
9 Modular Arithmetic

9.1 Modular Addition and Multiplication

In arithmetic modulo n, when we add, subtract, or multiply two numbers, we take the

answer mod n. For example, if we want the product of two numbers modulo n, then

we multiply them normally and the answer is the remainder when the normal product is

divided by n. The value n is sometimes called the modulus.

Specifically, let Zn represent the set {0, 1, . . . , n− 1} and define the two operations:

a+n b = (a+ b) mod n

a ·n b = (a× b) mod n

Modular arithmetic obeys the usual rules/laws for the operations addition and multipli-

cation. For example, a +n b = b +n a (commutative law) and (a ·n b) ·n c = a ·n (b ·n c)
(associative law).

Now, we can write down tables for modular arithmetic. For example, here are the tables

for arithmetic modulo 4 and modulo 5.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

·4 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

·5 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

The table for addition is rather boring, and it changes in a rather obvious way if we change

the modulus.

However, the table for multiplication is a bit more interesting. There is obviously a row

with all zeroes. Consider the table for ·5. Then in each of the other rows, every value is
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there and there is no repeated value. This does not always happen; for example, look at

the table for modulus 4. Indeed, if both x and the modulus are a multiple of m, then every

value in the row for x in the multiplication table will be a multiple of m. So the only way

it can happen that all values appear in the multiplication table in every nonzero row is

that the modulus is a prime. And in that case, yes this happens, as we now prove:

Theorem 9.1 If p is a prime, and 1 ≤ a ≤ p − 1, then the values 0 mod p, a mod p,

2amod p, 3amod p, . . . , (p− 1)amod p are all distinct.

Proof. Proof by contradiction. Suppose ia mod p = ja mod p with 0 ≤ i < j ≤ p − 1.

Then (ja − ia) mod p = ja mod p − ia mod p = 0, and so ja − ia = (j − i)a is a multiple

of p. However, a is not a multiple of p; so j − i is a multiple of p. But that is impossible,

because j − i > 0 and j − i < p. We have a contradiction. ♦

Since there are p distinct values in the row, but only p possible values, this means that

every value must appear exactly once in the row.

We can also define modular subtraction in the same way, provided we say what the mod

operation does when the first argument is negative: c mod d is the smallest nonnegative

number r such that c = qd+ r for some integer q; for example, −1 mod d = d− 1.

9.2 Modular Inverses

An interesting question is whether one can define division. This is based on the concept

of an inverse, which is actually the more important concept. We define:

the inverse of b, written b−1, is a number y in Zn such that b ·n y = 1.

The question is: does such a y exist? And if so, how to find it? Well, it certainly does

exist in some cases.

Example 9.1.

For n = 7, it holds that 4−1 = 2 and 3−1 = 5.

But 0−1 never exists.

Nevertheless, it turns out that modulo a prime p, all the remaining numbers have inverses.

Actually, we already proved this when we showed in Theorem 9.1 that all values appear in

a row of the multiplication table. In particular, we know that somewhere in the row for b

there will be a 1; that is, there exists a y such that b ·p y = 1.

And what about the case where the modulus is not a prime? For example, 7−1 = 13 when

the modulus is 15.
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Theorem 9.2 b−1 exists in Zn if and only if b and n are relatively prime.

Proof. There are two parts to prove. If b and n have a common factor say a, then any

multiple of b is divisible by a and indeed b ·n y is a multiple of a for all y, so the inverse

does not exist.

If b is relatively prime to n, then consider Euclid’s extended algorithm. Given n and b,

the algorithm behind Theorem 8.2 will produce integers x and y such that:

n× x+ b× y = 1.

And so b ·n y = 1. ♦

And, by using the extension of Euclid’s algorithm, one actually has a quick algorithm for

finding b−1. One of the exercises is to show that if an inverse exists, then it is unique.

I For you to do! J

1. List all the values in Z11 and their inverses.

9.3 Modular Exponentiation

Modular arithmetic is used in cryptography. In particular, modular exponentiation is

the cornerstone of what is called the RSA system.

