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The Sociology of the Genome

In the evolution of life. . . there has been a conflict
between selection at several levels. . . individuality
at the higher level has required that the disrup-
tive effects of selection at the lower level be sup-
pressed.

John Maynard Smith

A Mendelian population has a common gene pool,
which is its collective or corporate genotype.

Theodosius Dobzhansky

C: What do you think of the book One hundred
authors against Einstein?

AE: Why 100 Authors? If I were wrong, then one
would have been enough.

Choreographer Interview

Many animals interact in groups for at least a part of their lifecyle. Such

groups may be called flocks, schools, nests, troupes, herds, packs, prides,

tribes, and so on, depending on the species. There appears not to be a

common term for these groups, so I will call them animal societies, or sim-

ply societies. Animal societies have at least rudimentary social structures

governing the typical interactions among group members. Even animals
that live solitary lives often have mating practices involving signaling and

ritualistic interactions (Noe and Hammerstein 1994; Fiske et al. 1998).

Sociobiology is the study of the social structure of such species. Edward

O. Wilson introduced the term in his pathbreaking book (Wilson 1975).

Wilson is an expert on social insects, not humans, but the concluding chap-

ter of his book addressed human sociobiology. At the time, the idea that

biology had anything useful to say about human society had few propo-
nents. Virtually all social scientists at the time believed that the only thing

biologically distinctive about humans was hypercognition (see Chapter 2),

and that human behavior was completely determined by social and cultural

institutions (Cosmides et al. 1992). Biology, it was thought, simply had

nothing to add.

Wilson’s book, not surprisingly, generated some years of heated and in-
deed venomous criticism (Segerstrale 2001). However, science eventually

185



186 Chapter 9

won out over tradition. We are now all sociobiologists. Indeed, the pen-

dulum has perhaps swung too far in the other direction: all sorts of human
behaviors are currently attributed, without much foundation, to our evolved

dispositions (Gould and Lewontin 1979; Boyd and Richerson 2005).

Animal societies exist because living in a society enhances the fitness of

its members. In economics this is called increasing returns to scale, the

term applying perfectly to the aggregation of individuals in an animal soci-

ety. While there may be some contingent and variable aspects of animal so-
cieties, with the exception of humans, the social structure of agiven species

is quite uniform across time and space. The social structure of animal soci-

eties is thus likely optimized, or close to optimized, for contributing to the

fitness of members of the species, within the bounds set by the gene pool of

the species. The same cannot be said of human society, given of the massive

effects of cumulative culture and technology (see Chapter 1),

The general social equilibrium model developed in Section 6.3 applies
nicely to animal societies. There are social roles and social actors that

fill these roles, the goal of social theory being to describe how actors are

recruited to fill roles, and how roles interact to attain some degree of social

efficiency. Sociobiology is part of sociology.

A basic principle of sociobiology is that behavior is conditioned by genes.

In most species, age, sex, and caste condition the individual to assume a
particular role. In highly social species, differential nurturing can create

castes, such as worker vs. soldier vs. reproductive in eusocial bees and ants.

In humans, of course, culture and socialization influence the allocation of

individuals to social roles.

Basic evolutionary theory asserts that a gene for a particular behavior can

persist in the population only if the behavior leads the gene’s carrier (the
individual) to contribute a sufficient number of copies of the gene to the next

generation. The most straightforward way for this to occur is if the behavior

enhances the fitness of the individual himself. Cooperation among social

actors in this case is called mutualistic (Milinski 1996; Dugatkin 1997).

Mutualistic interaction is particularly important in humans, and is called

collaboration (Tomasello 2014). Genes for mutualism induce individuals

to seek cooperative rather than solitary solutions to problems, and provide
them with skills for effective collaboration.

Mutualism, however, is not enough to capture increasing returns to scale

in social life. Often cooperation demands that participating individuals in-

cur personal fitness costs. This is called altruism, and genes that code for
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altruistic behavior are called altruistic genes. Except in humans, this sort

of biological altruism has no connection with moral sentiments, of course.
Clearly, altruistic genes can spread only if the fitnesses of the beneficiaries

of the altruistic act carrying the altruistic gene increase sufficiently to offset

the sacrifice of the altruist. William Hamilton (1964a) was the first fully to

develop this idea, culminating in Hamilton’s rule. This rule says that if the

altruist incurs fitness cost c, confers fitness benefit b on another individual

with relatedness r to the altruist, the altruistic gene will spread if br > c.
The reason is that br is the expected number of copies of the altruism gene

gained in the recipient and c is the number of copies lost in the donor. Call-

ing br �c the inclusive fitness of the altruist, the implications of Hamilton’s

rule are called inclusive fitness theory.

My aim in this chapter is to clarify the position of inclusive fitness theory

in sociobiology, drawing on Gintis (2014). The issue is highly contentious.

Edward O. Wilson, for instance, who strongly supported Hamilton’s analy-
sis in the years immediately following its appearance, has become a serious

critic. He writes in his recent book, The Social Conquest of Earth (2012):

The foundations of the general theory of inclusive fitness based

on the assumptions of kin selection have crumbled, while ev-

idence for it has grown equivocal at best.. . . Inclusive fitness
theory is both mathematically and biologically incorrect.

To supporters of inclusive fitness theory, this statement is outrageous, strik-

ing a blow at population genetics itself. As Stuart West et al. (2007a) ex-

plain:

The importance of Hamilton’s work cannot be overstated—it
is one of the few truly fundamental advances since Darwin in

our understanding of natural selection.

Richard Dawkins’ (2012) review of The Social Conquest of Earth, exclaims:

To borrow from Dorothy Parker, this is not a book to be tossed
lightly aside. It should be thrown with great force.

Edward O. Wilson’s critique culminated in a powerful paper, with coau-

thors Corina Tarnita and Martin Nowak (Nowak et al. 2010), that appeared

in the high-profile journal Nature. The authors argue:

considering its position for four decades as the dominant
paradigm in the theoretical study of eusociality, the pro-
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duction of inclusive fitness theory must be considered mea-

gre. . . inclusive fitness theory. . . has evolved into an abstract
enterprise largely on its own.

This paper drew the ire of a host of population biologists. Nature sub-

sequently published several “brief communications” vigorously rejecting
the claims of Nowak, Tarnita, and Wilson. One of these was signed by

no fewer than 137 well known biologists and animal behaviorists (Abbot

2011; Boomsma 2011; Strassmann 2011). In a leading biology journal arti-

cle, Rousset and Lion (2011) accuse Nowak, Tarnita, and Wilson of saying

nothing new and of using “rhetorical devices.” They then attack the journal

Nature itself, arguing that

the publication of this article illustrates more general concerns

about the publishing process.. . . Nature’s extravagant editorial

characterization of the paper as “the first mathematical analysis
of inclusive fitness theory” recklessly tramples on nearly 50

years of accumulated knowledge.

This controversy, a veritable clash of the titans (Gintis 2012a), has been
avidly followed in the popular science literature, which has characterized

the disagreement as to whether societies can be best model using concepts

of group selection (with Nowak, Tarnita and Wilson) or individual selection

(with Dawkins and the signers of protest letters to Nature), who argue that

the notion that genes maximize inclusive fitness lies at the very core of

evolutionary theory. For instance, West et al. (2011, p. 233) assert:

Since Darwin, the only fundamental change in our under-

standing of adaptation has been Hamilton’s development of

inclusive fitness theory.. . . The idea [is] that organisms can be
viewed as maximizing agents.

By contrast, opponents claim that higher-level social organization is the

driving force of evolutionary change, and gene flows react by conforming
to and promoting such higher-level social forms. For instance, Nowak et

al. (2010) argue that eusocial species are successful because they develop

social systems that suppress kin favoritism and promote generalized loyalty

to the hive. Organisms that maximized inclusive fitness surely would not

behave this way.

Prominent popular writers with solid academic backgrounds have
strongly supported the inclusive fitness maximization position of Dawkins
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et al., yet do not seriously address the issues raised by Nowak, Wilson, and

others (Pinker 2012; Coyne 2012).
I argue in this chapter that inclusive fitness theory is analytically valid,

and is very important. However, it does not imply that individuals maxi-

mize inclusive fitness, and it fails to elucidate central driving forces in ani-

mal society formation and evolution. Nowak and Wilson correctly note the

limitations of inclusive fitness theory, but they err in questioning its validity

and in understating its contribution to sociobiology. Their critics correctly
defend inclusive fitness theory, but they err in claiming that organisms in a

social species maximize their inclusive fitness and that that inclusive fitness

theory explains social structure.

The conditions under which evolutionary dynamics leads to inclusive fit-

ness maximization have been careful studied by Alan Grafen and his asso-

ciates, who have shown that Darwinian population dynamics entail inclusive

fitness maximization at the individual and gene levels, but only assuming
that fitness effects are additive (Grafen 1999, 2006; Gardner et al. 2011;

Gardner and Welsh 2011). But if fitness effects were additive in general,

then there would be no increasing returns to scale, and animal societies

would not exist. Because societies are complex adaptive nonlinear systems,

inclusive fitness is only one tool in the explanation of the social structure of

animal societies.
Another way of expressing this point is that inclusive fitness theory ap-

plies to single gene in the organism’s genome, or to several non-interacting

genes. But the evolutionary success of an organism depends on the way the

various genes interact synergistically. Claiming that inclusive fitness theory

explains societies is like claiming that the analysis of word frequency in a

book is sufficient to comprehend the book’s meaning.

