9. Boundary layers

Flow around an arbitrarily-shaped bluff body

Outer flow (effectively potential, inviscid, irrotational)

9.1. Boundary layer thickness

- Outer flow solution (ideal): U
- Inner flow: u
- Arbitrary threshold to mark the viscous layer boundary:

$$
y=\delta \text { for } u(x, \delta)=0.99 U
$$

- δ : BL thickess (or velocity BL thickness)

Velocity boundary layer thickness

Displacement thickness

Accounts for mass flow defect due to BL

Displacement (stagnation) layer thickness

$$
A_{1}=A_{2}
$$

$$
\begin{aligned}
& \int_{0}^{\infty}(U-u) d y=U \delta^{*} \\
& \delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y
\end{aligned}
$$

Momentum thickness θ
Similar to displacement thickness, but accounts for momentum transfer defect in BL:

$$
\theta=\int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y
$$

9.2. Boundary layer equations

- Start with full Navier-Stokes (2D steady) near a flat surface
- Main assumption: thin boundary layer ($\delta / x \ll 1$)
- Order of magnitude analysis for terms of Navier-Stokes equation
- $u \sim U$
- $\partial / \partial x \sim 1 / x$
- $\partial u / \partial x \sim U / x$
- $\partial / \partial y \sim 1 / \delta$
- From contunuity equation...

$$
\begin{gathered}
\frac{U}{x} \sim \frac{\partial u}{\partial x} \sim \frac{\partial v}{\partial y} \sim \frac{v}{\delta} \\
v \sim U \frac{\delta}{x}
\end{gathered}
$$

Examine the orders of terms in momentum equations

$$
\begin{aligned}
& U \frac{U}{x} \frac{U \delta}{x} \frac{U}{\delta} \\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{\partial p}{\partial x}+v\left(\begin{array}{l}
\frac{U}{x^{2}} \\
\frac{U^{2}}{x} \\
\frac{\partial^{2}}{\partial x} u \\
\partial x^{2}
\end{array}+\frac{\partial^{2} u}{\partial y^{2}}\right)
\end{aligned}
$$

Much smaller than U^{2} / x terms we keep in first equation

What remains of the continuity and momentum equations

$$
\begin{gathered}
\frac{\partial u}{x}+\frac{\partial v}{\partial y}=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{d p}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}
\end{gathered}
$$

Boundary layer equations
Notable scalings
$\frac{U^{2}}{x} \sim v \frac{U}{\delta^{2}}$, thus $\delta \sim \sqrt{\frac{v}{U} x}$

$$
R e_{x}=\frac{U x}{v} \sim \frac{x^{2}}{\delta^{2}} \gg 1
$$

Pressure - same as in outer (ideal) flow

Bernoulli equation for outer flow

$$
\frac{p}{\rho}+\frac{U^{2}}{2}=\mathrm{const}
$$

Thus

$$
-\frac{1}{\rho} \frac{d p}{d x}=U \frac{d U}{d x} \begin{aligned}
& \substack{\text { Plug this into momentum } \\
\text { equation to get rid of } \\
\text { pressure }}
\end{aligned}
$$

Boundary conditions

$$
\begin{aligned}
& u(x, 0)=0 \\
& v(x, 0)=0 \\
& u(x, y) \rightarrow U \text { as } y \rightarrow \infty
\end{aligned}
$$

9.3. Blasius solution

- Flat plate, $U=$ const, $p=$ const
- Boundary layer equations become

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}
\end{gathered}
$$

Reformulate for streamfunction ψ

$$
u=\frac{\partial \psi}{\partial y}, \quad v=-\frac{\partial \psi}{\partial x}
$$

Continuity satisfied automatically, momentum equation is

$$
\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}=v \frac{\partial^{3} \psi}{\partial y^{3}}
$$

