigh equation 0.34 5 i /
stah:ﬂe 800 inviscid analysis
' stabili
-
Re ~520 *
) Re= BVU

Note. We look for a 2D perturbation...
but what if the flow first becomes unstable In z-

direction?
Such instabllity exists, but luckily, the flow is less

stable to xy perturbations



Effects of local pressure gradient on stability

5 dU * &

A — Y, oo™k \
dx +1
Pressure parameter A=+

(Pohlhausen, von Karman)

stable

-
o U

Re= Y,

Favorable pressure gradient expands stability
region, adverse pressure gradient shrinks it