9.1 The Core Genome

Social relations in non-human societies are coded in the genes of its mem-
bers. The characteristic rules of cooperation and conflict, as well as the

meaning of signals passed among individuals, are shared by all members

of an animal society. We call this communality of genes the species’ core

genome. The core genome is the complex of genes that are broadly shared

by all members of a species (Dobzhansky 1953). Section 9.11 develops this

notion in greater detail. The core genome is like the computer code for a
software program in an agent-based computer model. The core genome sets
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up the rules for social interaction and the conditions for individual social

success, creates a heterogeneous set of agents, each of whom incorporates
both the core genome plus an idiosyncratic variant genome that defines its

individuality. These agents interact according to the rules coded by the

core genome, which rewards the more successful agents with more copies

of itself in the future. In the case of human societies, additional rules and

meanings are culturally specified, and as we explained in Chapter 1, human

culture and the human core genome coevolve.
The core genome of a social species endows individuals with incentives

to aggregate into social groups—packs, flocks, tribes, hives and the like.

The size and social structure of these groups coevolve with the genetic con-

stitution of its members, as reflected in the evolution of the core genome

over time. Group selection is not selection among groups, but rather for

groups with a fitness-enhancing size and social structure. Selection for

group characteristics requires individual selection because the social rules
are inscribed in individuals who both instantiate the rules and are evolution-

arily successful given these rules.

Societies are complex dynamical systems with emergent properties—

properties that we cannot deduce from the DNA of the core genome, any

more than we can deduce consciousness and mind from the chemical com-

position of the brain (Deacon 1998; Morowitz 2002).
Yet societies are effective because of the behaviors of its members, these

behaviors are determined by the core genome, and an individual gene can

evolve only if it directly enhances the fitness of its carriers, or it promotes

interactions among its carriers that enhance its inclusive fitness—the sum

of the increases in fitnesses of all carriers of the gene influenced by the

behavior. In particular, a gene that leads its carrier to sacrifice its inclusive
fitness certainly cannot evolve, except possibly in very small societies where

random luck can temporarily outweigh systematic selective forces.

Although the concept of the core genome is somewhat new, I cannot con-

ceive of there being any serious objection to the above paragraphs. Indeed,

the danger is more that they are uncomfortably close to tautologies.

Why then this conflict between group and individual selection propo-

nents? The participants themselves agree that whether one does the ac-
counting on the level of the group, the individual, or the single gene, the

answer must come out the same (Dugatkin and Reeve 1994). What then

can account for Richard Dawkins’ venom in attacking Edward O. Wilson

(Dawkins 2012), or David Sloan Wilson’s sense of triumph in observing
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that group selection has been resurrected from its status as an outcast of

biological theory (Wilson 2008)? Must it not be simply a matter of per-
sonal preference and modeling ease which perspective one chooses in any

particular situation?

I suspect the answer is that inclusive fitness theorizing leads researchers

to think atomistically, while group selection theorizing leads researchers to

think structurally. Inclusive fitness theory leads one to the beautiful Mar-

garet Thatcher headquote of Chapter 2: “There is no such thing as society.
There are only individual men and women, and there are families.” Group

selection theorizing, by contrast, leads researchers to the Martin Luther

King headquote in that chapter: “We are caught in an inescapable network

of mutuality, tied in a single garment of destiny.” Of course, I am not

suggesting that sociobiologists are embroiled in the ideologies of Left and

Right, or any other political ideology. Nor are they closely connected to

any particular set of moral or ethical principles. Rather, they are personal
preferences—highly contrasting yet equally useful ways of thinking about

society. The correct way of thinking is to embrace both atomistic and struc-

tural approaches and analyze the corresponding interplay of forces. This is

the approach defended in this chapter.

There is, however, a certain asymmetry in the mutual criticism of the

two schools of thought. Few supporters of group selection deny the impor-
tance of inclusive fitness theory, while virtually all its opponents regularly

deny the importance of group selection theory. For instance, Steven Pinker

writes, quite disingenuously, in The False Allure of Group Selection (2012):

Human beings live in groups, are affected by the fortunes of
their groups, and sometimes make sacrifices that benefit their

groups. Does this mean that the human brain has been shaped

by natural selection to promote the welfare of the group in com-

petition with other groups, even when it damages the welfare

of the person and his or her kin?

The first problem with this description is that group selection does not re-

quire “competition with other groups” any more than individual selection

requires “competition with other individuals.” For instance, a mutant rabbit

may be evolutionarily successful because it is more adept at escaping the

fox, not because it wins conflicts with other rabbits. Similarly, a society
may be evolutionarily successful because it better exploits its prey or con-
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tains its predators, not because it vanquishes other societies in head-to-head

competition.
The more important problem with Pinker’s critique is the notion that

group selection theory suggests that the group’s success depends on be-

haviors that damage “the welfare of the person and his or her kin.” This is

of course simply impossible. If the inclusive fitness of the gene for some

behavior is less than unity, that gene must in the long run disappear from

the population. No one disagrees with this.
Here is another rather randomly drawn, equally disingenuous, critique

from a prominent biologist (Coyne 2012):

The idea that adaptations in organisms result from “group

selection”. . . rather than from selection among genes them-

selves. . . [is] in stark contrast to the views of most evolutionary

biologists.

Of course, no group selection proponent sees group-level adaptations as an

alternative to selection among genes. Rather, they think of group selection

models as explanations of why particular gene are successful and others are
not.

In the first half of the twentieth century, most naturalists believed that

animal societies were effective because natural selection favors altruism, in

the form of individuals who sacrifice for the good of the species (Kropotkin

1989[1903]; Simpson 1941; Lorenz 1963). For instance, in times of food

scarcity, many believed that individuals would voluntarily restrict their re-
productive activity (Wynne-Edwards 1962). This phenomenon was termed

group selection because the argument was that the altruist may have fewer

offspring, but its contribution to the success of the group would allow more

of these offspring to survive and reproduce. However, John Maynard Smith

(1964), George Williams (1966), David Lack (1966) and others showed

that virtually all apparent examples of animals sacrificing for the group

could plausibly be explained by standard individual fitness maximization.
Williams (1966) used the principle of parsimony to counsel that group se-

lection be used only when the simpler principle of individual selection is

incapable of explaining animal behavior. At that time no important exam-

ples of sacrifice for the good of the group were found.

As it stands today, there are two mechanisms of group selection. The

first is the evolutionary success of more effective collaboration (Parsons
1964; Boyd and Richerson 1990; Bowles and Gintis 2011; Tomasello 2014).
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That is, social structures that effectively promote cooperation and punish

antisocial behavior will tend to evolve. This mechanism works by an indi-
vidual genetic mutation fostering a social structure mutation, the new social

structure enhancing the fitness of social members, some of whom carry the

mutant gene, which then is more frequently represented in the next genera-

tion. In this case it is the social structure that is favored by natural selection,

and the genes that induce the behaviors given by the social structure are the

beneficiaries of natural selection on the level of social structure.
Two forms of social organization are especially favored by this evolution-

ary process: eusociality and extensive parental care. In a eusocial species,

one or very few individuals reproduce, and the remaining social members

are sterile workers, soldiers, and foragers (Wilson 1975). Therefore a muta-

tion in a reproductive will be inherited by a large fraction of her offspring,

who will synergistically follow the principles of coordination, signaling,

and task allocation indicated by the mutation. Not surprisingly, the eusocial
insects have evolved into extremely complex and sophisticated societies—

for instance the waggle dance in honeybees (Riley et al. 2005). A similar

argument holds for animals that care for their young. Because there are at

only one or two individuals involved in mating and in nurturing offspring,

a mutation in a male or female leading to a new social structure of mating

can easily spread. Darwin called this sexual selection, an evolutionary pro-
cess that has engendered sophisticated signaling and collaboration in many

species (West-Eberhard 1983).

The second mechanism of group selection is exactly the altruistic behav-

ior that had be discredited by Williams, Maynard Smith, Lack, and others,

although now better understood in terms of game-theoretic models of so-

cial cooperation. Often the effectiveness of social cooperation is strongly
enhanced when individuals are willing to incur personal costs to further

collective goals. For instance, when a group of human hunters venture into

the forest, they usually fan out in such way that they are not visible to one

another. Because the prey is share irrespective of who killed the animal

(Kaplan et al. 1984), and since the process of searching for prey is highly

strenuous, each hunter has an incentive to shirk. Altruists do not. Success-

ful groups foster altruism, which complements mutualistic collaboration in
promoting efficient cooperation. Note that for species in general, this notion

of biological altruism has nothing to do with either morality or psychology.

This sort of altruism was recognized by Darwin himself (Darwin 1871):
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An advancement in the standard of morality will certainly give

an immense advantage to one tribe over another. A tribe in-
cluding many members, who from possessing in a high degree

the spirit of patriotism, fidelity, obedience, courage and sym-

pathy, were always ready to aid one another, and to sacrifice

themselves for the common good, would be victorious over

most other tribes; and this would be natural selection.

The existence of altruism, the importance of which is not now widely dis-

puted, nevertheless presents a serious problem for evolutionary theory: How

can genes that promote altruistic behavior spread, since they disadvantage

their carriers? Inclusive fitness theory provides the answer.

9.2 Inclusive Fitness and Hamilton’s Rule

Classical genetics does not model cases in which individuals sacrifice on be-

half of non-offspring, such as sterile workers in an insect colony (Wheeler

1928), cooperative breeding in birds (Skutch 1961), and altruistic behavior

in humans (Darwin 1871). This problem was addressed by William Hamil-

ton (1963, 1964ab, 1970), who noticed that if a gene favorable to helping

others is likely to be present in the recipient of an altruistic act, then the gene
could evolve even if it reduces the fitness of the donor. Hamilton called this

inclusive fitness theory.

Hamilton developed a simple inequality, operating at the level of a single

locus that gives the conditions for the evolutionary success of an allele.

Thus rule says that if an allele in individual A, I will call it the focal allele,

increases the fitness of individual B whose degree of relatedness to A is r ,
and if the cost to A is c, while the fitness benefit to B is b, then the allele

will evolve (grow in frequency in the reproductive population) if

br > c: (9.1)

We call br � c the inclusive fitness of the focal allele. Subsequent research
supported some of Hamilton’s major predictions (Maynard Smith and Rid-

path 1972; Brown, 1974; West-Eberard 1975; Krakauer, 2005).