No length scale!
Dimensional variables: $x, y, v, U \rightarrow n=4$
Dimensionally independent units: $\mathrm{L}, \mathrm{t} \rightarrow k=2$
For Buckingham's π-theorem, $n-k=2$
Look for

$$
\psi / \nu=f\left(\pi_{1}, \pi_{2}\right)
$$

Look for

$$
\pi_{1}=y^{a_{11}} U^{a_{21}} x^{a_{31}} v^{a_{41}}, \quad \pi_{2}=y^{a_{12}} U^{a_{22}} x^{a_{32}} v^{a_{42}}
$$

Construct a dimensional matrix

$$
M=\left[\begin{array}{cccc}
y & U & x & { }^{v} \\
1 & 1 & 1 & 2 \\
0 & -1 & 0 & -1
\end{array}\right] \begin{gathered}
\mathrm{L} \\
\mathrm{t}
\end{gathered}
$$

Find its kernel vectors $a_{i}=\left(a_{1 i}, a_{2 i}, a_{3 i}, a_{4 i}\right), i=1,2$:

$$
\begin{gathered}
M a_{i}^{\top}=(0,0) \\
a_{1}+a_{2}+a_{3}+2 a_{4}=0 \\
a_{2}+a_{4}=0
\end{gathered}
$$

This simplifies to

$$
\begin{gathered}
a_{1}+a_{3}+a_{4}=0 \\
a_{2}=-a_{4}
\end{gathered}
$$

Let $a_{21}=1 / 2$, then $a_{41}=-1 / 2$ and

$$
a_{11}+a_{31}=1 / 2
$$

$$
a_{11}=1, a_{31}=-1 / 2 \text { would fit, so }
$$

$$
\pi_{1}=y U^{1 / 2} x^{-1 / 2} v^{-1 / 2}=\frac{y}{\sqrt{\frac{v}{U} x}} \sim \frac{y}{\delta}
$$

Let $a_{12}=0, a_{32}=1$, then $a_{42}=-1, a_{22}=1$:

$$
\pi_{2}=\frac{U x}{v}=R e_{x} \sim \frac{x^{2}}{\delta^{2}}
$$

Look for

$$
\frac{\psi}{V}=\operatorname{Re}_{x}^{n} f\left(\frac{y}{\delta}\right)
$$

Not how Blasius did it though...
Blasius approach -
Similarity variable - clearly $\eta=y / \delta$
How to nondimensionalize ψ ?
Let $\psi \sim f(\eta)$, then

$$
u=\frac{\partial \psi}{\partial y} \sim \frac{d f}{d \eta} \frac{\partial \eta}{\partial y}=f^{\prime} \frac{1}{\delta}=f^{\prime} \sqrt{\frac{U}{v x}}
$$

For $\eta=$ const, $u=$ const (otherwise velocity profiles would not be self-similar), thus $\psi \sim x^{1 / 2} f(\eta)$ Rewrite this as $\psi \sim \operatorname{Re}_{x}^{1 / 2} f(\eta)$

Easy to fix that...

$$
\frac{\psi}{v}=\sqrt{R e_{x}} f(\eta)
$$

So, look for

$$
\psi=v \sqrt{\frac{U x}{v}} f\left(\frac{y}{\sqrt{v x / U}}\right)=\sqrt{U x v} f\left(\frac{y}{\sqrt{v x / U}}\right)
$$

Plug this into momentum equation and $B C$ to get...

$$
\begin{aligned}
& f^{\prime \prime \prime}+\frac{1}{2} f f^{\prime \prime}=0 \quad \text { Blasius equation } \\
& f(0)=f^{\prime}(0)=0 \\
& f^{\prime}(\eta) \rightarrow 1, \quad \eta \rightarrow \infty
\end{aligned}
$$

Solve numerically to get some notable results
For a plate of length x, drag coefficient

$$
\begin{aligned}
& C_{D}= \frac{F^{\text {Drag force }}}{\frac{1}{2} \rho U^{2} x} \approx \frac{1.328}{\sqrt{R e_{x}}} \\
& \frac{\delta}{x} \approx \frac{5}{\sqrt{R_{x}}}
\end{aligned}
$$