We consider first an algorithm for calculating modular powers. The modular exponen-

tiation problem is:

compute gA mod n, given g, A, and n.

The obvious algorithm to compute gA modn multiplies g together A times. But there is a

much faster algorithm to calculate gA mod n, which uses at most 2 log2A multiplications.

The algorithm uses the fact that one can reduce modulo n at each and every point. For

example, that abmod n = (amod n)× (bmod n) mod n. But the key savings is the insight

that g2B is the square of gB.
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dexpo(g,A,n)

if A = 0 then return 1

else if A odd {
z = dexpo(g, A− 1, n)

return(zg mod n) % uses gA = g × gA−1

}
else {
z = dexpo (g, A/2, n)

return(z2 mod n) % uses gA = (gA/2)2

}

Note that the values of g and n are constant throughout the recursion. Further, at least

every second turn the value of A is even and therefore is halved. Therefore the depth of

recursion is at most 2 log2A.

We can do a modular exponentiation calculation by hand, by working out the sequence of

values of A, and then calculating gA mod n for each of the A, starting with the smallest

(which is g0 = 1).

Example 9.2. Calculate 312 mod 5.

A gA mod n

12 42 mod 5 = 1

6 22 mod 5 = 1

3 3× 4 mod 5 = 2

2 32 mod 5 = 4

1 3× 1 mod 5 = 3

0 1

I For you to do! J

2. Use the Dexpo algorithm to calculate 414 mod 11.

9.4 Modular Equations

A related question is trying to solve modular equations. These arise in puzzles where it

says that: there was a collection of coconuts and when we divided it into four piles there

was one left over, and when we divided it into five piles, etc.
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Theorem 9.3 Let a ∈ N, and let b and c be positive integers that are relatively prime.

Then the solution to the equation

c× xmod b = a

is all integers of the form ib+ a ·b c−1 where i is an integer (which can be negative).

Proof. We claim that the solution is all integers x such that x mod b = a ·b c−1, where

c−1 is calculated modulo b. The proof of this is just to multiply both sides of the equation

by c−1, which we know exists. From there the result follows. ♦

Example 9.3. Solve the equation 3xmod 10 = 4.

Then 3−1 = 7 and 4 ·10 7 = 8. So xmod 10 = 8.

This is then generalized in the Chinese Remainder Theorem. Here is just a special case:

Theorem 9.4 If p and q are primes, then the solution to the pair of congruences

x ≡p a and x ≡q b

is all integers x such that

x ≡pq qaq−1 + pbp−1

where p−1 is the inverse of p modulo q and q−1 is the inverse of q modulo p.

We omit the proof.

Example 9.4. Determine all integers that have remainder 2 when divided by

5 and remainder 4 when divided by 7.

In the notation of the above theorem, a = 2, p = 5, b = 4, and q = 7. In Z7, 5−1 = 3. In

Z5, 7−1 = 2−1 = 3. So the set of solutions has remainder 7 · 2 · 3 + 5 · 4 · 3 ≡35 32. So the

answer is 35x+ 32 for x an integer.

9.5 Modular Exponentiation Theorems

We start with a famous theorem called Fermat’s Little Theorem.

Theorem 9.5 Fermat’s little theorem. If p is a prime, then for a with 1 ≤ a ≤ p− 1,

ap−1 mod p = 1.
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Proof. Let S be the set { iamod p : 1 ≤ i ≤ p− 1 }. That is, multiply a by all integers in

the range 1 to p− 1 and write down the remainders when each is divided by p. Actually,

we already looked at this set: it is the row corresponding to a from the multiplication

table for p. And in Theorem 9.1 we showed that these values are all distinct. Therefore,

S is actually just the set of integers from 1 up to p− 1.