A critical appreciation of Hamilton’s rule requires understanding when

and why it is true. The rigorous derivations of Hamilton’s rule (Hamilton

1964a; Grafen 1985; Queller 1992; Frank 1998) are mathematically sophis-

ticated and difficult to interpret. For this reason, it is easy to assert implica-
tions of inclusive fitness that cannot be evaluated by a non-expert. I suspect
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that this accounts for the fact that non-experts have tended to support one

or another in this debate without really understanding the technical issues
involved. My goal in this chapter is to lay these issues bare, so that they can

be appreciated by anyone willing to endure a bit of elementary algebra.

The usual popular argument (for instance, Bourke 2011) assumes that an

altruistic helping behavior (b; c > 0) is governed by an allele at a single

locus, and r is the probability that the recipient of the help has a copy of

the helpful allele. The net fitness increment to carriers of the helpful allele
is then br � c, so the allele increases in frequency if this expression is

positive.1

However attractive, the popular argument has key weaknesses that render

it unacceptable. First, the intuition behind Hamilton’s rule is that r is the

probability that the recipient has a copy of the helping gene, so br is the

expected gain to the helping gene in the recipient, which must be offset by

the loss c to the helper if the helping behavior is to spread. This argument,
however, is clearly specious. Many have pointed this out, but perhaps none

more elegantly than Washburn (1978, p. 415), who writes:

All members of a species share more than 99% of their genes,

so why shouldn’t selection favour universal altruism?

Dawkins (1979) considers Washburn’s argument the fifth of his “Twelve

Misunderstandings of Kin Selection.” Dawkins draws on Maynard Smith

(1974) to show that Washburn’s conclusion in favor of universal altruism

is faulty. But he fails to explain what is wrong with Washburn’s argument,

except to say (correctly): “This misconception arises not from Hamilton’s
own mathematical formulation but from oversimplified secondary sources

to which Washburn refers.” (p. 191) One might, with Dawkins (1979), claim

that r represents the probability of the identity of the helping gene in the

two parties by descent from a common ancestor, but why should it matter

whether it is identity by descent or otherwise? Descent is clearly beside the

point. A copy is acopy, whatever its provenance.
In fact, part of the problem with the popular argument is rather subtle: it

considers the conditions for an increase in the absolute number of copies

1Hamilton’s rule extends directly to behavior that is governed by alleles at multiple loci,

provided that the interactions among the loci are frequency independent, or equivalently,

that the effects at distinct loci contribute additively to the phenotypic behavior. Grafen

(1984) calls a such a phenotype a p-score. In this chapter I will use the term “single
locus” even in places where the p-score generalization applies.
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of the helping allele in the population, but says nothing about its relative

frequency, which is the quantity relevant to the evolutionary success of the
helping allele. Indeed, br � c, the net increase in the number of copies of

the helpful allele, is less than b � c, which is the net increase in the number

of copies of all alleles at the locus, so the frequency of the helping allele

in the next period will be lower than br � c, and prima facie may even

decrease.

A second problem with the popular argument is that it makes sense if the
relatedness r is a probability, so that br can be interpreted as the expected

gain to the helping allele in the beneficiary. But in this case r must be

nonnegative. By contrast, in a valid derivation of Hamilton’s rule, r can

be positive or negative. In the case c > 0 and b; r < 0, but with br > c,

we call this spite (Hamilton 1970; Gardner et al. 2004). In fact, as we

shall see, there is no simple relationship between the r in Hamilton’s rule

and genealogical coefficients of relatedness. The appropriate value of r in
Hamilton’s rule is necessarily less than unity, but it is generally a function

of the social structure of the species in question, and can be positive or

negative.

To address these deficiencies, we begin our study of inclusive fitness the-

ory with a careful derivation of Hamilton’s rule assuming, with Hamilton,

that all interactions are dyadic. For simplicity, I will assume the species is
haploid but sexual. That is, each new individual inherits a single gene from

one of its two parents at each locus of the genome. A more general diploid

treatment (individuals have two alleles at each genetic locus) is presented

in Appendix A1, where we also drop the requirement that all interactions

must be dyadic.

Our derivation of Hamilton’s rule makes numerous simplifying assump-
tions. However, the argument can be extended to deal with heterogeneous

relatedness, dominance, coordinated cooperation, local resource compe-

tition, inbreeding, and other complications (Uyenoyama and Feldman

1980; Michod and Hamilton 1980; Queller 1992; Wilson et al. 1992; Taylor

1992; Rousset and Billard 2007), with an equation closely resembling (9.1)

continuing to hold. In general, however, the frequency q of the focal allele

will appear in (9.1), and b and c may be functions of q as well, so the inter-
pretation of r as relatedness becomes accordingly more complex (Michod

and Hamilton 1980).

In general b and c will also depend on the frequency of alleles at other loci

of the genome, and since the change in frequency q of the focal allele in the
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population will affect the relative fitnesses of alleles at other loci, inducing

changes in frequency at these loci, which in turn will affect the values of b,
c, and even r . For this reason, Hamilton’s rule presupposes weak selection,

in the sense that population gene frequencies do not change appreciably

in a single reproduction period. Therefore Hamilton’s rule does not imply

that a successful allele will move to fixation in the genome. Moreover,

alleles at other loci that are enhanced in inclusive fitness by the focal allele’s

expansion may undergo mutations that enhance the inclusive fitness of the
focal allele, while alleles at other loci that are harmed by the expansion of

the focal allele may develop mutations that suppress the focal allele. Such

mutations can be evolutionarily successful and even move to fixation in the

core genome.

Now to our derivation. Suppose there is an allele at a locus of the genome

of a reproductive population that induces carrier A (called the donor) to

incur a fitness change c that leads to a fitness change b in individual B
(called the recipient). We will represent B as an individual, but in fact, the

fitness change b can be spread over any number of individuals. If b > 0, A

bestows a gain upon B, and if c > 0, A experiences a fitness loss. However,

in general we make no presumption concerning the signs or magnitudes

of b and c, except that selection is weak in the sense that b and c do not

change, and the population does not become extinct, over the course of a
single reproduction period. This assumption, which is extremely plausible,

will be made throughout this chapter.

Suppose the frequency of the focal allele in the population is q, where

0 < q < 1, and the probability that B has a copy of the allele is p. Then

if the size of the population is n, there are qn individuals with the focal

allele, they change the number of members of the population from n to
n C qn.b � c/, and they change the number of focal alleles from qn to

qn C qn.pb � c/. Thus the frequency of the allele from one period to the

next will increase if

�q D
qn C qn.pb � c/

n C qn.b � c/
�q D

q.1 � q/

1 C q.b � c/

�

b
p � q

1 � q
� c

�

> 0: (9.2)

The condition for an increase in the focal allele thus is

b

�

p � q

1 � q

�

> c: (9.3)
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To derive Hamilton’s rule from (9.3), we must have

r D
p � q

1 � q
; (9.4)

which can be rewritten as

p D r C .1 � r/q: (9.5)

Equation (9.5) makes intuitive sense using the concept of identity by de-

scent (Malécot 1948; Crow 1954), where r is the probability that both

donor A and recipient B have inherited the same focal allele from a com-

mon ancestor. For instance, if A and B are full siblings, then r D 1=2 be-

cause this is the probability that both have inherited the focal allele from the
same parent. Moreover, if the siblings have inherited the focal allele from

different parents, then they will still be the same allele with a probability

equal to the mean frequency q of the focal allele in the population, assum-

ing no assortative mating. In general, r will then be the expected degree of

identity by descent of recipients. This logic is developed in full by Michod

and Hamilton (1980).
However, this cannot be the general argument because there is no reason

for p to be greater than q; i.e., the recipient need not be more likely than av-

erage to carry the helping gene. But if p < q, then equation 9.4 shows that

r < 0, so r cannot be interpreted as a genealogical relatedness coefficient.

Population biologists have generally responded to this problem by defining

r as a beta coefficient in a least squares linear regression of the donor geno-
type on the recipient phenotype (Hamilton 1972; Queller 1992). This is an

elegant approach, but rather mystifying. Why linear regression? Why least

squares estimation? Why is it not just an approximation, as with standard

linear regressions? Why is it a good approximation, given the strong non-

linear interactions of loci in the genome? It is comforting that the approach

gives a reasonable result in many cases, but the conceptual foundations are

quite shaky. Moreover, for an elementary exposition, like the present, where
the reader should be able to follow perfectly what is going on, it is like the

magician pulling a rabbit out of a hat.

There is another way to explain negative relatedness while sticking to a

rigorously correct logic. Each potential recipient B has a certain relatedness

to the donor A. Therefore we can partition the population of potential re-

cipients into groups j D 1; : : : ; k such that all individuals in group j have
the same genealogical relatedness rj to the donor A. Let qj be the mean
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frequency of the helping allele in group j , and let �j be the probability that

the donor encounters a recipient from group j , so
P

j �j D 1. Then the
probability that a recipient in group j has a copy of the helping allele is,

using the same reasoning as led to equation (9.5),

pj D rj C .1 � rj /qj : (9.6)

Moreover, we have p D
P

j �j pj , and if we define r� D
P

j �j rj and

q� D
P

j �j qj , we then have

p D
X

j

�j .rj C .1 � rj /qj /

D r� C q� �
X

j

�j rj qj

D r� C .1 � r�/q� �

0

@

X

j

�j rj qj � r�q�

1

A ;

D r� C .1 � r�/q� � cov�.rj ; qj /; (9.7)

from the definition of the covariance of two variables. If we recast this
result in terms of the standard equation (9.5), we get

r D
r� C .1 � r�/q� � q � cov�.rj ; qj /

1 � q
:

Note that this reduces to the identity r D r� when q D q� and the covari-

ance term is zero.