9.4. Falkner-Skan solutions

Look for solutions in the form (generalized from Blasius solution)

$$
\quad u(x, y)=U_{\text {Outer flow solution }}(x) f^{\prime}(\eta), \quad \eta=\frac{y}{\xi(x)}
$$

The corresponding streamfunction form is

$$
\psi(x, y)=U(x) \xi(x) f(\eta)
$$

Continuity satisfied, plug ψ into x-momentum equation...

$$
\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x \partial y}-\frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}=U \frac{d U}{d x}+v \frac{\partial^{3} \psi}{\partial y^{3}}
$$

The momentum equation becomes...
$f^{\prime \prime \prime}+\left[\frac{\xi}{v} \frac{d}{d x}(U \xi)\right]_{x-\text { dependent pars }} f f^{\prime \prime}+\left[\frac{\xi^{2}}{v} \frac{d U}{d x}\right]\left(1-\left(f^{\prime}\right)^{2}\right)=0$
For a similarity solution to exist, must have:

$$
\begin{gathered}
\alpha=\frac{\xi}{v} \frac{d}{d x}(U \xi)=\text { const } \\
\beta=\frac{\xi^{2}}{v} \frac{d U}{d x}=\text { const }
\end{gathered}
$$

The Falkner-Skan approach (counterintuitive but neat)

- Choose α, β
- Solve $\alpha=\ldots, \beta=\ldots$ for U, ξ : does $U(x)$ correspond to any useful outer flow?
- If yes, solve this system for f with chosen α, β

$$
\begin{gathered}
f^{\prime \prime \prime}+\alpha f f^{\prime \prime}+\beta\left[1-\left(f^{\prime}\right)^{2}\right]=0 \\
f(0)=f^{\prime}(0)=0 \\
f^{\prime}(\eta) \rightarrow 1, \eta \rightarrow \infty
\end{gathered}
$$

- Combine U, y, f to construct streamfunction:

$$
\psi(x, y)=U(x) \xi(x) f\left(\frac{y}{\xi(x)}\right)
$$

Example: $\alpha=1 / 2, \beta=0$: Blasius solution

9.5. Flow over a wedge

- $\alpha=1,0<\beta<1$:
- $U(x)=n U x^{n-1}, V=0$ - wedge flow!

$$
n=1+\frac{\beta}{2-\beta}
$$

9.6. Stagnation-point flow

- $\alpha=1, \beta=1$:
- Same as previous problem, but $\pi \beta=\pi$:

Boundary layer solution is the same as exact Hiemenz solution!
9.7. Flow in a convergent channel

- $\alpha=0, \beta=1$:
- $U(x)=-c / x, V=0$ - limit case $(R e \rightarrow \infty)$ for convergent wedge flow!
- No BL solution for divergent flow exists (which is physically correct!)

9.8. Approximate solution for a flat surface

- A demonstration of the widely applicable integral method developed by von Kármán (later refined by Ernst Pohlhausen)

Theodore von Kármán, 1881-1963

Flow over a flat plate, $U=p=$ const BL equations for this case...

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \\
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}
\end{gathered}
$$

Rewrite first term in momentum equation...

$$
\begin{array}{r}
u \frac{\partial u}{\partial x}=\frac{1}{2} \frac{\partial}{\partial x}\left(u^{2}\right)=\frac{\partial}{\partial x}\left(u^{2}\right)-u \frac{\partial u}{\partial x}= \\
=\frac{\partial}{\partial x}\left(u^{2}\right)+u \frac{\partial v}{\partial y}
\end{array}
$$

Momentum equation becomes

$$
\frac{\partial}{\partial x}\left(u^{2}\right)+u \frac{\partial v}{\partial y}+v \frac{\partial u}{\partial y}=v \frac{\partial^{2} u}{\partial y^{2}}
$$

