9. Linear dynamical systems

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

State sequence

- sequence of n-vectors x_{1}, x_{2}, \ldots
- t denotes time or period
- x_{t} is called state at time t; sequence is called state trajectory
- assuming t is current time,
- x_{t} is current state
- x_{t-1} is previous state
$-x_{t+1}$ is next state
- examples: x_{t} represents
- age distribution in a population
- economic output in n sectors
- mechanical variables

Linear dynamics

- linear dynamical system:

$$
x_{t+1}=A_{t} x_{t}, \quad t=1,2, \ldots
$$

- A_{t} are $n \times n$ dynamics matrices
- $\left(A_{t}\right)_{i j}\left(x_{t}\right)_{j}$ is contribution to $\left(x_{t+1}\right)_{i}$ from $\left(x_{t}\right)_{j}$
- system is called time-invariant if $A_{t}=A$ doesn't depend on time
- can simulate evolution of x_{t} using recursion $x_{t+1}=A_{t} x_{t}$

Variations

- linear dynamical system with input

$$
x_{t+1}=A_{t} x_{t}+B_{t} u_{t}+c_{t}, \quad t=1,2, \ldots
$$

- u_{t} is an input m-vector
- B_{t} is $n \times m$ input matrix
- c_{t} is offset
- K-Markov model:

$$
x_{t+1}=A_{1} x_{t}+\cdots+A_{K} x_{t-K+1}, \quad t=K, K+1, \ldots
$$

- next state depends on current state and $K-1$ previous states
- also known as auto-regresssive model
- for $K=1$, this is the standard linear dynamical system $x_{t+1}=A x_{t}$

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

Population distribution

- $x_{t} \in \mathbf{R}^{100}$ gives population distribution in year $t=1, \ldots, T$
- $\left(x_{t}\right)_{i}$ is the number of people with age $i-1$ in year t (say, on January 1)
- total population in year t is $\mathbf{1}^{T} x_{t}$
- number of people age 70 or older in year t is $\left(0_{70}, \mathbf{1}_{30}\right)^{T} x_{t}$

Population distribution of the U.S.

(from 2010 census)

Birth and death rates

- birth rate $b \in \mathbf{R}^{100}$, death (or mortality) rate $d \in \mathbf{R}^{100}$
- b_{i} is the number of births per person with age $i-1$
- d_{i} is the portion of those aged $i-1$ who will die this year (we'll take $d_{100}=1$)
- b and d can vary with time, but we'll assume they are constant

Birth and death rates in the U.S.

Approximate birth rate (\%)

Death rate (\%)

Dynamics

- let's find next year's population distribution x_{t+1} (ignoring immigration)
- number of 0 -year-olds next year is total births this year:

$$
\left(x_{t+1}\right)_{1}=b^{T} x_{t}
$$

- number of i-year-olds next year is number of $(i-1)$-year-olds this year, minus those who die:

$$
\left(x_{t+1}\right)_{i+1}=\left(1-d_{i}\right)\left(x_{t}\right)_{i}, \quad i=1, \ldots, 99
$$

- $x_{t+1}=A x_{t}$, where

$$
A=\left[\begin{array}{ccccc}
b_{1} & b_{2} & \cdots & b_{99} & b_{100} \\
1-d_{1} & 0 & \cdots & 0 & 0 \\
0 & 1-d_{2} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1-d_{99} & 0
\end{array}\right]
$$

Predicting future population distributions

predicting U.S. 2020 distribution from 2010 (ignoring immigration)

Outline

Linear dynamical systems

Population dynamics

Epidemic dynamics

SIR model

- 4-vector x_{t} gives proportion of population in 4 infection states

Susceptible:	can acquire the disease the next day
Infected:	have the disease
Recovered:	had the disease, recovered, now immune
Deceased:	had the disease, and unfortunately died

- sometimes called SIR model
- e.g., $x_{t}=(0.75,0.10,0.10,0.05)$

Epidemic dynamics

over each day,

- among susceptible population,
- 5% acquires the disease
- 95% remain susceptible
- among infected population,
- 1% dies
- 10% recovers with immunity
- 4% recover without immunity (i.e., become susceptible)
- 85% remain infected
- 100% of immune and dead people remain in their state
- epidemic dynamics as linear dynamical system

$$
x_{t+1}=\left[\begin{array}{cccc}
0.95 & 0.04 & 0 & 0 \\
0.05 & 0.85 & 0 & 0 \\
0 & 0.10 & 1 & 0 \\
0 & 0.01 & 0 & 1
\end{array}\right] x_{t}
$$

Simulation from $x_{1}=(1,0,0,0)$