Two points are notable in equation (9.7). First, p can now be smaller

than q, so r < 0 is possible in (9.5). Indeed, this is more likely the smaller

is q�, the average frequency of the helping allele in the donor’s potential
beneficiaries and the larger the covariance between relatedness and mean

frequency of the helping allele. The latter effect enters because p will be

higher if low-relatedness beneficiaries tend to have high average qj because

low rj means the random allele will be chosen with high frequency. For

example, if there is only one group (k D 1), the covariance term in 9.7

drops out and we can write

p � q D r� C .1 � r�/q� � q D r.1 � q/ C .1 � r/.q� � q/: (9.8)
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The first term on the right hand side of (9.8) is positive but the second is

negative for q� < q, and the second term dominates when r is small; i.e.,
when the behavior attacks non-relatives that do not share the focal allele.

It is reasonable to call the array f�j ; rj ; qj g the social structure of the pop-

ulation with respect to the behavior induced by the helping allele. This array

in general is not defined at the level of the helping locus, but at the social

level, coded by the core genome. The core genome determines particular

mating patterns, particular rituals and signals, certain patterns of offspring
care and social collaboration. Inclusive fitness thus presupposes a general

type of social structure and does not elucidate this social structure.

While the simple inequality br > c at first sight appears to connect ge-

nealogical relatedness, costs, and benefits at the level of a single locus, in

fact a correct derivation of the inequality reveals a complex social structure

underlying each of the three terms. This fact does not detract from the im-

portance of Hamilton’s rule. Indeed Hamilton’s rule must be satisfied by
any plausible social structure. But it is an accounting relationship, not an

explanatory model.

9.3 Kin Selection and Inclusive Fitness

William Hamilton’s early work in inclusive fitness focused on the role of

genealogical kinship in promoting prosocial behavior. Hamilton speculates,

in his first full presentation of inclusive fitness theory (Hamilton 1964a, p.
19):

The social behaviour of a species evolves in such a way that

in each distinct behaviour-evoking situation the individual will

seem to value his neighbours’ fitness against his own according

to the coefficients of relationship appropriate to that situation.

Because of this close association between inclusive fitness and the social

relations among genealogical relatives, John Maynard Smith (1964) called

Hamilton’s theory kin selection, by which he meant that individuals are

predisposed to sacrifice on behalf of highly related family members.

A decade after Hamilton’s seminal inclusive fitness papers, motivated by

new empirical evidence and Price’s equation (Price 1970), Hamilton (1975,
p. 337) revised his views, writing:
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Kinship should be considered just one way of getting positive

regression of genotype. . . the inclusive fitness concept is more
general than kin selection.

Nevertheless the two concepts are often equated, even in the technical lit-
erature. For instance, throughout his authoritative presentation of sexual

allocation theory, West (2009) identifies inclusive fitness with kin selec-

tion in several places and never distinguishes between the two terms at any

point in the book. Similarly, in Bourke’s (2011) ambitious introduction to

sociobiology, we find:

The basic theory underpinning social evolution [is] Hamilton’s

inclusive fitness theory (kin selection theory).

This curious identification of inclusive fitness theory, which models the

dynamics at a single genetic locus and is equally at home with altruistic and

predatory genes, as we explain below, with kin selection theory, which is
a high-level behavioral theory of kin altruism, is a source of endless con-

fusion. For most sociobiologists, kin selection remains, as conceived by

Maynard Smith (1964), a social dynamic based on close genealogical as-

sociation:

By kin selection I mean the evolution of characteristics which

favour the survival of close relatives of the affected individual.

The Wikipedia definition is similar:

Kin selection is the evolutionary strategy that favours the re-

productive success of an organism’s relatives, even at a cost to

the organism’s own survival and reproduction.. . . Kin selection

is an instance of inclusive fitness.

Moreover, while kin selection is a special case of inclusive fitness in the

sense that Hamilton’s rule applies generally, not just to situations where or-
ganisms favor their close genealogical kin, in another sense kin selection

is far more general than inclusive fitness. This is because in all but the

simplest organisms, kin selection does not describe the behavior at a single

locus, or even at a set of independently contributing loci, but rather an inher-

ently high level social behavior in which individuals recognize their close

relatives through complex phenotypic associations that require significant
cognitive functioning and synergistic interactions among loci. Indeed, in
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general these phenotypic associations arise precisely to permit cooperation

among close genealogical kin.

9.3.1 Inclusive Fitness without Kin Selection

A simple example shows that Hamilton’s rule in principle has no necessary

relationship with genealogy or kin selection, but rather is an expression of

the social structure of the reproductive population. The model is based on,

but is more transparently presented than Hamilton (1975), which develops

a similar model for the same purpose. For related models of positive assort-

ment not based on kin selection see Koella (2000), Nowak (2006), Pepper
(2007), Fletcher and Doebili (2009), and Smaldino et al. (2013).

Consider a population in which groups of size n form in each period. In

each group individuals can cooperate by incurring a fitness cost c > 0 that

bestows a fitness gain b that is shared equally among all group members.

Individuals who do not cooperate (defectors) receive the same share of the

benefit as cooperators, but do not pay the cost c and do not generate the
benefit b. Let pcc be the expected fraction of cooperating neighbors in a

group if an individual is a cooperator, and let pcd be the expected fraction

of cooperating neighbors if the individual is a defector. Then the payoff to

a cooperator is �c D bpcc � c, and the payoff to a defector is �d D bpcd .

The condition for the cooperative allele to spread is then �c � �d D
b.pcc � pcd/ � c > 0, or

b.pcc � pcd / > c: (9.9)

Now pcc is the probability that a cooperator will meet another cooperator in

a random interaction in a group, so we can define the relatedness r between

individuals, following (9.5), by

pcc D r C .1 � r/q; (9.10)

where q is the mean frequency of cooperation in the population. If we write

pdd D 1 � pcd for the probability that a defector meets another defector,

then we similarly can write

pdd D r C .1 � r/.1 � q/; (9.11)

since 1 � q is the frequency of defectors in the population. Then we have

pcc � pcd D r C .1 � r/q � .1 � .r C .1 � r/.1 � q/// (9.12)

D r: (9.13)
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Substituting in (9.9), we recover Hamilton’s rule, br > c.

Of course, if group formation is random, then pcc D pcd so r D 0 and
Hamilton’s Rule cannot hold. However, to illustrate the importance of social

structure, suppose each group is formed by k randomly chosen individuals

who then each raises a family of n=k clones of itself. We need not assume

parents interact with their offspring, or that siblings interact preferentially

with each other. There is no kin selection in the standard sense of Maynard

Smith (1964). At maturity, the parents die and the resulting n individuals
interact, but do not recognize kin. In this case a cooperator surely has k � 1

other cooperators (his sibs) in his group, and the other n �k individuals are

cooperators with probability q. Thus

pcc D
k � 1

n � 1
C

n � k

n � 1
q D q C

.k � 1/.q � 1/

n � 1
:

Similar reasoning, replacing q by 1 � q gives

pdd D 1 � q C
q.k � 1/

n � 1
:

Then

r D pcc � pcd D pcc � 1 C pdd D
k � 1

n � 1
;

so Hamilton’s rule will hold when

br D b

�

k � 1

n � 1

�

> c:

Note that the related recipients are all clones of the donor, with relatedness

unity, although the r in Hamilton’s rule is .k � 1/=.n � 1/. The inclusive

fitness inequality is accurate here, but kin selection as defined above is in-
operative in this model: the altruistic behavior is more likely to spread when

the number of families n=k in a group is small.

This model suggests that the interesting question from the point of view

of sociobiology is how the core genome of the species manages to induce

individuals to aggregate in groups of size n and to limit family size to n=k,

so that the benefits of cooperation (b �c) can accrue to the population. This
is a true miracle of Nature.
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9.4 A Generalized Hamilton’s Rule

When we think of Hamilton’s rule in the context of an animal society, we

must account for the possibility that the focal allele may impose a cost ˇ

uniformly on all members of the population, We call this a social fitness

effect. The case ˇ > 0 may be termed a pollution effect. It occurs, for
instance, in “tragedy of the commons” cases (Hardin 1968; Wenseleers

and Ratnieks 2004), such as when the focal allele depletes a protein used

in chemical processes by somatic cells in conferring the benefit b on others

and incurring a cost c (Noble 2011). The case ˇ < 0 may be called public

good effect (West et al. 2007b). This follows the common use of the term in

economic theory (Olson 1965).It occurs in a parasite when the focal allele

induces its carriers to suppress an alternative allele at the focal locus that
induces carriers to grow so rapidly that it kills its host prematurely (Frank

1996). Equation (9.17) below shows the degree of pollution or public good

has no bearing on whether the allele can evolve.

It is interesting to note that Hamilton’s seminal paper (1964a) explicitly

includes the pollution and public goods aspect of inclusive fitness, an aspect

of his analysis that later writers have ignored. Hamilton called the public
good/pollution effect the dilution effect because it affects the rate but not

direction of change in the frequency of the focal allele. Hamilton also notes

that the dilution effect can lead a successful allele to reduce population

fitness. A streamlined presentation of Hamilton’s argument, which is quite

opaque in the original, is presented in Gintis (2014).