Integrate this in y from surface to BL edge

$$
\begin{gathered}
\int_{y=0}^{\delta}\left[\frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial y}(u v)\right] d y=v \int_{y=0}^{\delta} \frac{\partial^{2} u}{\partial y^{2}} d y \\
\int_{y=0}^{\delta} \frac{\partial}{\partial x}\left(u^{2}\right) d y+\left.u v\right|_{y=0} ^{y=\delta}=\left.v \frac{\partial u}{\partial y}\right|_{y=0} ^{y=\delta}
\end{gathered}
$$

Note that

$$
\begin{gathered}
\left.u\right|_{y=0}=\left.v\right|_{y=0}=0 \quad \text { No slip on surface } \\
\left.u\right|_{y=\delta}=U \quad \begin{array}{l}
\text { Transition to outer flow } \\
\text { at BL edge is continuous }
\end{array} \\
\left.\frac{\partial u}{\partial y}\right|_{y=\delta}=0 \quad \begin{array}{l}
\text { Transition to outer flow } \\
\text { at BL edge is smooth }
\end{array}
\end{gathered}
$$

Define surface shear stress τ_{0} as

$$
\tau_{0}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}
$$

The integral becomes

$$
\int_{y=0}^{\delta} \frac{\partial}{\partial x}\left(u^{2}\right) d y+U v(x, \delta)=-\frac{\tau_{0}}{\rho}
$$

Integrate continuity equation to evaluate the $U v$ term in momentum equation

$$
\begin{aligned}
& \int_{y=0}^{y=\delta}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right) d y=0 \\
& \int_{y=0}^{y=\delta} \frac{\partial u}{\partial x} d y+\left.v\right|_{y=0} ^{y=\delta}=0 \\
& v(x, \delta)=-\int_{y=0}^{y=\delta} \frac{\partial u}{\partial x} d y
\end{aligned}
$$

Substitute this into the momentum equation -

$$
\int_{y=0}^{\delta(x)} \frac{\partial}{\partial x}\left(u^{2}\right) d y-U \int_{y=0}^{\delta(x)} \frac{\partial u}{\partial x} d y=-\frac{\tau_{0}}{\rho}
$$

Leibniz integral rule

For an integral of $f(x, y)$ with variable limits,

$$
\begin{aligned}
& \int_{\alpha(x)}^{\beta(x)} \frac{\partial f}{\partial x} d y=\frac{d}{d x} \int_{\alpha(x)}^{\beta(x)} f d y- \\
& -f(x, \beta) \frac{d \beta}{d x}+f(x, \alpha) \frac{d \alpha}{d x}
\end{aligned}
$$

Step reckoner by G.W. Leibniz (1673) - mechanical computer for addition and multiplication

Apply Leibniz integral rule to momentum equation integral...

$$
\int_{y=0}^{\delta(x)} \frac{\partial}{\partial x}\left(u^{2}\right) d y-U \int_{y=0}^{\delta(x)} \frac{\partial}{\partial x} u d y=-\frac{\tau_{0}}{\rho}
$$

$$
\begin{gathered}
\frac{d}{d x} \int_{y=0}^{\delta(x)} u^{2} d y-\left.u^{2}\right|_{y=\delta} \frac{d \delta}{d x}- \\
-U\left[\frac{d}{d x} \int_{y=0}^{\delta(x)} u d y-\left.u\right|_{y=\delta} \frac{d \delta}{d x}\right]=-\frac{\tau_{0}}{\rho}
\end{gathered}
$$

$\frac{d}{d x} \int_{y=0}^{\delta(x)} u^{2} d y-U \frac{d \delta}{d x}-U \frac{d}{d x} \int_{y=0}^{\delta(x)} u d y+U d^{2} \frac{d \delta}{d x}=-\frac{\tau_{0}}{\rho}$

Momentum equation integral is...

$$
\frac{d}{d x} \int_{y=0}^{\delta(x)} u^{2} d y-U \frac{d}{d x} \int_{y=0}^{\delta(x)} u d y=-\frac{\tau_{0}}{\rho}
$$

...or...