Now, let A be the product of the elements in S. To avoid ugly formulas, we use x ≡p y to

mean xmod p = ymod p. And we use Π-notation, which is the same as Σ-notation except

that it is the product rather than the sum. By Theorem 9.1 and the above discussion,

p−1∏
i=1

((ia) mod p) =

p−1∏
i=1

i

But, we can also factor out the a’s:

p−1∏
i=1

(ia) mod p ≡p ap−1
p−1∏
i=1

i

It follows that
p−1∏
i=1

i ≡p ap−1
p−1∏
i=1

i

Divide both sides by
∏p−1
i−1 i and we get that ap−1 ≡p 1; that is, ap−1 mod p = 1. ♦

The above result is generalized by Euler’s Theorem. We will need the following special

case in the next chapter:

Theorem 9.6 Special case of Euler’s theorem. If a and n = pq are relatively prime, with

p and q distinct primes, then aφ mod n = 1 where φ = (p− 1)(q − 1).

We omit the proof.

9.6 Square-Roots

A square-root of a in Zn as any element b such that b2 mod n. For example, in Z7, 3 is

a square-roots of 2, since 9 mod 7 = 2.

Note that it is not guaranteed to exist. For example, 3 does not have a square-root in Z7.

Further, if b is a square-root of a, then so is n−b (since (n−b)2 = n2−2nb+b2 ≡n b2 ≡n a).

In the exercises you have to show that:

Lemma 9.7 If n is any prime, then a has at most two square-roots modulo n.
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Exercises

9.1. (a) Write out the addition and multiplication tables for Z2.

(b) If we define 1 as true and 0 as false, explain which boolean connectives corre-

spond to +2 and ·2.

9.2. Give the multiplication tables for Z6 and Z7.

9.3. Calculate 5−1 and 10−1 in Z17.

9.4. Prove that if b has an inverse in Zn, then it is unique.

9.5. How many elements of Z91 have multiplicative inverses in Z91?

9.6. How many rows of the table for ·12 contain all values?

9.7. Consider Z10.

(a) List all elements of Z10.

(b) What is the inverse of 3?

(c) Give all square-roots of 6.

(d) How many rows of the multiplcation table contain every element?

9.8. (a) Consider the primes 5, 7, and 11 for n. For each integer from 1 through n− 1,

calculate its inverse.

(b) A number is self-inverse if it is its own inverse. For example, 1 is always

self-inverse. Based on the data from (a), state a conjecture about the number

of self-inverses when n is a prime.

(c) Prove your conjecture.

9.9. Given a, b ∈ Zn, we say that b is a modular square-root of a if b ·n b = a.

(a) List all the elements in Z11, and for each element, list all their modular square-

roots, if they have any.

(b) Prove that if n is prime then a has at most two square-roots.

(c) Give an example that shows that it is possible for a number to have more than

2 square-roots.

9.10. (a) Consider the primes 5, 7, and 11 for n. For each a from 1 through n − 1,

calculate a2 mod n (which is the same as a ·n a).
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(b) A number y is a quadratic residue if there is some a such that y = a2 modn.

For example, 1 is always a quadratic residue (since it is 12 mod n). Based on

the data from (a), state a conjecture about the number of quadratic residues.

(c) Prove your conjecture.

9.11. (a) Compute 238 mod 7.

(b) Compute 329 mod 20.

(c) Compute 533 mod 13.

9.12. Describe all solutions to the modular equation 7xmod 8 = 3.

9.13. Find the smallest positive solution to the set of modular equations:

xmod 3 = 2, xmod 11 = 4, xmod 8 = 7.

9.14. (a) Prove that (a+ b)p mod p = (ap + bp) mod p if p is a prime.

(b) Use part (a) to give a proof of Fermat’s Little Theorem.

9.15. Using the Binomial Theorem (and without using Fermat’s Little Theorem), prove

that for any odd prime p, it holds that 2p mod p = 2.

Solutions to Practice Exercises

1.
0 1 2 3 4 5 6 7 8 9 10

1 6 4 3 9 2 8 7 5 10

2.
A gA mod n

14 3

7 5

6 4

3 9

2 5

1 4

0 1