We will also consider the case where the focal allele imposes a cost ˛ on
all alleles other than the focal allele (Keller and Ross 1998). We may call

˛ a thieving effect. For example, ˛ > 0 can occur if A redirects brooding

care from non-relative to relative larvae in an insect colony, and ˛ < 0

(stealing from one’s kin to help others) can occur if the focal allele helps

other alleles at the focal locus that benefits carriers by avoiding possibly

deleterious homozygosity at the focal locus. We can clearly treat ˛ as cost

imposed on all alleles at the focal locus, plus a benefit of equal magnitude
enjoyed by carriers of the focal allele. Thus if the population size is n in

the current period, population size n0 in the next period will include n C
qn.b C ˛ � c/ individuals because of the behavior induced by the focal

allele, but this will be reduced by n.˛ C ˇ/q due to the effects on non-focal

alleles. The number of relatives of the focal allele in the current period is

qn, which is increased by the behavior by qn.pr C ˛ � c/, and decreased
through lower efficiency by qn.˛ C ˇ/q. Thus the new population size is
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given by

n0 D n.1 � .˛ C ˇ/q/ C qn.b C ˛ � c/; (9.14)

and (9.2) becomes

�q D
qn.1 � .˛ C ˇ/q/ C qn.pb � ˛ � c/

n.1 � .˛ C ˇ/q/ C qn.b � ˛ � c/
� q > 0; (9.15)

which simplifies to

b.p � q/ > .c � ˛/.1 � q/: (9.16)

Substituting p D r C .1 � r/q, we get the generalized Hamilton’s rule

br > c � ˛: (9.17)

The effect of an increase in the focal allele on population fitness is the
sign of dn0=da, where a D qn is the number of helping genes, which is

given by
dn0

da
D b � c � ˇ: (9.18)

Note that in the case of Hamilton’s rule, which is the above with ˛ D ˇ D 0,
population fitness increases with the frequency of the focal allele in the case

of altruism or cooperation, where b > c, and decreases in the case of spite

(b � c < 0). In the case of the generalized Hamilton’s rule, the fitness

effect is indeterminate. As we explain below, Hamilton (1964a) included

the ˇ ¤ 0 affect in his calculations, but he did not consider the case where

the generalized fitness effects are unevenly distributed among the alleles at
the focal locus (˛ ¤ 0).

It is useful to give descriptive names to the social interactions when ˛ is

nonzero. We may call the case ˛ > 0 theft, and the case ˛ < 0 as charity.

Moreover, a thieving altruist (b; c; ˛ > 0) will evolve, as will a thieving

cooperative allele (b; ˛ > 0 > c). Finally, the producer of a public good

will evolve only if it gains in inclusive fitness from so doing (br > c).

The most critical implication of the generalized Hamilton’s rule is that
neither social generosity nor pollution has any bearing on whether an allele

will evolve, as seen in equation (9.17), despite the fact that a socially gener-

ous allele unambiguously enhances the population fitness, and a polluting

allele unambiguously has the opposite effect, as seen in equation (9.18).

In addition, a thieving allele does not directly affect the mean population

fitness (see equation 9.18) but it allows the generalized Hamilton’s rule to
be satisfied even when br � c < 0 (see equation 9.17).
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9.5 Harmony and Disharmony Principles

A rather stunning conclusion can be drawn from our exercise in elementary

algebra and gene-counting. I call it the Harmony Principle. To state this

principle succinctly, we say the allele a is helpful if its carriers enhance

the fitness of other individuals that it encounters (b > 0), altruistic if it is

helpful and incurs a fitness cost (b; c > 0), predatory if it is harmful to

others but helps itself (b; c < 0/, mutualistic if it helps itself and others

(b > 0, c < 0), prosocial if increases mean population fitness (b � c > 0),
and antisocial if it reduces mean population fitness (b � c < 0). We then

have:

Harmony Principle: An evolutionarily successful gene that is a helpful non-

polluter is necessarily prosocial.

From equation (9.18), the allele is prosocial if b � c � ˇ > 0. We can

write b � c � ˇ D .br � c/ C b.1 � r/ � ˇ. Now br � c > 0 by Hamilton’s

rule, b > 0 by the assumption of helpfulness, since the probability p of the

recipient having the helpful allele is nonnegative, r < 1 by equation 9.4,

and ˇ <D 0 because the allele is a non-polluter. Thus b � c � ˇ, the net
contribution per focal allele to the population, is strictly positive.

Because each individual gene is utterly selfish, the importance of this

principle for sociobiology is inestimable, and mirrors similar assertions con-

cerning the social value of selfishness in humans offered by Bernard Man-

deville in his famous Fable of the Bees (1705), in which “private vices”

give rise to “public virtues,” and Adam Smith’s (1776) equally famous dic-
tum, “It is not from the benevolence of the butcher, the brewer, or the

baker that we expect our dinner, but from their regard to their own inter-

est.” While economists have determined the precise conditions—they are

far from universal—under which Mandeville and Smith are correct (Mas-

Colell et al. 1995), the Harmony Principle is true under much broader con-

ditions. While genes are utterly selfish according to inclusive fitness theory,

evolutionarily successful genes that are helpful non-polluters are necessar-
ily prosocial. Note that we have not assumed that c > 0, so this principle

applies both to altruistic genes and mutualistic genes that help others as well

as helping themselves.

However, what is the social status of genes that are not helpful? It is

curious that this case appears never to have been treated in the literature.

I cannot imagine why not. An alternative to the Harmony Principle is,
indeed, prima facie equally possible. Suppose the focal allele is predatory.
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Then Hamilton’s rule becomes .�b/r < .�c/, which can be satisfied even

though the focal allele is antisocial. Indeed, this will be the case whenever
jbj.1 � r/ > c � b > 0. We have:

Disharmony Principle: A gene that is evolutionarily successful but preda-

tory may be antisocial even if it is a non-polluter.

To see this note that b � c � ˇ D .br � c/ C b.1 � r/ � ˇ, where

br � c > 0 and 1 � r > 0. Thus for sufficiently large (negative) b, we must

have b � c < 0.

Note that the Disharmony Principle is distinct from the spite phenomenon

(Hamilton 1970; Foster et al. 2001; Gardner et al. 2004), in which r < 0

and c > 0, which is well developed in the literature. Indeed, it is a common

occurrence that the interaction is costly but involves reducing the fitness of
others, and (9.5) can hold with r < 0, while the focal allele is still altruis-

tic (Bourke 2011). Examples are warfare in ants (Hölldobler and Wilson

1990) and humans (Bowles and Gintis 2011), as well as generally spiteful

behavior in many species (Hamilton 1970; Foster et al. 2001; Gardner et

al. 2004).

More generally, we have the taxonomy of Table 9.1, where if b > 0 > c,
then the allele is cooperative, and since b � c > 0, the allele contributes

unambiguously to the fitness of its carrier. A cooperative allele will always

be selected, as in this case Hamilton’s rule is always satisfied. The unnamed

boxes in the table necessarily violate Hamilton’s rule.

b c r > 0 r D 0 r < 0

> 0 > 0 Altruistic —

> 0 < 0 Cooperative

< 0 > 0 — Spiteful

< 0 < 0 Predatory

Table 9.1. Variety of behaviors that can satisfy Hamilton’s Rule

9.6 The Utterly Selfish Nature of the Gene

Hamilton’s rule ensures that the gene is selfish in the sense described by

Dawkins (1976). In particular, Hamilton’s rule implies that the conditions

for the evolutionary success of a gene are distinct from the conditions under
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which the gene enhances the mean fitness of the reproductive population.

The validity of the Disharmony Principle shows that inclusive fitness does
not explain the appearance of design in nature or, in other words, why the

genome of a successful species consists of genes that predominantly col-

laborate in promoting the fitness of its members (Dawkins 1996). Indeed,

Hamilton’s rule equally supports the evolutionary success of prosocial altru-

istic genes and antisocial predatory genes, whereas the former predominate

in a successful species and account for the appearance of design.
It is common for sociobiologists who, with Dawkins, adopt the “gene’s-

eye point of view” to overlook this fact, despite its being a simple logical

implication of Hamilton’s rule. Indeed, many population biologists claim

that the appearance of design in nature is explained by Hamilton’s rule. For

instance, in the protest letter to Nature mentioned above, 137 professional

evolutionary biologists agreed with the following statement:

Natural selection explains the appearance of design in the liv-

ing world, and inclusive fitness theory explains what this de-
sign is for. Specifically, natural selection leads organisms to

become adapted as if to maximize their inclusive fitness (Ab-

bot 2011).

In fact, as we shall see, organisms do not generally maximize inclusive

fitness. Rather, organisms in a social species interact strategically in a com-

plex manner involving collaboration, as well as enhancement and suppres-

sion of gene expression. Moreover, relatedness may play a derivative role
in the dynamics of a species, especially a species that exhibits a complex

division of labor involving the suppression of kin altruism.

Inclusive fitness theory, however, permits a formulation of the central

problem of sociobiology in a particularly poignant form: how do interac-

tions among loci induce utterly selfish genes to collaborate, or to predispose

their carriers to collaborate, in promoting the fitness of the organism? In-

clusive fitness theory, because it ignores interactions among loci, does not
answer this question. But it does provide important insights.

Fitness-enhancing collaboration among loci in the genome of a reproduc-

tive population requires suppressing alleles that decrease, and promoting

alleles that increase the fitness of its carriers. Suppression and promotion

are effected by regulatory gene networks, each member of which is itself

utterly selfish. This implies that genes, and a fortiori individuals in a so-
cial species, do not generally maximize inclusive fitness but rather interact
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strategically in complex ways. It is the task of sociobiology to model these

complex interactions.

9.7 Prosocial Genes Maximize Inclusive Fitness

Egbert Leigh (1971) famously compared the genome to a parliament of

genes:

each acts in its own self-interest, but if its acts hurt the others,

they will combine together to suppress it.

Leigh was concerned with the maintenance of Mendelian segregation, but

the remark applies quite broadly. Certainly some such mechanism must
account for the tendency of genes in the genome to cooperate. However,

the mechanism does not operate through inclusive fitness maximization.

To see this, we return to the model explored in Section 9.2. Let qa be the

frequency of the focal allele in the population, and let pa be the probability

that the recipient shares a copy of this allele. Now let qb be the frequency of

some allele b at another locus of the genome, and let pb be the probability
that the recipient shares a copy of this allele with the donor. Note that the

cost c imposed on the donor is imposed equally on the allele b assuming

Medelian segregation, because both allele a and allele b have probability 1/2
of being passed on to each offspring. Similarly, allele b receives the same

benefit b as the focal allele in all carriers of both alleles. Therefore if the

size of the population is n in the current period, the size in the next period
will be nCqn.b�c/ and the number of b alleles will be nqb Cqn.bpb �c/.