$$
-\frac{d}{d x} \int_{y=0}^{\delta(x)}\left(u^{2}-U u\right) d y=\frac{d}{d x} \int_{y=0}^{\delta(x)} u(U-u) d y=\frac{\tau_{0}}{\rho}
$$

Momentum integral for Blasius BL
Physical meaning: momentum change in $B L$ is due to surface shear

General procedure for the von KármánPohlhausen method

- Represent the unknown velocity profile with a polynomial (a general profile should have a polynomial series expansion?)
- Fit the polynomial constants to match known boundary conditions

$$
\begin{aligned}
& u(x, 0)=0 \\
& u(x, \delta)=U \\
& \partial u / \partial y(x, \delta)=0
\end{aligned}
$$

- Can impose further boundary conditions (as needed to determine polynomial coefficients)

Additional boundary conditions

Apply momentum equation at $y=0$

$$
x\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]_{y=0}=\left.v \frac{\partial^{2} u}{\partial y^{2}}\right|_{y=0}=0
$$

(For more BC, apply derivatives of momentum equation, etc.)

- Apply the BC to determine polynomial coefficients (as functions of δ)
- Plug the velocity profile polynomial into momentum integral, integrate, solve resulting ODE for $\delta=\delta(x)$
- Find drag coefficient, etc.

Similar procedure can be applied to freesurface and other flows (replace unknown functions with polynomials, satisfy BC, satisfy conservation eqs.)

For a flat-plate BL, look for

$$
\begin{aligned}
& u=a_{0}+a_{1} y+a_{2} y^{2} \quad \begin{array}{l}
\text { This only works for zero } \\
\text { pressure gradient! }
\end{array} \\
& u(0)=0 \\
& u(\delta)=U \\
& \left.\frac{\partial u}{\partial y}\right|_{y=\delta}=0
\end{aligned}
$$

From BC at $y=0, a_{0}=0$

$$
\frac{\partial u}{\partial y}=a_{1}+2 a_{2} y,\left.\quad \frac{\partial u}{\partial y}\right|_{y=\delta}=a_{1}+2 a_{2} \delta=0
$$

Thus from second BC at $y=\delta$,

$$
a_{1}=-2 a_{2} \delta
$$

Now use first BC at $y=\delta$

$$
\begin{gathered}
u(\delta)=a_{0}+a_{1} \delta+a_{2} \delta^{2}=U \\
a_{2}\left(-2 a_{2} \delta\right. \\
\left.a_{2}=-\frac{U}{\delta^{2}}, \quad \delta^{2}\right)=U \frac{U}{\delta}
\end{gathered}
$$

Polynomial expression for u to plug into momentum integral

$$
\begin{aligned}
& \frac{u}{U}=2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2}=2 \eta-\eta^{2} \\
& \eta=\eta(x, y)=\frac{y}{\delta(x)} \begin{array}{c}
\text { We've seen this one } \\
\text { before.... }
\end{array}
\end{aligned}
$$

Rewrite the momentum integral a bit...

$$
\frac{d}{d x} \int_{y=0}^{\delta(x)} u(U-u) d y=U^{2} \frac{d}{d x} \int_{y=0}^{\delta(x)} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\frac{\tau_{0}}{\rho}
$$

Plug in expression for u / U

$$
\frac{d}{d x} \int_{y=0}^{\delta(x)} \frac{u}{U}\left(1-\frac{u}{U}\right) d y=\frac{d}{d x} \int_{y=0}^{\delta(x)}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d y
$$

Evaluate the integral

$$
\begin{gathered}
\int_{y^{y=0}}^{\delta(x)}\left(2 \eta-\eta^{2}\right)\left(1-2 \eta+\eta^{2}\right) d y= \\
=\int_{y=0}^{\delta(x)}\left(2 \eta-\eta^{2}-4 \eta^{2}+2 \eta^{3}+2 \eta^{3}-\eta^{4}\right) d y
\end{gathered}
$$

Collect terms

$$
=\int_{y=0}^{\delta(x)}\left(-\eta^{4}+4 \eta^{3}-5 \eta^{2}+2 \eta\right) d y
$$