Thus the change in frequency of allele b is given by

�qb D
nqb C qn.bpb � c/

n C qn.b � c/
� qb

D
qa.1 � qb/

1 C qa.b � c/

�

b
pb � qb

1 � qb

� c

�

D
qa.1 � qb/

1 C qa.b � c/
.br � c/: (9.19)

Note that we have used the equation r D .pb � qb/=.1 � qb/, which is

equation (9.4) for allele b.

Thus every allele at locus B benefits from the behavior induced by the

focal allele, and hence a mutation at locus B that suppresses the focal allele
will, ceteris paribus, be at a disadvantage as compared with the incumbent
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type alleles at this locus. Moreover, this is true whether the focal allele is

prosocial or antisocial, so long as it satisfies Hamilton’s rule. Therefore
there is no intragenomic incentive for genes to evolve to suppress an anti-

social allele.

This result must of course be qualified in the diploid case, both because

meiotic drive can favor an allele at one locus that harms the other loci in

the genome (Haig and Grafen 1991; Burt and Trivers 2006), and males

and females may have distinct fitness enhancement conditions based on
physiological differences (Haig 2002).

These and related situations aside, we can safely conclude that even ut-

terly selfish genes have common interests on the intragenomic level. It fol-

lows that suppression of antisocial alleles must be a response to the joint

reduced fitness of all alleles at the society level, through natural selection.

It also follows that a prosocial allele that satisfies Hamilton’s rule will pro-

voke suppression responses on neither the intragenomic nor the interge-
nomic level. Hence prosocial genes do maximize inclusive fitness.

9.8 The Boundaries of Inclusive Fitness Maximization

It asserting that “natural selection leads organisms to become adapted as

if to maximize their inclusive fitness,” Abbot (2011) doubtless expresses a

view with which at least 137 of the world’s most prominent population biol-

ogists appear to agree. The main source cited in support of this statement is

a series of papers written by Alan Grafen (1999, 2002, 2006). For instance
in a paper devoted to exposing the “misconceptions” of others, West et al.

(2011) write:

Individuals should appear as if they have been designed to

maximize their inclusive fitness. Grafen (1999, 2002, 2006a,

2007b) has formalised this link between the process and pur-

pose of adaptation, by showing the mathematical equivalence

between the dynamics of gene frequency change and the pur-
pose represented by an optimisation program which uses an

“individual as maximising agent” (IMA) analogy.

However, Grafen expressly declares in each of his papers on the subject

that additivity across loci, or what is equivalent, frequency independence, is

assumed. Others who have carefully studied the conditions under which a

population genetics model of gene flow implies fitness maximization at the
gene or individual level, including Metz et al. (2008), Gardner and Welsh
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(2011), and Gardner, Welsh and Wild (2011), require the same assumption.

No careful researcher has ever claimed analytical support for the notion
that individuals maximize inclusive fitness without making the frequency

independence assumption.

If a gene is prosocial, we have seen that the behavior it fosters can be mod-

eled as the maximization of inclusive fitness. But if the genome’s success is

based on a pattern of cooperation, promotion, and suppression of antisocial

genes across loci, which will occur, for instance, if the production of a pro-
tein, RNA sequence, or social behavior requires the collaborative activity of

many genes (Noble 2011), or if there are frequency dependent social inter-

actions among individuals in a social species (Maynard Smith 1982), then

neither genes nor individuals can be characterized as maximizing inclusive

fitness.

9.9 The One Mutation at a Time Principle

Because genes code for proteins or RNA with very precise chemical func-

tions, most mutations are fitness-reducing or fitness-neutral. The rate at
which fitness-enhancing mutations occur is very low. Let us say that genes

at two loci are synergistic if their joint presence in the genome of an indi-

vidual is fitness-enhancing, but each alone is fitness-reducing. Clearly the

rate at which two synergistic mutations occur in an organism is generally

orders of magnitude less likely that single favorable mutations. Moreover,

even when two such mutations are present, unless they are tightly linked so
that they are not broken up by meiosis, they will only rarely and sporadi-

cally occur together. Bodmer and Felsenstein (1967) show that synergistic

double mutants can survive if 1 < .1 � r/w14=w44, where r is the recombi-

nation rate, w44 is the fitness of the wild type genome, and w14 is the fitness

of the same genome with two relevant wild type alleles replaced with the

mutants. Thus with no linkage (r D 1/2), the mutants would have to be twice

as fit as the wild types to evolve. Except in the case of highly improbable
macromutations, the linkage rate 1 � r would have to be very close to unity

for the pair of mutants to survive. Moreover, in the case of extremely high

linkage, it is a good approximation to treat the two genes as one.

Therefore for most purposes we can assume that only one favorable muta-

tion occurs at a time, and its success depends on the frequency distribution

of alleles at other loci at the time the mutation appears. We call this the
one-gene-at-a-time principle.
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9.10 The Phenotypic Gambit

The genome of a multicellular organism includes a myriad of interdepen-

dent RNA-producing, protein-producing genes and regulatory gene net-

works. The dynamics of gene interaction are very poorly understood, to

the point where it is practically impossible to isolate exactly how a partic-

ular gene behaves and interacts with others. Indeed, when we say that a
certain allele produces or controls a certain phenotypic trait, what we really

mean is that the absence of the allele entails the absence of the trait. This

is, of course, quite a weaker statement, merely asserting that the allele in

question contributes in an essential way to the production of the phenotypic

effect.

One implication of this state of affairs is that there are few, if any, cases in
which a social behavior can be attributed to the choice of an allele at a par-

ticular locus of the genome. This fact does not compromise Hamilton’s rule,

but without additional assumptions, it renders Hamilton’s rule inapplicable

to analytical models of social behavior without additional assumptions. By

far the most widely used such assumption is the so-called phenotypic gam-

bit (Grafen 1984). The phenotypic gambit assumes that a behavior that

may be extremely complex at the genetic level can be modeled as though it
were the product of the choice of allele at a single locus. In the words of

Alan Grafen (1984, p. 63),

The phenotypic gambit is to examine the evolutionary basis of

a character as if the very simplest genetic system controlled it:

as if there were a haploid locus at which each distinct strat-

egy was represented by a distinct allele, as if the payoff rule

gave the number of offspring for each allele, and as if enough

mutation occurred to allow each strategy the chance to invade.

The haploid assumption is not necessary—there are many examples in

the literature of the phenotypic gambit models behavior as controlled by a

diploid locus. Moreover, the assumption of a single locus is not necessary,
as there is a research tradition in which the production of a phenotypic effect

is controlled by two loci, one of which modulates the effects produced at the

other locus (Liberman and Feldman 2005). Two-locus models, however,

are generally extremely difficult to model and yield few additional insights.

The one-gene-at-a-time principle, however, often justifies the phenotypic

gambit, especially in conjunction with the core genome concept. The lat-
ter suggests that most behavior-relevant genes will be either fixed in the
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genome or exist in such stable form that changes in the frequency of a mu-

tant allele will not appreciably alter the frequency of other relevant genes
in the genome. In that situation, the one-gene-at-a-time principle suggests

that we are not likely to go wrong by considering an evolving behavior as

the effect of an allele substitution at a single locus.

9.11 The Anatomy of the Core Genome

If a gene has no social effects, that is if b D ˛ D ˇ D 0 in the general-

ized Hamilton’s Rule (equation 9.17), then it obviously evolves only if it is

prosocial (c < 0), in which case its increase in the population benefits all

other loci in the genome. We may call this an asocial allele. Moreover, if
a gene that evolves is prosocial and non-polluting, it also benefits all genes

both in the genome in which it is located, and in the population as a whole.

These are strong harmony of interest principles that flow from inclusive fit-

ness theory. But if a gene satisfies the generalized Hamilton’s rule but is

antisocial (b � c � ˇ < 0) then, as we have seen in Section 9.7, it benefits

all its co-resident genes, but it harms the population. Thus natural selec-
tion will favor the emergence of social forces that suppress such antisocial

genes.

Enter complexity, the bitter enemy of classical systems theory. The gene

pool of a species, consisting of many copies of long strings of DNA, inter-

act biochemically to produce a metazoan organism whose cells manage to

cooperate despite the evolutionary interest of each to ignore the others, and
which interact socially through emergent structural properties that suppress

defection and enhance cooperation sufficiently to ensure survival. We call

these properties “emergent” because in our current state of knowledge, we

are no more capable of explaining their provenance that we are in under-

standing how a sac of chemicals in the skull of a human being can give rise

to consciousness.

I call the complex system of gene that gives rise to animal society the core

genome. The core genome of a sexually reproducing species is a subset of

the loci in the genome that includes all loci that have certain key proper-

ties ensuring the general phenotypic character of the species. Included in

the core genome are the fixed loci and synonymous loci. The fixed loci are

those in which a single allele is shared by all members of the population,

except for low-frequency mutations. The synonymous loci consist of loci
in which all alleles, except for low-frequency mutations, produce identical
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biochemical and phenotypic effects. In addition certain non-synonymous

alleles may have fitness neutral, or near-neutral, phenotypic effects (e.g.,
tail length or eye color). The set of such fitness neutral gene sets are stable

across generations despite their somewhat labile internal composition, and

are also part of the core genome. For instance, body size may be fitness

independent over some range, and many genes interact to produce a pheno-

typic body size that is generally in the fitness-neutral range. The frequency

distribution of these genes in the core genome is determined by natural se-
lection and unchanged by meiosis and crossover.