Variable substitution $y \rightarrow \eta, y=\delta \eta, d y=\delta d \eta$ and

$$
y=\delta \rightarrow \eta=1
$$

$$
\begin{gathered}
=\delta \int_{\eta=0}^{1}\left(-\eta^{4}+4 \eta^{3}-5 \eta^{2}+2 \eta\right) d \eta= \\
=\delta\left(-\frac{1}{5} \eta^{5}+\eta^{4}-\frac{5}{3} \eta^{3}+\eta^{2}\right)_{0}^{1}= \\
\quad=\delta\left(-\frac{1}{5}+1-\frac{5}{3}+1\right)=\delta \frac{2}{15}
\end{gathered}
$$

Plug the evaluated integral back...

$$
U^{2} \frac{d}{d x}\left(\frac{2}{15} \delta\right)=\frac{\tau_{0}}{\rho}
$$

Use the definition of surface shear stress

$$
\tau_{0}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}
$$

Recall that

$$
\begin{gathered}
u=U\left(2 \frac{y}{\delta}-\left(\frac{y}{\delta}\right)^{2}\right) \\
\frac{\partial u}{\partial y}=U\left(\frac{2}{\delta}-2 \frac{y}{\delta^{2}}\right),\left.\quad \frac{\partial u}{\partial y}\right|_{y=0}=2 \frac{U}{\delta}
\end{gathered}
$$

Plug that into the ODE for δ

$$
U^{2} \frac{d}{d x}\left(\frac{2}{15} \delta\right)=\frac{\mu}{\rho} \frac{2 U}{\delta}
$$

A more compact form

$$
\begin{gathered}
\delta^{\prime} \delta=15 \frac{v}{U} \\
\frac{1}{2}\left(\delta^{2}\right)^{\prime}=15 \frac{v}{U}
\end{gathered}
$$

Integrate...

$$
\delta^{2}=30 \frac{v x}{U}+C
$$

Since at $x=0 \delta=0, C=0$ and

$$
\delta=\sqrt{30 \frac{v x}{U}}
$$

Note that

$$
\frac{\delta}{x}=\sqrt{30 \frac{v}{U x}}=\frac{\sqrt{30}}{\sqrt{R e_{x}}} \approx \frac{5.48}{\sqrt{R e_{x}}}
$$

Compare with exact result:

$$
\frac{\delta}{x} \approx \frac{5}{\sqrt{R e_{x}}}
$$

Error $<10 \%$, despite a very crude approximation

9.9. General momentum integral

Similar reasoning, but for an arbitrary BL with non-zero pressure gradient in the x-direction
Momentum equation (with pressure eliminated using Bernoulli equation for outer flow)...

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=U \frac{d U}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}
$$

...can be similarly rewritten as...

$$
\frac{\partial}{\partial x}\left(u^{2}\right)+\frac{\partial}{\partial y}(u v)=U \frac{d U}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}
$$

Integrate this in y from 0 to δ to obtain

$$
\frac{d}{d x}\left(U^{2}(x) \theta\right)+U \delta^{*} \frac{d U}{d x}=\frac{\tau_{0}}{\rho}
$$

where

$$
\begin{aligned}
& \delta^{*}=\int_{0}^{\infty}\left(1-\frac{u}{U}\right) d y \quad \text { Displacement thickness } \\
& \theta=\int_{0}^{\infty} \frac{u}{U}\left(1-\frac{u}{U}\right) d y \text { Momentum thickness }
\end{aligned}
$$

9.10. von Kármán - Pohlhausen approximation

- Consider velocity profile in the form of a $4^{\text {th }}$ order polynomial (allows to account for nonuniform freestream velocity and nonzero pressure gradient)
- Apply five boundary conditions to find coefficients (two added conditions - second derivatives at $y=0$ and $y=\delta$)
- Plug resulting polynomial into expressions for $\delta^{*}, \theta, \tau_{0}$
- Substitute results into general momentum integral, solve ODE for $\delta(x)$

Boundary-layer separation

BL momentum equation

$$
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=-\frac{1}{\rho} \frac{d p}{d x}+v \frac{\partial^{2} u}{\partial y^{2}}
$$

Apply this equation at $y=0$

$$
0=-\frac{1}{\rho} \frac{d p}{d x}+\left.v \frac{\partial^{2} u}{\partial y^{2}}\right|_{y=0}
$$

Pressure gradient of the outer flow determines velocity profile curvature on the surface!