In addition, if a set of alleles at a particular locus have equal fitness but

distinct phenotypic effects, and if this set is preserved across generations,

the alleles are likely to be equally fit alternative strategies in a Nash equilib-

rium among loci, each being afitness enhancing best response to the prob-

ability distribution of the other loci in the genome. We call such alleles

mixed strategy gene sets, and we include these in the core genome. For
example, a population equilibrium can sustain a positive fraction of altru-

istic and selfish alleles, or alleles promoting aggressive vs. docile behav-

ior, under certain conditions. Similarly, loci that protect carriers against

frequency-dependent variations in environmental conditions, including that

of bacterial and viral enemies, can be maintained in a polyallelic state as

a means of species-level risk reduction. These include the immune system

gene sets that maintain considerable heterogeneity to deal with a variety of

possible infectious agents.

Another example of a mixed strategy gene set is the interaction of sup-

pressor genes and their targets, where the fitness of the suppressor depends

on a positive frequency of target genes. Leffler (2013) document such a set

stabilized by balancing selection at least since the primate-hominin split.
Finally, heterozygote advantage involves a pair of alleles that maintain pos-

itive frequency despite the fitness cost to homozygous carriers. We may

call these overdominance gene sets. Additional features arise in dealing

with sex-linked genes, including maternal-paternal conflict, but these also

can be identified as characteristics of the species that are conserved across

many generations.

In species that recognize individuals, including many birds and mammals,
such recognition is based in part on the expression of alternative alleles

within a core genome gene set, as well as on genes outside the core genome,

which are shuffled and redistributed through meiosis and recombination,

accounting for the heterogeneity of phenotypes.
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In sum, the typical phenotypic characteristics of the species, including

biochemistry, physiology, and behavioral predispositions, are conserved
across generations due to the capacity of the core genome to self-replicate

across generations. The non-core genes in the gene pool, largely accounting

for the heterogeneity of individuals, may be called the variant genome—see

Riley and Lizotte-Waniewski (2009) for an application to bacterial species.

The core genome is subject to the laws of natural selection: replication, mu-

tation, and selection of superior mutants. Individuals, their societies, and
the social structure of these societies, are the product of the evolution of the

core genome.

While the core genome is an object of selection, it is not in any sense

a unit of selection because it is specified by the frequency distribution of

genomes in the population. Moreover, the very notion of units and objects

of selection, while perhaps of use for a synthetic understanding of biologi-

cal evolution, do not appear to play any role in modeling the social structure
and dynamics of a reproductive population. However, recognizing the core

genome as an object of selection is a useful heuristic in at least two ways.

First, while not in any way undermining the insights of the gene’s eye view

of evolution, it captures the notion that precise combinations of gene inter-

actions are adaptive and hence favored by natural selection. Second, the

core genome allows us to conceptualize phenotypic effects that are located
not in individuals, but in their social interactions. In other words, the core

genome strongly predisposes a social species for certain forms of social be-

havior, including typical mating patterns, recognized forms of territoriality,

and preferred forms of social grouping. The core genome also predisposes

organisms to seek out particular natural environments, although there is

natural variation in such environments that serve as epigenetic sources of
social dynamics and social learning (Galef and Laland 2005; Goodnight et

al. 2005; Smaldino et al. 2013).

The core genome is a replicator in the sense of Lewontin (1970). First,

mutations in loci of the core genome give rise to phenotypic heterogeneity.

Second, phenotypic differences can entail fitness differences among mem-

bers of the reproductive population. Finally, such fitness differences are

heritable. A mutation at a fixed locus, for instance, can lead to increased
fitness of carriers of the mutated allele, leading to the increase in frequency

of the new allele in the population. The focal locus then drops out of the

core genome, but in the long run, with high probability, the mutation will
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either move to fixation or extinction, restoring the focal locus to the core

genome.
Richard Dawkins (1982b) is famous for rejecting the genome as an object

of selection, arguing that because of meiosis and recombination, the genome

dies with the body it inhabits. Dawkins concludes that the individual is but

a vehicle for the transportation of genes across metazoan bodies, writing

that a replicator must have a

low rate of spontaneous, endogenous change, if the selective

advantage of its phenotypic effects is to have any significant
evolutionary effect.. . . too long a piece of chromosome will

quantitatively disqualify itself as a potential unit of selection,

since it will run too high a risk of being split by crossing over

in any generation (p. 47).

Cognizant of this important observation, I have defined the core genome so

as to be impervious to meiosis and crossover. This is clear for fixed and
synonymous loci, where no breaking up of synergistic genome interactions

occur. Moreover meiosis creates as many heterozygote as it destroys, on

average, and it does not alter the frequency distribution of mixed strategy

or immune system gene sets in the population.

9.12 Explaining Social Structure

While inclusive fitness theory justifies selfish gene theory, neither inclu-

sive fitness theory, nor any other plausible theory, supports the notion that
genes or individuals in asocial species maximize inclusive fitness. We have

shown that the maximization characterization is plausible for prosocial non-

polluting genes that satisfy Hamilton’s rule, but not otherwise.

The evolutionary process, from the first RNA molecules to advanced

metazoans and complex social species, involves solving the problem of pro-

moting cooperation among selfish genes (Maynard Smith and Szathmáry

1995). That genes generally contribute to the fitness of the individuals in
which they reside is the result, not of inclusive fitness maximization, but of

a complex evolutionary and intragenomic dynamic involving the suppres-

sion of antisocial and promotion of prosocial alleles (Leigh 1971; Buss

1987; Michod 1997; Frank 2003; Noble 2011).

The evolutionary forces that determine the complex interactions among

loci in metazoans and among individuals in social species must be studied
using, in addition to inclusive fitness theory, the phenotypic gambit (Grafen
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1984), evolutionary game theory (Wilson 1977; Taylor 1992; Taylor 1996),

agent-based modeling (Gintis 2009b), the physiology of suppressor and
promoter genes (Leigh 1977; Noble 2011), as well as species-level sys-

tematics and ecology.

A1 Hamilton’s Rule with General Social Interaction

This section presents a version of Hamilton’s rule that assumes a diploid

organism, and applies to sophisticated social species in which interactions

are multi-adic, such as when there is a complex division of labor in hunting,

defense, or rearing offspring. The resulting equations are similar to those

deduced from the regression approach to Hamilton’s rule (Queller 1992)
but we have no need for least squares regression arguments. The most

salient implication of this exercise is that Hamilton’s Rule holds with very

great generality, although the three terms in the equation are reflections of

the social structure of the reproductive population.

Consider a reproductive population X with individuals fXi 2 X ji D
1; : : : ; ng. Suppose the genome has a diploid autosomal locus with two
alleles, s (selfish) which leads to a behavior that does not affect the fitness

of other individuals, and a (altruistic), which leads its carrier Xi to incur an

increased fitness cost ci over that of the selfish allele, and to bestow fitness

benefit bi distributed over a subset Yi of recipients. Suppose in addition that

the altruistic allele has asocial fitness effect ˇ (pollution when ˇ > 0 or a

public good when ˇ < 0) on both alleles (see Section 9.4). This cost may
be intragenomic, borne by the carrier, or intergenomic, distributed over the

population in some arbitrary manner.

Hamilton (1964a) assumes the social fitness effect is distributed uni-

formly over the genome. This is a significant limitation of his analysis

because intragenomically, meiotic drive and other forms of segregation dis-

tortion, and socially, altruistic acts that are purchased in part by reducing the

fitness of non-relatives, which we call thieving effects (see Section 9.4), are
important, although the Harmony Principle suggests that natural selection

will limit their observed frequency. We can represent these thieving effects

as transfers of fitness ˛ > 0 from non-relatives to relatives, and the reverse

for ˛ < 0.

Standard expositions of Hamilton’s rule take Yi to be an individual. This,

however, is a restrictive assumption because in many social species individ-
uals interact in groups where it is difficult to apportion the benefit bi among
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the various participants. For instance, agent i may play in an n-player pub-

lic goods game in which the s allele promotes defection and the a allele
promotes cooperation, or agent i may defend the nest against intruders, or

punish a lazy coworker. As we shall see, Hamilton’s rule does not depend

on the assumption that the beneficiary is an individual.

The genotypic value X i
g of Xi at the focal locus, the frequency of the focal

allele at this locus, is 0, 1/2, and 1 for genotypes ss, sa, and aa, respectively.

The phenotypic value X i
p of Xi is 0, h, or 1 according as Xi is ss and

never confers the benefit, is sa and confers the benefit with intensity h,

or is aa and confers the benefit with intensity one. Here h can have any

value, positive or negative, but if the allele effects are additive, then h D
1=2. Because there are 2n alleles at the focal locus in the population, the

frequency of a is qa D
P

i X i
g=n. Let Y i

g be the mean genotype of members

of Yi .

The fitness cost to Xi in the current period is thus ciX
i
p, and the fitness

gain to the recipients Yi is biX
i
p. The population size in the next period is

then

n.1 � ˇqa C .b � c/xp/ (9.1)

where xp D
P

i X i
p=n is the mean phenotype of the population, b D

P

i biX
i
p=xp is the mean benefit, and c D

P

i ciX
i
p=xp is the mean cost.