Non-negative $d p / d x$: non-positive curvature of velocity profile throughout BL

Now suppose we have negative $d p / d x$:
curvature of velocity profile near the boundary will be positive same curvature near the BL edge must approach zero from the negative direction (otherwise - no smooth transition to outer flow!)

A point of inflection must exist in velocity profile (where curvature changes sign)

Velocity profiles for increasing adverse pressure gradient

Separated boundary layers

Roshko, early 1950s

Vorobieff \& Ecke, XIIth century

Flometrics.com, 2011

9.12. Boundary layer stability

Consider a narrow strip of a boundary layer and a small perturbation to steady-state velocity and pressure:

$$
\begin{aligned}
& u(x, y, t)=u(y)+u^{\prime}(x, y, t) \\
& v(x, y, t)=v^{\prime}(x, y, t) \\
& p(x, y, t)=p(x)+p^{\prime}(x, y, t)
\end{aligned}
$$

Perturbation

- same scale as v (which is small), so consider
entire v as perturbation (no loss of generality)

$$
\left|\frac{u^{\prime}}{u}\right| \ll 1, \quad\left|\frac{v^{\prime}}{u}\right| \ll 1, \quad\left|\frac{p^{\prime}}{p}\right| \ll 1
$$

Plug these u, v, p into Navier-Stokes (not BL) equations

Linearize

Introduce a perturbation streamfunction

$$
u^{\prime}=\frac{\partial \psi}{\partial y}, \quad v^{\prime}=-\frac{\partial \psi}{\partial x}
$$

Continuity eliminated, rewrite the momentum equations in terms of ψ
Cross-differentiate x-momentum equation in y, y momentum equation in x
Get rid of the pressure term...

Result: $4^{\text {th }}$ order linear PDE for ψ
Consider the streamfunction in the form

$$
\psi=\psi(y) e^{i \alpha(x-c t)}
$$

c - speed of perturbation propagation
α - perturbation wavenumber $(\alpha=2 \pi / \lambda)$
If c is real ($\operatorname{Im} c=0$), perturbation is neutrally stable (propagates but does not grow)
If $\operatorname{Im} c<0$, perturbation is decaying
If $\operatorname{Im} c>0$, perturbation grows and the boundary
layer is unstable

Plugging the variable-separated form of y into the momentum equation reduces it to a $4^{\text {th }}$ order ODE
$(u-c)\left(\psi^{\prime \prime}-\alpha^{2} \psi\right)-u^{\prime \prime} \psi=\frac{\nu}{i \alpha}\left(\psi^{(4)}-2 \alpha^{2} \psi^{\prime \prime}+\alpha^{4} \psi\right)$
The Orr-Somerfeld equation

Boundary conditions

$\psi(0)=\psi^{\prime}(0)=0$ (perturbations go to zero on body surface)
$\psi(y) \rightarrow 0, \psi^{\prime}(y) \rightarrow 0, y \rightarrow \infty$ (perturbations decay away from the boundary layer)
For every wavelength α, solve for c, determine stability

Results of stability analysis

For $v=0$, OrrSommerfeld equation becomes Rayleigh equation

Note. We look for a 2D perturbation... but what if the flow first becomes unstable in z direction?
Such instability exists, but luckily, the flow is less stable to $x y$ perturbations

Effects of local pressure gradient on stability

$$
\Lambda=\frac{\delta^{2}}{v} \frac{d U}{d x}
$$

Pressure parameter
(Pohlhausen, von Kármán)

Favorable pressure gradient expands stability region, adverse pressure gradient shrinks it