Note that because the thieving effect ˛ is a within-population fitness trans-
fer, it does not appear in (9.1). The number of donor alleles in the next

period is

nqa.1 � ˇqa C ˛.1 � qa// C
X

i

biX
i
pY i

g �
X

i

ciX
i
pX i

g :

The increase in the frequency of the donor allele in the next period, writ-

ing the mean genotype of recipients as q
y
a D

P

i Y i
g=n, is then given by

nqa.1 � ˇqa C ˛.1 � qa// C
P

i biX
i
pY i

g �
P

i ciX
i
pX i

g

n.1 � ˇqa C .b � c/xp/
� qa D
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�
P

i biX
i
pY i

g � nbxpq
y
a

�

C nqa˛.1 � qa/

n.1 � ˇqa C .b � c/xp/
�

�P

i ciX
i
pX i

g � ncxpqa

�

C nbxp.qa � q
y
a /

n.1 � ˇqa C .b � c/xp/
D

cov.Xb
p ; Yg/ � cov.X c

p ; Xg/ C ˛var.Xp/ C bxp.q
y
a � qa/

1 � ˇqa C .b � c/xp

; (9.2)

where Xb
p and X c

p are the variables biX
i
p and ciX

i
p, respectively, and Xg is

a binomial variable, so var.Xp/ D nqa.1 � qa/. Note that the expression
(9.2) is positive, assuming weak selection, when

cov.Xb
p ; Yg/ C ˛var.Xp/ C bxp.q

y
a � qa/

cov.X c
p ; Xg/

> 1: (9.3)

This inequality is the most general form of Hamilton’s rule, including both

social fitness and thieving effects. If we assume donors distribute benefits
that are, on average, independent from the allelic composition at the focal

locus, i.e., q
y
a D qa then (9.3) becomes

cov.Xb
p ; Yg/ C ˛var.Xp/ > cov.X c

p ; Xg/: (9.4)

Note that in the standard treatment, where the beneficiary is an individual,

the condition q
y
a D qa necessarily holds. To see this, note that

qy
a D Œr C .1 � r/qa�qa C Œ1 � .r C .1 � r/.1 � qa//�.1 � qa/ D qa; (9.5)

where r is the relatedness coefficient.

If we further assume that bi D b and ci D c for all individuals i D
1; : : : ; n, we get the expression:

b cov.Xp; Yg/ C ˛ var.Xp/

cov.Xp; Xg/
> c: (9.6)

Finally, if the effect of the altruistic allele is additive, so h D 1=2, then (9.6)

becomes

b
cov.Xp; Yg/

var.Xg/
> c � ˛: (9.7)

This is a standard expression for Hamilton’s rule (Michod and Hamilton
1980), except we have taken into account the thieving effect ˛ (and the
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pollution/public good effect ˇ, which does not appear in Hamilton’s rule).

More generally, for arbitrary h, we have

br > crp � ˛; (9.8)

where

r D
cov.Xp; Yg/

var.Xg/

is the regression coefficient of Yg on Xp, and rp is the regression coefficient

of Xp on Xg :

rp D
cov.Xp; Xg/

var.Xg/
:

It should be clear that, while we use mathematical terminology from statis-

tical estimation theory, no statistical estimation is in fact involved.

To illustrate the increased generality of the form (9.4) of Hamilton’s rule,

suppose the reproductive population is partitioned into social castes fZj �
X jj D 1; : : : ; mg, where caste j has frequency zj in the population, and

suppose members of the same caste j have the same costs cj and benefits
bj . Let Y j be the weighted sum of fYi jXi 2 Zj g, where each individual is

weighted by the number of times the individual appears in the sum. Then

we can write (9.4) as

m
X

j D1

�

.bj cov.Zj
p ; Y j

g / � cj cov.Zj
p ; Zj

g /
�

C ˛ var.Xp/ > 0: (9.9)

Equation (9.9) shows that in general the social structure of the population

allows a caste to be fundamentally altruistic in the sense that its net costs of

helping exceed the net benefits that the caste contributes to the population.

Because the inclusive fitness of caste j is

bj cov.Zj
p ; Y j

g / � cj cov.Zj
p ; Zj

g / < 0 (9.10)

it is then clear that caste j members would maximize their inclusive fit-

ness by simply refusing to contribute to the social process. This shows that
in a caste social structure, individuals do not necessarily maximize their

inclusive fitness. Of course, if castes are genetically determined, then the

partition fzj jj D 1; : : : ; mg will be variable across periods and a funda-

mentally altruistic caste will become extinct in the long run. However, if

castes are determined by developmental conditions (e.g., feeding in euso-

cial insects or socialization in humans), fundamentally altruistic castes can
be maintained in the long run.
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A1.1 The Sociobiological Dynamics of Hamilton’s Rule

The mapping Xi ! Yi , which we have taken as given, reflects the social

structure of the reproductive population. This mapping does not presume

any particular set of social relations of kinship, which is why we suggest that

kin selection is in general an inappropriate description of inclusive fitness
dynamics. Note that if the frequency of the a allele in the population does

not affect the fitnesses of alleles at other loci in the genome, then the a

allele will move to fixation in the population if Hamilton’s rule is satisfied,

and will become extinct if the reverse inequality is satisfied. Ultimately, the

focal locus will be heterozygous with zero probability.

With frequency dependence, when the focal allele becomes prevalent in

the population, if b � c > 0, so the allele is beneficial to its carriers, there
will be no selection at the level of the genome for genes that suppress the

a allele at the focal locus, so the a allele will still move to fixation in the

population. When the focal allele is prevalent and b � c < 0, there will be

natural selection at other loci for genes that either alter the sociobiological

mapping Xi ! Yi or otherwise suppress the a allele at the focal locus,

so that Hamilton’s rule no longer holds for the antisocial allele. This is
the essence of the Inclusive Fitness Harmony Principle. Of course there

may be no likely mutation that suppresses an anti-social a allele, in which

case the antisociality reflected in the behavior induced by the a allele will

become ubiquitous in the population. natural selection does not guarantee

optimality.

This phenomenon also represents a plausible counterexample to Fisher’s
Fundamental Theorem (Ewens 1969; Price 1972; Frank and Slatkin

1992; Edwards 1994; Frank 1997): as an antisocial allele moves to fixa-

tion, the average fitness of population members declines. Some population

biologists save Fisher’s theorem by calling this a transmission effect, and

insisting that natural selection always produces fitness-enhancing gene fre-

quency changes (Edwards 1994; Frank 1997; Gardner et al. 2011). This

interpretation of natural selection should be avoided because it is arbitrary
and difficult to understand for those who are not experts in population biol-

ogy.

It follows that Hamilton’s rule is useful only in charting short-term ge-

netic dynamics. Weak selection and additivity across loci are extremely

powerful analytical tools, but in the long run changes in gene frequency

at one locus are likely to induce compensatory and synergistic changes at
other loci. Indeed, the very mapping Xi ! Yi on which Hamilton’s rule is
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based is itself coded in the core genome of the reproductive population, and

hence in the long run is modified in the course of evolutionary selection and
adaptation.

A1.2 Altruism Among Relatives

A relative is a person “allied by blood. . . a kinsman” (Biology Online). The

argument to this point has nothing to do with genealogy, and hence says

nothing about altruism among family members. This is an attractive prop-

erty of our exposition because in a highly social species, individuals interact
frequently with non-relatives.

It remains to determine the exact relationship between the sociobiological

conception (9.6) and the genealogical conception of relatedness. We follow

Michod and Hamilton (1980), except that we assume the population is out-

bred at the focal locus. Suppose that each Yi is an individual recipient, and

all recipients have the same genealogical relationship to their donors (e.g.,

Yi is a sibling of Xi). Let fpxyzwg be the joint distribution of genotypes
xy for donor and zw for recipient where x; y; z; w 2 fs; ag. Let px

ss, px
as,

and px
aa be the marginal distribution of the genotypes ss, sa, and aa for the

donor (i.e., the fraction of these genotypes in the population), and similarly

for p
y
ss, p

y
as, and p

y
aa for the recipient.

We have

xp D hpx
as C px

aa;

yp D hpy
as C py

aa;

because px
as is the fraction of sa genotypes, their phenotypic value is h,

and paa is the fraction of aa genotypes, which have phenotypic value one.

Also,

px
as D2qnqa (9.11)

px
aa Dq2

a (9.12)

To derive (9.11), note that either the paternal allele is s with probability

qn D 1 � qa and the second is a with probability qa , or else the paternal

allele is a with probability qa and the second is s with probability qn. The

second equation is derived in a similar manner.

We thus have

xp D 2hqnqa C q2
a (9.13)

yp D 2hqnqa C q2
a (9.14)
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Note that

xg D 1=2px
as C px

aa D qa

yg D 1=2py
as C py

aa D qa:

To derive cov.Xg; Xp/, note that

X

i

X i
pX i

g=n D hpx
as=2 C px

aa

D hqnqa C q2
a

Given the values of px
as and px

aa from equations (9.11) and (9.12), and

after algebraic simplification, we find

cov.Xp; Xg/ D qnqa=2; (9.15)

where

 D 2.h C qa.1 � 2h/: (9.16)

Also,

cov.ygxp/ D hpsasa=2 C hpsaaa C paasa=2 C paaaa � ygxp:

Now let p11 be the probability Xi and Yi share both alleles at the focal locus

identically by descent, let p10 be the probability the share one allele at the

focal locus identically by descent, and let p00 be the probability they share
neither allele identically by descent. then we have

pasas D2qnqap11 C qnqap10 C 4q2
nq2

ap00 (9.17)

pasaa Dqaq2
np10 C 2qnq3

ap00 (9.18)

paaas Dqnq2
ap10 C 2qnq3

ap00 (9.19)

paaaa Dq2
ap11 C q3

ap10 C q4
ap00: (9.20)

If we define fXY as the probability that a random allele in Xi and a random

allele in Yi are identical by descent, then

fXY D p11=2 C p10=4: (9.21)

Then a little algebra shows that the r in Hamilton’s rule is given by

r D
cov.Xp; Yg/

cov.Xp; Xg/
D 2fXY : (9.22)
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Note that r is then the expected number of copies of the focal allele in the

recipient.
Consider, for instance, the case of siblings. The two share the same allele

from the father with probability 1/2, and similarly for the mother. therefore

p11 D 1=4, p10 D 1=2, and p00 D 1=4. Substituting these values in (9.17),

we get

r D
cov.Yg; Xp/

cov.Xg; Xp/
D

1

2
: (9.23)

Thus the sociobiological definition of relatedness and the genealogical def-

inition coincide.


